Skip to main content

The Aging Adipose Organ: Lipid Redistribution, Inflammation, and Cellular Senescence

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Abstract

White adipose tissue (WAT) is an immensely plastic organ that plays a vital role in regulating metabolic homeostasis and systemic inflammation. Advancing age mitigates the dynamic nature of WAT which promotes the manifestation of several lipodystrophic-associated comorbidities. Inflammation and the accumulation of senescence cells likely play a key role in this process by inhibiting adipogenesis. The reduction of WAT functional capacity with aging and the role that inflammation and cellular senescence may play in this process will be explored throughout this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697–738.

    CAS  PubMed  Google Scholar 

  3. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fox CS, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.

    PubMed  Google Scholar 

  5. Klein S, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Diabetes Care. 2007;30(6):1647–52.

    PubMed  Google Scholar 

  6. Morley JE. The metabolic syndrome and aging. J Gerontol A Biol Sci Med Sci. 2004;59(2):139–42.

    PubMed  Google Scholar 

  7. Morley JE, Sinclair A. The metabolic syndrome in older persons: a loosely defined constellation of symptoms or a distinct entity? Age Ageing. 2009;38(5):494–7.

    PubMed  Google Scholar 

  8. Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007;42(6):463–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Kotani K, et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int J Obes Relat Metab Disord. 1994;18(4):207–12.

    CAS  PubMed  Google Scholar 

  10. Kuk JL, et al. Age-related changes in total and regional fat distribution. Ageing Res Rev. 2009;8(4):339–48.

    PubMed  Google Scholar 

  11. Matsuzawa Y, et al. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3 Suppl 2:187S–94.

    PubMed  Google Scholar 

  12. Raguso CA, et al. A 3-year longitudinal study on body composition changes in the elderly: role of physical exercise. Clin Nutr. 2006;25(4):573–80.

    PubMed  Google Scholar 

  13. Baker DJ, et al. Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol. 2006;172(4):529–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. DeNino WF, et al. Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care. 2001;24(5):925–32.

    CAS  PubMed  Google Scholar 

  15. Hughes VA, et al. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr. 2004;80(2):475–82.

    CAS  PubMed  Google Scholar 

  16. Goodpaster BH, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med. 2005;165(7):777–83.

    PubMed  Google Scholar 

  17. Goodpaster BH, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care. 2003;26(2):372–9.

    PubMed  Google Scholar 

  18. Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA. 2007;297(9):986–94.

    CAS  PubMed  Google Scholar 

  19. Thompson D, et al. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev. 2012;92(1):157–91.

    CAS  PubMed  Google Scholar 

  20. Bays HE, et al. Adiposopathy and bariatric surgery: is ‘sick fat’ a surgical disease? Int J Clin Pract. 2009;63(9):1285–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Barzilai N, Gupta G. Revisiting the role of fat mass in the life extension induced by caloric restriction. J Gerontol A Biol Sci Med Sci. 1999;54(3):B89–96. discussion B97–8.

    CAS  PubMed  Google Scholar 

  22. Chang GR, et al. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J Pharmacol Sci. 2009;109(4):496–503.

    CAS  PubMed  Google Scholar 

  23. Harrison DE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Berryman DE, et al. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res. 2008;18(6):455–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299(5606):572–4.

    PubMed  Google Scholar 

  26. Selman C, et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 2008;22(3):807–18.

    CAS  PubMed  Google Scholar 

  27. Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140–4.

    CAS  PubMed  Google Scholar 

  28. Um SH, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200–5.

    CAS  PubMed  Google Scholar 

  29. Koutsari C, et al. Fatty acid metabolism in the elderly: effects of dehydroepiandrosterone and testosterone replacement in hormonally deficient men and women. J Clin Endocrinol Metab. 2009;94(9):3414–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Tchkonia T, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9(5):667–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Baker DJ, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Garg A. Clinical review#: lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25.

    CAS  PubMed  Google Scholar 

  33. Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab. 2009;297(5):E977–86.

    CAS  PubMed  Google Scholar 

  34. Van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metab Clin Exp. 2004;53(5):632–7.

    PubMed  Google Scholar 

  35. Karagiannides I, et al. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol. 2001;280(6):R1772–80.

    CAS  PubMed  Google Scholar 

  36. Kirkland JL, Hollenberg CH, Gillon WS. Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am J Physiol. 1990;258(2 Pt 1):C206–10.

    CAS  PubMed  Google Scholar 

  37. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74(4):761–811.

    CAS  PubMed  Google Scholar 

  38. Bays HE, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68.

    CAS  PubMed  Google Scholar 

  39. Rebuffe-Scrive M, et al. Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab. 1988;67(6):1122–8.

    CAS  PubMed  Google Scholar 

  40. Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything. Expert Rev Cardiovasc Ther. 2005;3(3):393–404.

    CAS  PubMed  Google Scholar 

  41. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord. 2004;28 Suppl 4:S12–21.

    CAS  PubMed  Google Scholar 

  42. Ravussin E, et al. Lipids and insulin resistance: what we’ve learned at the Fourth International Smolenice Symposium. Ann N Y Acad Sci. 2002;967:576–80.

    CAS  PubMed  Google Scholar 

  43. Karagiannides I, et al. Induction of colitis causes inflammatory responses in fat depots: evidence for substance P pathways in human mesenteric preadipocytes. Proc Natl Acad Sci U S A. 2006;103(13):5207–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Uzunkoy A, Ozbilge H, Horoz M. The influence of omentectomy on bacterial clearance: an experimental study. TJTES. 2009;15(6):541–5.

    PubMed  Google Scholar 

  45. Schaffler A, Scholmerich J, Salzberger B. Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol. 2007;28(9):393–9.

    CAS  PubMed  Google Scholar 

  46. Ouchi N, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.

    CAS  PubMed  Google Scholar 

  48. Samaras K, et al. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity. 2010;18(5):884–9.

    CAS  PubMed  Google Scholar 

  49. Dolinkova M, et al. The endocrine profile of subcutaneous and visceral adipose tissue of obese patients. Mol Cell Endocrinol. 2008;291(1–2):63–70.

    CAS  PubMed  Google Scholar 

  50. Kloting N, et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 2007;6(1):79–87.

    PubMed  Google Scholar 

  51. Morin CL, et al. Adipose tissue-derived tumor necrosis factor-alpha activity is elevated in older rats. J Gerontol A Biol Sci Med Sci. 1997;52(4):B190–5.

    CAS  PubMed  Google Scholar 

  52. Starr ME, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci. 2009;64(7):723–30.

    PubMed  Google Scholar 

  53. Wu D, et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007;179(7):4829–39.

    CAS  PubMed  Google Scholar 

  54. Tang W, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Tran KV, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15(2):222–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Crossno Jr JT, et al. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest. 2006;116(12):3220–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hong KM, et al. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J. 2005;19(14):2029–31.

    CAS  PubMed  Google Scholar 

  58. Tchkonia T, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1286–96.

    CAS  PubMed  Google Scholar 

  59. Tchkonia T, et al. Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes. 2006;55(9):2571–8.

    CAS  PubMed  Google Scholar 

  60. Tchkonia T, et al. Different fat depots are distinct mini-organs. Curr Opin Endocrinol Diabetes Obes. 2001;8(5):227–34.

    Google Scholar 

  61. Tchkonia T, et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab. 2007;292(1):E298–307.

    CAS  PubMed  Google Scholar 

  62. Yamamoto Y, et al. Adipose depots possess unique developmental gene signatures. Obesity. 2010;18(5):872–8.

    CAS  PubMed  Google Scholar 

  63. Koppen A, Kalkhoven E. Brown vs white adipocytes: the PPAR gamma coregulator story. FEBS Lett. 2010;584(15):3250–9.

    CAS  PubMed  Google Scholar 

  64. Gearing KL, et al. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci U S A. 1993;90(4):1440–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Issemann I, et al. The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochimie. 1993;75(3–4):251–6.

    CAS  PubMed  Google Scholar 

  66. Zhu Y, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A. 1995;92(17):7921–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Morrison RF, Farmer SR. Role of PPAR gamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem. 1999;274(24):17088–97.

    CAS  PubMed  Google Scholar 

  68. Lehrke M, Lazar MA. The many faces of PPAR gamma. Cell. 2005;123(6):993–9.

    CAS  PubMed  Google Scholar 

  69. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Salma N, Xiao H, Imbalzano AN. Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J Mol Endocrinol. 2006;36(1):139–51.

    CAS  PubMed  Google Scholar 

  71. Rosen ED, et al. C/EBP alpha induces adipogenesis through PPAR gamma: a unified pathway. Genes Dev. 2002;16(1):22–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Wu Z, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell. 1999;3(2):151–8.

    CAS  PubMed  Google Scholar 

  73. Kirkland JL, et al. Effects of age and anatomic site on preadipocyte number in rat fat depots. J Gerontol. 1994;49(1):B31–5.

    CAS  PubMed  Google Scholar 

  74. Charriere G, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem. 2003;278(11):9850–5.

    CAS  PubMed  Google Scholar 

  75. Chung S, et al. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology. 2006;147(11):5340–51.

    CAS  PubMed  Google Scholar 

  76. Lin Y, et al. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem. 2000;275(32):24255–63.

    CAS  PubMed  Google Scholar 

  77. Vitseva OI, et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity. 2008;16(5):932–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Gustafson B, et al. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab. 2009;297(5):E999–1003.

    CAS  PubMed  Google Scholar 

  79. Isakson P, et al. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes. 2009;58(7):1550–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Mack I, et al. Functional analyses reveal the greater potency of preadipocytes compared with adipocytes as endothelial cell activator under normoxia, hypoxia, and TNFalpha exposure. Am J Physiol Endocrinol Metab. 2009;297(3):E735–48.

    CAS  PubMed  Google Scholar 

  81. Cousin B, et al. A role for preadipocytes as macrophage-like cells. FASEB J. 1999;13(2):305–12.

    CAS  PubMed  Google Scholar 

  82. Kirkland JL, Hollenberg CH. Inhibitors of preadipocyte replication: opportunities for the treatment of obesity. Prog Mol Subcell Biol. 1998;20:177–95.

    CAS  PubMed  Google Scholar 

  83. Schipper BM, et al. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008;60(5):538–44.

    CAS  PubMed  Google Scholar 

  84. Karagiannides I, et al. Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. J Biol Chem. 2006;281(32):23025–33.

    CAS  PubMed  Google Scholar 

  85. Cartwright MJ, et al. Aging, depot origin, and preadipocyte gene expression. J Gerontol A Biol Sci Med Sci. 2010;65(3):242–51.

    PubMed  Google Scholar 

  86. Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Visser M, et al. One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol. 2003;94(6):2368–74.

    PubMed  Google Scholar 

  88. Kyle UG, et al. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663–72.

    CAS  PubMed  Google Scholar 

  89. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.

    CAS  PubMed  Google Scholar 

  90. Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev. 2006;5(2):144–64.

    CAS  PubMed  Google Scholar 

  91. Pouliot MC, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460–8.

    CAS  PubMed  Google Scholar 

  92. Barzilai N, et al. Surgical removal of visceral fat reverses hepatic insulin resistance. Diabetes. 1999;48(1):94–8.

    CAS  PubMed  Google Scholar 

  93. Gabriely I, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes. 2002;51(10):2951–8.

    CAS  PubMed  Google Scholar 

  94. Kim YW, Kim JY, Lee SK. Surgical removal of visceral fat decreases plasma free fatty acid and increases insulin sensitivity on liver and peripheral tissue in monosodium glutamate (MSG)-obese rats. J Korean Med Sci. 1999;14(5):539–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Dunn JP, et al. Hepatic and peripheral insulin sensitivity and diabetes remission at 1 month after Roux-en-Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care. 2012;35(1):137–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Fabbrini E, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448–55.

    PubMed Central  PubMed  Google Scholar 

  97. Klein S. Is visceral fat responsible for the metabolic abnormalities associated with obesity?: implications of omentectomy. Diabetes Care. 2010;33(7):1693–4.

    PubMed Central  PubMed  Google Scholar 

  98. Koster A, et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity. 2010;18(12):2354–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Caserta F, et al. Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. Am J Physiol Endocrinol Metab. 2001;280(2):E238–47.

    CAS  PubMed  Google Scholar 

  100. Djian P, Roncari AK, Hollenberg CH. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest. 1983;72(4):1200–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kirkland JL, Hollenberg CH, Gillon WS. Ageing, differentiation, and gene expression in rat epididymal preadipocytes. Biochem Cell Biol. 1993;71(11–12):556–61.

    CAS  PubMed  Google Scholar 

  102. Tchkonia T, et al. Increased TNFalpha and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis. Am J Physiol Endocrinol Metab. 2007;293(6):E1810–9.

    CAS  PubMed  Google Scholar 

  103. Wang H, Kirkland JL, Hollenberg CH. Varying capacities for replication of rat adipocyte precursor clones and adipose tissue growth. J Clin Invest. 1989;83(5):1741–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Hotta K, et al. Age-related adipose tissue mRNA expression of ADD1/SREBP1, PPAR gamma, lipoprotein lipase, and GLUT4 glucose transporter in rhesus monkeys. J Gerontol A Biol Sci Med Sci. 1999;54(5):B183–8.

    CAS  PubMed  Google Scholar 

  105. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6(3):439–53.

    CAS  PubMed  Google Scholar 

  106. Ikeyama S, et al. Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury. J Biol Chem. 2003;278(19):16726–31.

    CAS  PubMed  Google Scholar 

  107. Timchenko NA, et al. CUG repeat binding protein (CUGBP1) interacts with the 5′ region of C/EBP beta mRNA and regulates translation of C/EBP beta isoforms. Nucleic Acids Res. 1999;27(22):4517–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Jundt F, et al. A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein beta and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas. Blood. 2005;106(5):1801–7.

    CAS  PubMed  Google Scholar 

  109. van der Sanden MH, et al. Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem J. 2003;369(Pt 3):643–50.

    PubMed Central  PubMed  Google Scholar 

  110. Wang XZ, et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol. 1996;16(8):4273–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Harris TB, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12.

    CAS  PubMed  Google Scholar 

  112. Minamino T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15(9):1082–7.

    CAS  PubMed  Google Scholar 

  113. Beausejour CM, Campisi J. Ageing: balancing regeneration and cancer. Nature. 2006;443(7110):404–5.

    CAS  PubMed  Google Scholar 

  114. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    CAS  PubMed  Google Scholar 

  115. Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev. 2008;129(7–8):467–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Narita M, Lowe SW. Senescence comes of age. Nat Med. 2005;11(9):920–2.

    CAS  PubMed  Google Scholar 

  117. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.

    CAS  PubMed  Google Scholar 

  118. Martin-Ruiz C, et al. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span. J Biol Chem. 2004;279(17):17826–33.

    CAS  PubMed  Google Scholar 

  119. Narita M, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.

    CAS  PubMed  Google Scholar 

  120. Sherr CJ, DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell. 2000;102(4):407–10.

    CAS  PubMed  Google Scholar 

  121. Campisi J. Cancer, aging and cellular senescence. In Vivo. 2000;14(1):183–8.

    CAS  PubMed  Google Scholar 

  122. Campisi J. Fragile fugue: p53 in aging, cancer and IGF signaling. Nat Med. 2004;10(3):231–2.

    CAS  PubMed  Google Scholar 

  123. Xue W, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–60.

    CAS  PubMed  Google Scholar 

  124. Lee BY, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.

    CAS  PubMed  Google Scholar 

  125. Wang C, et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009;8(3):311–23.

    CAS  PubMed  Google Scholar 

  126. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    CAS  PubMed  Google Scholar 

  127. Freund A, et al. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Parrinello S, et al. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005;118(Pt 3):485–96.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AG13925 (JLK), AG31736 (A. Bartke), and AG41122 (JLK), the Robert and Arlene Kogod Center on Aging, and the Noaber, Glenn, and Ellison Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Kirkland M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stout, M.B., Tchkonia, T., Kirkland, J.L. (2014). The Aging Adipose Organ: Lipid Redistribution, Inflammation, and Cellular Senescence. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics