Skip to main content

Stem Cells and the Art of Mesenchymal Maintenance

  • Chapter
Engineering of Functional Skeletal Tissues

Part of the book series: Topics in Bone Biology ((TBB,volume 3))

  • 1261 Accesses

Abstract

The most promising emergent medical technology of the early twenty-first century is stem-cell therapeutics. Traditionally, stem cells possess two important characteristics: the ability to undergo nearly unlimited self-renewal and the capability to differentiate into many (multipotent/pluripotent) or all (totipotent) mature cell phenotypes. The existence of stem cells and their ability to generate every tissue of the body during embryonic development has been known for many years. Transplant experiments performed in the 1970s, in which single stem cells were injected into early-stage blastulas, produced a chimera of donor and recipient cells in each organ of the resultant animal [29, 47].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Hamid M, Hussein MR, Ahmad AF, Elgezawi EM (2005) Enhancement of the repair of meniscal wounds in the red-white zone (middle third) by the injection of bone marrow cells in canine animal model. Int J Exp Pathol 86:117–123.

    Article  PubMed  Google Scholar 

  2. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogenic immune cell responses. Blood 105:1815–1822.

    Article  PubMed  CAS  Google Scholar 

  3. Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan AI, Sharma B, Kopher RA, Tomkoria S, Lennon DP, Lopez A, Mao JJ (2004) Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng 32:911–923.

    Article  PubMed  Google Scholar 

  4. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141.

    Article  PubMed  CAS  Google Scholar 

  5. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253.

    Article  PubMed  CAS  Google Scholar 

  6. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14.

    Article  PubMed  CAS  Google Scholar 

  7. Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431.

    Article  PubMed  CAS  Google Scholar 

  8. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277.

    Article  PubMed  CAS  Google Scholar 

  9. Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, Kadiyala S, Boivin GP (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51:233–240.

    Article  PubMed  CAS  Google Scholar 

  10. Awad HA, Halvorsen YD, Gimble JM, Guilak F (2003) Effects of transforming growth factor β1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9:1301–1312.

    Article  PubMed  CAS  Google Scholar 

  11. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222.

    Article  PubMed  CAS  Google Scholar 

  12. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316.

    PubMed  CAS  Google Scholar 

  13. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808.

    Article  PubMed  CAS  Google Scholar 

  14. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA (2006) Chondrocytic differentiation of human adipose-derived adult stem cells in elastinlike polypeptide. Biomaterials 27:91–99.

    Article  PubMed  CAS  Google Scholar 

  15. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895.

    Article  PubMed  CAS  Google Scholar 

  16. Bruder SP, Jaiswal N (1996) The osteogenic potential of human mesenchymal stem cells is not diminished after one billion-fold expansion in vitro. Trans Orthop Res Soc 21:580.

    Google Scholar 

  17. Bruder S, Jaiswal N, Haynesworth S (1997) Growth kinetics, self-renewal and osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294.

    Article  PubMed  CAS  Google Scholar 

  18. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80: 985–996.

    PubMed  CAS  Google Scholar 

  19. Bruder S, Kurth A, Shea M, Hayes W, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162.

    Article  PubMed  CAS  Google Scholar 

  20. Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134:277–286.

    Article  PubMed  CAS  Google Scholar 

  22. Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS (2005) Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem 96:533–542.

    Article  PubMed  CAS  Google Scholar 

  23. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567.

    Article  PubMed  CAS  Google Scholar 

  24. Ding C, Cicuttini F, Scott F, Cooley H, Jones G (2005) Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 64:549–555.

    Article  PubMed  CAS  Google Scholar 

  25. Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E, Razzano P, Grande DA, Mason JM (2005) Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 12:75–86.

    Article  PubMed  CAS  Google Scholar 

  26. Elisseeff J, Puleo C, Yang F, Sharma B (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161.

    Article  PubMed  CAS  Google Scholar 

  27. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763–769.

    Article  PubMed  CAS  Google Scholar 

  28. Flachsmann R, Kim W, Broom N (2005) Vulnerability to rupture of the intact articular surface with respect to age and proximity to site of fibrillation: a dynamic and static-investigation. Connect Tissue Res 46:159–169.

    PubMed  CAS  Google Scholar 

  29. Ford CE, Evans EP, Gardner RL (1975) Marker chromosome analysis of two mouse chimaeras. J Embryol Exp Morphol 33:447–457.

    PubMed  CAS  Google Scholar 

  30. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–355.

    Article  PubMed  CAS  Google Scholar 

  31. Gafni Y, Turgeman G, Liebergal M, Pelled G, Gazit Z, Gazit D (2004) Stem cells as vehicles for orthopedic gene therapy. Gene Ther 11:417–426.

    Article  PubMed  CAS  Google Scholar 

  32. Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI (2002) Repair of osteochondral defect with tissueengineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8:827–837.

    Article  PubMed  CAS  Google Scholar 

  33. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369.

    Article  PubMed  Google Scholar 

  34. Goulet F (1997) In: Lanza RP, Langer R, Chick WL, eds. Principles of Engineering. 2nd edition. Chapter 50. 711–721 Academic Press, S Diego, CA.

    Google Scholar 

  35. Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106: 2139–2151.

    Article  PubMed  CAS  Google Scholar 

  36. Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, Zhao Q, Dong L, Lu J, Qing Song Y (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into betatricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829.

    Article  PubMed  CAS  Google Scholar 

  37. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissuederived stromal cells. Tissue Eng 7:729–741.

    Article  PubMed  CAS  Google Scholar 

  38. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K, Ishihara M (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissue Organs 178:2–12.

    Article  Google Scholar 

  39. Haynesworth SE, Reuben D, Caplan AI (1998) Cellbased tissue engineering therapies: the influence of whole body physiology. Adv Drug Deliv Rev 33:3–14.

    Article  PubMed  CAS  Google Scholar 

  40. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10:371–380.

    Article  PubMed  CAS  Google Scholar 

  41. Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217.

    Article  PubMed  CAS  Google Scholar 

  42. Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res (in press).

    Google Scholar 

  43. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P (2004) Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg 113:585–594.

    Article  PubMed  Google Scholar 

  44. Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 20: 848–857.

    Article  PubMed  CAS  Google Scholar 

  45. Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2005) The effects of three dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells (in press).

    Google Scholar 

  46. Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, Kim SJ, Park SW, Kwon HS, Lee CK, Lee JB, Kim JM, Ahn C, Paek SH, Chang SS, Koo JJ, Yoon HS, Hwang JH, Hwang YY, Park YS, Oh SK, Kim HS, Park JH, Moon SY, Schatten G (2005) Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308:1777–1783.

    Article  PubMed  CAS  Google Scholar 

  47. Illmensee K, Mintz B (1976) Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA 73:549–553.

    Article  PubMed  CAS  Google Scholar 

  48. Im GI, Shin YW, Lee KB (2005) Do adipose-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 13:845–853.

    Article  PubMed  Google Scholar 

  49. Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, van Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41; Discussion 41.

    PubMed  CAS  Google Scholar 

  50. Jahoda CA, Whitehouse J, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12: 849–859.

    Article  PubMed  Google Scholar 

  51. Jay KE, Rouleau A, Underhill TM, Bhatia M (2004) Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential. Cell Res 14:268–282.

    Article  PubMed  Google Scholar 

  52. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.

    Article  PubMed  CAS  Google Scholar 

  53. Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Sklenka AM, Butler DL (2005) Effects of cell-to-collagen ratio in mesenchymal stem cellseeded implants on tendon repair biomechanics and histology. Tissue Eng 11:448–457.

    Article  PubMed  CAS  Google Scholar 

  54. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ (2003) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 9:95–103.

    Article  PubMed  CAS  Google Scholar 

  55. Kaplan D, Meyer K (1959) Ageing of human cartilage. Nature 183:1267–1268.

    Article  PubMed  CAS  Google Scholar 

  56. Kawaguchi J, Mee PJ, Smith AG (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36:758–769.

    Article  PubMed  CAS  Google Scholar 

  57. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685.

    Article  PubMed  CAS  Google Scholar 

  58. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  59. Knippenberg M, Helder MN, Zandieh Doulabi B, Semeins CM, Wuisman P, Klein-Nulend J (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. (11–12): 1780–1788.

    Article  Google Scholar 

  60. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10: 165–181.

    PubMed  CAS  Google Scholar 

  61. Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG (1998) Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66:1272–1278.

    Article  PubMed  CAS  Google Scholar 

  62. Kume S, Kato S, Yamgishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20:1647–1658.

    Article  PubMed  CAS  Google Scholar 

  63. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Singlecolony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347.

    Article  PubMed  CAS  Google Scholar 

  64. Lawson MA, Barralet JE, Wang L, Shelton RM, Triffitt JT (2004) Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng 10:1480–1491.

    PubMed  CAS  Google Scholar 

  65. Leboy PS, Beresford JN, Devlin C, Owen ME (1991) Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol 146: 370–378.

    Article  PubMed  CAS  Google Scholar 

  66. Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000.

    Article  PubMed  CAS  Google Scholar 

  67. Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373.

    PubMed  Google Scholar 

  68. Li X, Lee JP, Balian G, Greg Anderson D (2005) Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res 46:75–82.

    Article  PubMed  CAS  Google Scholar 

  69. Lian JB, Shalhoub V, Aslam F, Frenkel B, Green J, Hamrah M, Stein GS, Stein JL (1997) Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3-E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression. Endocrinology 138:2117–2127.

    Article  PubMed  CAS  Google Scholar 

  70. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20:899–910.

    PubMed  Google Scholar 

  71. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428.

    Article  PubMed  CAS  Google Scholar 

  72. Mansfield K, Pucci B, Adams CS, Shapiro IM (2003) Induction of apoptosis in skeletal tissues: phosphatemediated chick chondrocyte apoptosis is calcium dependent. Calcif Tissue Int 73:161–172.

    Article  PubMed  CAS  Google Scholar 

  73. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85-ASuppl 2:106–110.

    PubMed  Google Scholar 

  74. Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468.

    Article  PubMed  CAS  Google Scholar 

  75. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005) Silk implants for the healing of critical size bone defects. Bone 37:688–698.

    Article  PubMed  CAS  Google Scholar 

  76. Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88:379–391.

    Article  PubMed  CAS  Google Scholar 

  77. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122.

    Article  PubMed  Google Scholar 

  78. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, Oner FC, de Bruijn JD, van Blitterswijk CA (2002) Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng 8:911–920.

    Article  PubMed  CAS  Google Scholar 

  79. Miles JS, Eichelberger L (1964) Biochemical studies of human cartilage during the aging process. J Am Geriatr Soc 12:1–20.

    PubMed  CAS  Google Scholar 

  80. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474.

    Article  PubMed  Google Scholar 

  81. Murphy WL, Simmons CA, Kaigler D, Mooney DJ (2004) Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res 83:204–210.

    Article  PubMed  CAS  Google Scholar 

  82. Nathan S, Das De S, Thambyah A, Fen C, Goh J, Lee EH (2003) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9:733–744.

    Article  PubMed  CAS  Google Scholar 

  83. Nelea V, Luo L, Demers CN, Antoniou J, Petit A, Lerouge SR, Wertheimer M, Mwale F (2005) Selective inhibition of type X collagen expression in human mesenchymal stem cell differentiation on polymer substrates surface-modified by glow discharge plasma. J Biomed Mater Res 75:216–223.

    Article  CAS  Google Scholar 

  84. O’Driscoll SW, Saris DB, Ito Y, Fitzimmons JS (2001) The chondrogenic potential of periosteum decreases with age. J Orthop Res 19:95–103.

    Article  PubMed  CAS  Google Scholar 

  85. Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7:568–578.

    Article  PubMed  CAS  Google Scholar 

  86. Oreffo RO, Bord S, Triffitt JT (1998) Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94:549–555.

    CAS  Google Scholar 

  87. Orozco L, Rodriguez L, Torrico C, Douville J, Hock JM, Armstrong RD, Garcia J, Solano C (2005) Clinical feasibility study: the use of cultural enriched autologous bone marrow cells to treat refractory atrophic and hypotrophic nonunion fractures. www.aastrom.com/pdf/whitepaper_Barcelona_051205.pdf

    Google Scholar 

  88. Owen ME, Friedenstein AJ (1988) Stromal stem cells: Marrow-derived osteogenic precursors. In: Evered D, Harnett S, eds. Cell and Molecular Biology of Vertebrate Hard Tissues. Wiley, Chichester, UK, pp 42–60.

    Google Scholar 

  89. Pennisi E (2002) Tending tender tendons. Science 295:1011.

    Article  PubMed  CAS  Google Scholar 

  90. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861.

    Article  PubMed  CAS  Google Scholar 

  91. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  92. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11:120–129.

    Article  PubMed  CAS  Google Scholar 

  93. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Article  PubMed  CAS  Google Scholar 

  94. Pittenger M, Vanguri P, Simonetti D, Young R (2002) Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact 2:309–320.

    PubMed  CAS  Google Scholar 

  95. Rahaman MN, Mao JJ (2005) Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 91:261–284.

    Article  PubMed  CAS  Google Scholar 

  96. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298.

    Article  PubMed  Google Scholar 

  97. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625.

    Article  PubMed  CAS  Google Scholar 

  98. Richards M, Goulet JA, Weiss JA, Waanders NA, Schaffler MB, Goldstein SA (1998) Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Clin Orthop Relat Res (355 Suppl):S191–204.

    Article  PubMed  Google Scholar 

  99. Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL (1996) Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 11:312–324.

    Article  PubMed  CAS  Google Scholar 

  100. Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686.

    Article  PubMed  CAS  Google Scholar 

  101. Risbud MV, Shapiro IM (2005) Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res 8:54–59.

    PubMed  CAS  Google Scholar 

  102. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52: 2521–2529.

    Article  PubMed  Google Scholar 

  103. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402.

    Article  PubMed  CAS  Google Scholar 

  104. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, Gimble JM (2001) Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 81:312–319.

    Article  PubMed  CAS  Google Scholar 

  105. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199.

    Article  PubMed  CAS  Google Scholar 

  106. Shigeno Y, Ashton BA (1995) Human bone-cell proliferation in vitro decreases with human donor age. J Bone Joint Surg Br 77:139–142.

    PubMed  CAS  Google Scholar 

  107. Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T (2005) In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem Aug 8 [Epub ahead of print].

    Google Scholar 

  108. Srouji S, Livne E (2005) Bone marrow stem cells and biological scaffold for bone repair in aging and disease. Mech Ageing Dev 126:281–287.

    Article  PubMed  CAS  Google Scholar 

  109. Steck E, Bertram H, Abel R, Chen B, Winter A, Ritcher W (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23:403–411.

    Article  PubMed  CAS  Google Scholar 

  110. Tergeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, et al (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251.

    Article  Google Scholar 

  111. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  112. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784.

    Article  PubMed  CAS  Google Scholar 

  113. Tuli R, Nandi S, Li WJ, Tuli S, Huang X, Manner PA, Laquerriere P, Noth U, Hall DJ, Tuan RS (2004) Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng 10:1169–1179.

    PubMed  CAS  Google Scholar 

  114. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26:4273–4279.

    Article  PubMed  CAS  Google Scholar 

  115. Vunjak-Navakovi G, Altman G, Horan R, Kaplan DL (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–156.

    Article  CAS  Google Scholar 

  116. Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A (2004) Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant 13:331–336.

    PubMed  Google Scholar 

  117. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76: 579–592.

    PubMed  CAS  Google Scholar 

  118. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13:595–600.

    PubMed  Google Scholar 

  119. Wang CJ, Chan YS, Weng LH, Yuan LJ, Chen HS (2004) Comparison of autogenous and allogenous posterior cruciate ligament reconstructions of the knee. Injury 35:1279–1285.

    Article  PubMed  Google Scholar 

  120. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204:184–191.

    Article  PubMed  CAS  Google Scholar 

  121. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364–370.

    Article  PubMed  CAS  Google Scholar 

  122. Xia Z, Ye H, Choong C, Ferguson DJ, Platt N, Cui Z, Triffitt JT (2004) Macrophagic response to human mesenchymal stem cell and poly(epsilon-caprolactone) implantation in nonobese diabetic/severe combined immunodeficient mice. J Biomed Mater Res A 71:538–548.

    Article  PubMed  CAS  Google Scholar 

  123. Yang M, Ma QJ, Dang GT, Ma K, Chen P, Zhou CY (2005) In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 7:273–281.

    Article  PubMed  CAS  Google Scholar 

  124. Yoon Y, Wecker A, Heyd L, Park J, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha D, Johnson KL, Aikawa R, Asahara T, Losordo DW (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115: 326–338.

    Article  PubMed  CAS  Google Scholar 

  125. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: im plications for cell-based therapies. Tissue Eng 7: 211–228.

    Article  PubMed  CAS  Google Scholar 

  126. zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo-and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hicok, K.C., Hedrick, M.H. (2007). Stem Cells and the Art of Mesenchymal Maintenance. In: Bronner, F., Farach-Carson, M.C., Mikos, A.G. (eds) Engineering of Functional Skeletal Tissues. Topics in Bone Biology, vol 3. Springer, London. https://doi.org/10.1007/978-1-84628-366-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-366-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-962-3

  • Online ISBN: 978-1-84628-366-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics