Skip to main content

Bad Fat or Just More Fat? Murine Models of Metabolically Healthy Obesity

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Abstract

Worldwide obesity has more than doubled since 1980, with more than 500 million individuals currently obese (BMI > 30) [1]. The potential public health, economic and social impacts of this “epidemic” are daunting, as obesity is an independent risk factor for debilitating comorbidities, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), stroke, nonalcoholic steatohepatitis (NASH), certain cancers, and overall mortality [2, 3]. These comorbidities reflect in large part the metabolic dysregulation that typifies the chronically obese state. Intriguingly, however, a significant proportion (25 %) of obese individuals remains relatively protected from metabolic complications typically associated with obesity [4]. This group, referred to as the metabolically healthy obese (MHO) remain insulin sensitive with favorable hormonal and liver enzyme profiles in the relative absence of hypertension, dyslipidemia, and/or inflammation [2, 4–13]. Criteria for defining “metabolic health” in MHO individuals vary in the literature. As a rule, however, the criteria are based on the absence or “below cutoff” values for cardiometabolic risk factors, metabolic syndrome hallmarks or insulin resistance in individuals with BMI > 30 [14–16]. Independent of the criteria used to assess MHO, the metabolic profiles of these individuals approximate those of young lean individuals [17] and have been longitudinally associated with reduced incidences of T2DM and cardiovascular disease. Accordingly, elucidating the factors that underlie the MHO phenotype is an important undertaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Fact sheet: obesity and overweight. Available at: http://www.who.int/dietphysicalactivity/publications/facts/obesity/en/. 2009. Accessed June 23, 2009

  2. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–105.

    CAS  PubMed  Google Scholar 

  3. Forte V, Pandey A, Abdelmessih R, Forte G, Whaley-Connell A, Sowers JR, McFarlane SI. Obesity, diabetes, the cardiorenal syndrome, and risk for cancer. Cardiorenal Med. 2012;2(2):143–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, et al. Insulin sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299(3):E506–15.

    PubMed  Google Scholar 

  5. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–9.

    CAS  PubMed  Google Scholar 

  6. Perseghin G. Is a nutritional therapeutic approach unsuitable for metabolically healthy but obese women? Diabetologia. 2008;51(9):1567–9.

    CAS  PubMed  Google Scholar 

  7. Aguilar-Salinas CA, Garcia EG, Robles L, Riano D, Ruiz-Gomez DF, Garcia-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93(10):4075–9.

    CAS  PubMed  Google Scholar 

  8. Brochu M, Tchernof A, Dionne IJ, Sites CK, Eltabbakh GH, Sims EA, et al. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 2001;86(3):1020–5.

    CAS  PubMed  Google Scholar 

  9. Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005;90(7):4145–50.

    CAS  PubMed  Google Scholar 

  10. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006;91(8):2906–12.

    CAS  PubMed  Google Scholar 

  11. Wildman RP, Muntner P, Reynolds K, McGinn AP, Raipathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.

    PubMed  Google Scholar 

  12. Karelis AD, Rabasa-Lhoret R. Inclusion of C-reactive protein in the identification of metabolically healthy but obese (MHO) individuals. Diabetes Metab. 2008;34(2):183–4.

    CAS  PubMed  Google Scholar 

  13. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Prevalence of uncomplicated obesity in an Italian obese population. Obes Res. 2005;13(6):1116–22.

    PubMed  Google Scholar 

  14. Shea JL, Randell EW, Sun G. The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity (Silver Spring). 2011;19(3):624–30.

    CAS  Google Scholar 

  15. Karelis AD. Metabolically healthy but obese individuals. Lancet. 2008;372(9646):1281–3.

    PubMed  Google Scholar 

  16. Velho S, Paccaud F, Waever G, Vollenweider P, Marques-Vidal P. Metabolically healthy obesity: different prevalences using different criteria. Eur J Clin Nutr. 2010;64(10):1043–51.

    CAS  PubMed  Google Scholar 

  17. Dvorak RV, DeNino WR, Ades PA, Poehlman ET. Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women. Diabetes. 1999;48(11):2210–4.

    CAS  PubMed  Google Scholar 

  18. Feral CC, Rose DM, Han J, Fox N, Silverman GJ, Kaushansky K, et al. Blocking the α4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest. 2006;116(3):715–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2010;35(7):971–81.

    Google Scholar 

  20. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.

    PubMed  Google Scholar 

  21. O’Connell J, Lynch L, Cawood TJ, Kwasnik A, Nolan N, Geoghegan J, et al. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS One. 2010;5(4):e9997.

    PubMed Central  PubMed  Google Scholar 

  22. Mori Y, Murakawa Y, Okada K, Horikoshi H, Yokoyama J, Tajima N, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.

    CAS  PubMed  Google Scholar 

  23. Koenen TB, Tack CJ, Kroese JM, Hermus AR, Sweep FC, van der Laak J, et al. Pioglitazone treatment enlarges subcutaneous adipocytes in insulin-resistant patients. J Clin Endocrinol Metab. 2009;94(11):4453–7.

    CAS  PubMed  Google Scholar 

  24. Ostman J, Arner P, Engfeldt P, Kager L. Regional differences in the control of lipolysis in human adipose tissue. Metabolism. 1979;28(12):1198–205.

    CAS  PubMed  Google Scholar 

  25. Cusi K. The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diabetes Rep. 2010;10(4):306–15.

    CAS  Google Scholar 

  26. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  29. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10.

    CAS  PubMed  Google Scholar 

  30. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Fain J. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006;74:443–77.

    CAS  PubMed  Google Scholar 

  33. Harman-Boehm I, Vluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92(6):2240–7.

    CAS  PubMed  Google Scholar 

  34. Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity. 2010;18(5):884–9.

    CAS  PubMed  Google Scholar 

  35. Alvehus M, Buren J, Sjostrom M, Goedecke J, Olsson T. The human visceral fat depot has a unique inflammatory profile. Obesity. 2010;18(5):879–83.

    CAS  PubMed  Google Scholar 

  36. Poussin C, Hall D, Minehira K, Galzin AM, Tarussio D, Thorens B. Different transcriptional control of metabolism and extracellular matrix in visceral and subcutaneous fat of obese and rimonabant treated mice. PLoS One. 2008;3(10):e3385.

    PubMed Central  PubMed  Google Scholar 

  37. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.

    PubMed  Google Scholar 

  38. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29.

    CAS  PubMed  Google Scholar 

  39. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219–46.

    CAS  PubMed  Google Scholar 

  40. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93(11 Supplement 1):s57–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jacobsson B, Smith U. Effect of cell size on lipolysis and antilipolytic action of insulin in human fat cells. J Lipid Res. 1972;13(5):651–6.

    CAS  PubMed  Google Scholar 

  42. Laurencikiene J, Skurk T, Kulyté A, Hedén P, Aström G, Sjölin E, et al. Regulation of lipolysis in small and large fat cells of the same subject. J Clin Endocrinol Metab. 2011;96(12):E2045–9.

    CAS  PubMed  Google Scholar 

  43. Bays HE, Gonzalez-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68.

    CAS  PubMed  Google Scholar 

  44. Strissel KJ, Stancheva Z, Miyoshi H, Perfield 2nd JW, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8.

    CAS  PubMed  Google Scholar 

  45. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest. 2007;30(3):210–4.

    CAS  PubMed  Google Scholar 

  47. Ronti TG, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006;64(4):355–65.

    CAS  Google Scholar 

  48. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92:1023–33.

    CAS  PubMed  Google Scholar 

  49. Foster MT, Shi H, Softic S, Kohli R, Seeley RJ, Woods SC. Transplantation of non-visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia. 2011;54(11):2890–9.

    CAS  PubMed  Google Scholar 

  50. Hocking SL, Chisholm DJ, James DE. Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment. Diabetologia. 2008;51:900–2.

    CAS  PubMed  Google Scholar 

  51. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ishikawa K, Takahashi K, Bujo H, Hasimoto N, Yagui K, Saito Y. Subcutaneous fat modulates insulin sensitivity in mice by regulating TNF-alpha expression in visceral fat. Horm Metab Res. 2006;38(10):631–8.

    CAS  PubMed  Google Scholar 

  53. Foster MT, Shi H, Seeley RJ, Woods SC. Transplantation or removal of intra-abdominal adipose tissue prevents age-induced glucose insensitivity. Physiol Behav. 2011;101(2):282–8.

    Google Scholar 

  54. Foster MT, Shi H, Seeley RJ, Woods SC. Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiol Behav. 2011;104(5):845–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rytka JM, Wueest S, Schoenie EJ, Konrad D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes. 2011;60(1):56–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Konrad D, Rudich A, Schoenle EJ. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia. 2007;50(4):833–9.

    CAS  PubMed  Google Scholar 

  57. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.

    CAS  PubMed  Google Scholar 

  58. Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15(8):940–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Natl Acad Sci. 2008;105(28):9793–8.

    CAS  Google Scholar 

  61. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1a and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010;464(7293):1313–9.

    CAS  PubMed  Google Scholar 

  62. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Yoshihara E, Fujimoto S, Inagaki N, Okawa K, Masaki S, Yodoi J, et al. Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat Commun. 2010;1:127.

    PubMed Central  PubMed  Google Scholar 

  65. Chutkow WA, Lee RT. Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. J Biol Chem. 2011;286(33):29139–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Chutkow WA, Birkenfeld AL, Brown JD, Lee HY, Frederick DW, Yoshioka J, et al. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. Diabetes. 2010;59(6):1424–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Chen J, Hui ST, Couto FM, Mungrue IN, David DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008;22(10):3581–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Divoux A, Clément K. Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes Rev. 2011;12(5):e494–503.

    CAS  PubMed  Google Scholar 

  69. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59(11):2817–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007;40(1):1–16.

    CAS  PubMed  Google Scholar 

  72. Zheng TS, Burkly LC. No end in site: TWEAK/Fn14 activation and autoimmunity associated- end-organ pathologies. J Leukoc Biol. 2008;84(2):338–47.

    CAS  PubMed  Google Scholar 

  73. Roos C, Wicovsky A, Muller N, Salzmann S, Rosenthal T, Kalthoff H, et al. Soluble and transmembrane TNF-like weak inducer of apoptosis differentially activate the classical and noncanonical NF-kappa B pathway. J Immunol. 2010;185(3):1593–605.

    CAS  PubMed  Google Scholar 

  74. Xia L, Shen H, Xiao W, Lu J. Increased serum TWEAK levels in psoriatic arthritis: relationship with disease activity and matrix metalloproteinase-3 serum levels. Cytokine. 2011;53(3):289–91.

    CAS  PubMed  Google Scholar 

  75. Li H, Mittal A, Paul PK, Kumar M, Srivastava DS, Tyagi SC, et al. Tumor necrosis factor-related weak inducer of apoptosis augments matrix metalloproteinase 9 (MMP-9) production in skeletal muscle through the activation of nuclear factor-kappaB-inducing kinase and p38 mitogen-activated protein kinase: a potential role of MMP-9 in myopathy. J Biol Chem. 2009;284(7):4439–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Chacón MR, Richart C, Gomez JM, Megia A, Vilarrasa N, Fernandez-Real JM, et al. Expression of TWEAK and its receptor Fn14 in human subcutaneous adipose tissue. Relationship with other inflammatory cytokines in obesity. Cytokine. 2006;33(3):129–37.

    PubMed  Google Scholar 

  77. Vendrell J, Maymo-Masip E, Tinahones F, Garcia-Espana A, Megia A, Caubet E, et al. Tumor necrosis-like weak inducer of apoptosis as a proinflammatory cytokine in human adipocyte cells: up-regulation in severe obesity is mediated by inflammation but not hypoxia. J Clin Endocrinol Metab. 2010;95(6):2983–92.

    CAS  PubMed  Google Scholar 

  78. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science. 1996;274(5291):1377–9.

    CAS  PubMed  Google Scholar 

  79. Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology. 2000;141(9):3388–96.

    CAS  PubMed  Google Scholar 

  80. Coe NR, Simpson MA, Bernlohr DA. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res. 1999;40(5):967–72.

    CAS  PubMed  Google Scholar 

  81. Scheja L, Makowski L, Uysal KT, Wiesbrock SM, Shimshek DR, Meyers DS, et al. Altered insulin secretion associated with reduced lipolytic efficiency in aP2-/- mice. Diabetes. 1999;48(10):1987–94.

    CAS  PubMed  Google Scholar 

  82. Shaughnessy S, Smith ER, Kodukula S, Storch J, Fried SK. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice (aP2-/-) after short-term high-fat feeding: functional compensation by the keratinocyte fatty acid binding protein. Diabetes. 2000;49(6):904–11.

    CAS  PubMed  Google Scholar 

  83. Furuhashi M, Fucho R, Gorgun CZ, Tuncman G, Cao H, Hotamisligil GS. Adipocyte/macrophage fatty acid binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest. 2008;118(7):2640–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Osborn O, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine. 2008;44(1):141–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Jager J, Gremeauz T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 2007;148(1):241–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. McGillicuddy FC, Harford KA, Reynolds CM, Oliver E, Claessens M, Mills KH, et al. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes. 2011;60(6):1688–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Miyazaki T, Kurokawa J, Arai S. AIMing at metabolic syndrome. Towards the development of novel therapies for metabolic diseases via apoptosis inhibitor of macrophage (AIM). Circulation J. 2011;75(11):2522–31.

    CAS  Google Scholar 

  89. Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K, et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab. 2010;11(6):479–92.

    CAS  PubMed  Google Scholar 

  90. Kurokawa J, Nagano H, Ohara O, Kubota N, Kadowaki T, Arai S, et al. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Natl Acad Sci USA. 2011;108(29):12072–7.

    CAS  Google Scholar 

  91. Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes. 2003;52(3):634–41.

    CAS  PubMed  Google Scholar 

  92. Bost F, Aoudadi M, Caron L, Even P, Belmonte N, Prot M, et al. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes. 2005;54(2):402–11.

    CAS  PubMed  Google Scholar 

  93. Jager J, Corcelle V, Gremeaux T, Laurent K, Waget A, Pages G, et al. Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia. 2011;54(1):180–9.

    CAS  PubMed  Google Scholar 

  94. Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett. 2011;304(2):80–9.

    CAS  PubMed  Google Scholar 

  95. Perfield II JW, Lee Y, Shulman GI, Samuel VT, Jurczak MJ, Chang E, et al. Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes. 2010;60(4):1168–76.

    Google Scholar 

  96. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16–23.

    CAS  PubMed  Google Scholar 

  97. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43.

    CAS  PubMed  Google Scholar 

  98. Dallaire P, Bellmann K, Laplante M, Gélinas S, Centeno-Baez C, Penfornis P, et al. Obese mice lacking inducible nitric oxide synthase are sensitized to the metabolic actions of peroxisome proliferator-activated receptor-gamma agonism. Diabetes. 2008;57(8):1999–2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Carvalho-Filho MA, Ueno M, Carvalheira JB, Velloso LA, Saad MJ. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice. Am J Physiol Endoc M. 2006;291(3):E476–82.

    CAS  Google Scholar 

  100. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):11191–8.

    Google Scholar 

  101. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673–7.

    CAS  PubMed  Google Scholar 

  102. Maeda S, Chang L, Li ZW, Luo JL, Lefferet H, Karin M. IKKB is required for prevention of apoptosis mediated by cell-bound but not circulating TNFa. Immunity. 2003;19:725–37.

    CAS  PubMed  Google Scholar 

  103. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.

    CAS  PubMed  Google Scholar 

  104. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 2007;6(5):386–97.

    CAS  PubMed  Google Scholar 

  105. Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Suganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, Ogawa Y. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem Bioph Res Co. 2007;354(1):45–9.

    CAS  Google Scholar 

  108. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C, et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia. 2007;50(6):1267–76.

    CAS  PubMed  Google Scholar 

  109. Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009;10(5):419–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prad PO, Hiravara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56(8):1986–98.

    CAS  PubMed  Google Scholar 

  111. Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME. The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm Metab Res. 2009;41(07):523–30.

    CAS  PubMed  Google Scholar 

  112. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-inflammatory CD11c + CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59(7):1648–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Wu H, Perrard XD, Wang Q, Perrard JL, Polasani VR, Jones PH, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2010;30(2):186–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Jung S, Unutmaz D, Wong P, Sano G, De Los Santos K, Sparwasser T, et al. In vivo depletion of CD11c + dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity. 2002;17(2):211–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Patsouris D, Li PP, Thapar D, Chapman J, Qlefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8(4):301–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Chen HC, Stone SJ, Zhou P, Buhman KK, Farese Jr RV. Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a: diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes. 2002;51(11):3189–95.

    CAS  PubMed  Google Scholar 

  118. Koliwad SK, Streeper RS, Monetti M, Cornelissen I, Chan L, Terayama K, et al. DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J Clin Invest. 2010;120(3):756–67.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Institutes of Health grants R01-DK074979 (to MSO and ASG), RO1-DK082574 and R24 DK087669 (to ASG), 1RC2ES01871 to (ASG and MSO), T32-HL069772-10 (to GB), P30DK072476 (Boston Nutrition and Obesity Research Center), and USDA-ARS grant 58-1950-7-707 (to ASG and MSO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin S. Obin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bennett, G., Greenberg, A.S., Obin, M.S. (2014). Bad Fat or Just More Fat? Murine Models of Metabolically Healthy Obesity. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics