Skip to main content

Metabolism of White Adipose Tissue

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

The main role of adipose tissue remains the storage of energy as triacyglycerols. The discovery of lipases other than hormone-sensitive lipase and of numerous lipid droplet associated proteins has changed our view of the mechanisms controlling the synthesis and release of triacylglycerols by adipose tissue. Adipocytes are also involved in cholesterol metabolism and through the production of adipokines, and perhaps of microvesicles, in the control of other metabolic pathways in other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elia M. Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN, editors. Energy metabolism: tissue determinants and cellular corollaries. New York, NY: Raven; 1999. p. 61–79.

    Google Scholar 

  2. Strawford A, Antelo F, Christiansen M, Hellerstein M. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol. 2004;286:E557–88.

    Google Scholar 

  3. Zechner R, Zimmermann R, Eichmann Thomas O, Kohlwein Sepp D, Haemmerle G, Lass A, et al. FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Schaffer J. Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003;14:281–7.

    PubMed  CAS  Google Scholar 

  5. Laurencikiene J, Skurk T, Kulité A, Hedén P, Aström G, Sjölin E, et al. Regulation of lipolysis in small and large fat cells of the same subject. J Clin Endocrinol Metab. 2011;96:2045–9.

    Google Scholar 

  6. Salans L, Bray G, Cushman S, Danforth Jr E, Glennon J, Horton E, et al. Glucose metabolism and the response to insulin by human adipose tissue in spontaneous an experimental obesity. Effects of dietary composition and adipose cell size. J Clin Invest. 1974;53:848–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Large V, Arner P. Regulation of lipolysis in humans. Pathophysiological modulation in obesity, diabetes and hyperlipidemia. Diabetes Metab. 1998;24:409–18.

    PubMed  CAS  Google Scholar 

  8. Chatterjee TK, Stoll L, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, Rudich S, Weintraub NL. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104:541–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Thalmann S, Meier C. Local adipose tissue depots as cardiovascular risk factors. Cardiovasc Res. 2007;75:690–701.

    PubMed  CAS  Google Scholar 

  10. Mead J, Irvine S, Ramji D. Lipoprotein lipase: structure, function, regulation and role in disease. J Mol Med. 2002;80:753–69.

    PubMed  CAS  Google Scholar 

  11. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of LPL. Biochem J. 1992;287:337–47.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Miida T, Hirayama S. Impacts of angiopoietin-like proteins on lipoprotein metabolism and cardiovascular events. Curr Opin Lipidol. 2010;21:70–5.

    PubMed  CAS  Google Scholar 

  13. Forcheron F, Basset A, Del Carmine P, Beylot M. Lipase maturation factor 1: expression in Zucker diabetic rats and effects of metformin and fenofibrate. Diabetes Metab. 2009;35:452–7.

    PubMed  CAS  Google Scholar 

  14. Peterfy M, Ben-Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Pullinger CR, et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet. 2007;39(12):1483–7.

    PubMed  CAS  Google Scholar 

  15. Tacken P, Hofker M, Havekes L, van Dick KW. Living up to a name: the role of the VLDL receptor in lipid metabolism. Cur Opin Lipidol. 2001;12:275–9.

    CAS  Google Scholar 

  16. Goudriaan J, Tacknen P, Dahlmans V, et al. Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol. 2001;21:1488–93.

    PubMed  CAS  Google Scholar 

  17. Tao H, Hajri T. Very low density lipoprotein receptor promotes adipocyte differentiation and mediates the proadipogenic effect of peroxisome proliferator-activated receptor gamma agonists. Biochem Pharmacol. 2011;82:1950–62.

    PubMed  CAS  Google Scholar 

  18. Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:785–91.

    PubMed  CAS  Google Scholar 

  19. Grosskopf I, Baroukh N, Lee S-J, Kamari Y, Harats D, Rubin EM, et al. Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol. 2005;25:2573–9.

    PubMed  CAS  Google Scholar 

  20. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, et al. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem. 2005;280(22):21553–60.

    PubMed  CAS  Google Scholar 

  21. Ory D. Chylomicrons and lipoprotein lipase at the endothelial surface: bound and GAG-ged? Cell Metab. 2007;5:229–31.

    PubMed  CAS  Google Scholar 

  22. Luiken J, Coort S, Koonen D, Van der Horst D, Bonen A, Zorzano A, et al. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporter. Pflugers Arch. 2004;448:1–15.

    PubMed  CAS  Google Scholar 

  23. Bernlhor D, Ribarick-Coe N, LiCata V. Fatty acids trafficking in the adipocyte cell. Cell Dev Biol. 1999;10:43–9.

    Google Scholar 

  24. Thompson B, Lobo S, Bernlohr D. Fatty acids flux in adipocytes; the in’s and out’s of fat cell lipid trafficking. Mol Cell Endocrinol. 2010;318:24–33.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Ibrahimi A, Abumrad N. Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care. 2002;5(2):139–45.

    PubMed  CAS  Google Scholar 

  26. Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Cell Biol. 2005;16:24–31.

    CAS  Google Scholar 

  27. Czech M. Fat targets for insulin signaling. Mol Cell. 2002;9:695–6.

    PubMed  CAS  Google Scholar 

  28. Parton R, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8:185–94.

    PubMed  CAS  Google Scholar 

  29. Le Lay S, Blouin C, Hajduch E, Dugail I. Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochem Biophys Acta. 2009;1791:514–8.

    PubMed  Google Scholar 

  30. Trigatti B, Anderson R, Gerber G. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun. 1999;255:34–9.

    PubMed  CAS  Google Scholar 

  31. Pol A, Martin S, Fernandez M, Ingelmo-Torres M, Ferguson C, Enrich C, Parton R. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Cell Biol. 2005;16:2091–105.

    CAS  Google Scholar 

  32. Kim CA, Delépine M, Boutet E, El Mourabit H, Le Lay S, Meier M, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metabol. 2008;93(4):1129–34.

    CAS  Google Scholar 

  33. Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W. Caveolin-1 is required for fatty acid translocase localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochem Biophys Acta. 2006;1761:416–23.

    PubMed  CAS  Google Scholar 

  34. Weisiger R. Cytosolic fatty acid binding proteins catalyze two distinct steps in intra-cellular transport of their ligands. Mol Cel Biochem. 2002;39:35–42.

    Google Scholar 

  35. Storch S, Veerkamp J, Hsu K. Similar mechanisms of fatty acid transport from human and rodent fatty acid-binding proteins to membranes: liver, intestine, heart muscle and adipose tissue. Mol Cel Biochem. 2002;239:25–33.

    CAS  Google Scholar 

  36. Fisher R, Thorne A, Hamsten A, Arner P. Fatty acid binding proteins expression in different human adipose tissue depots in relation to the rates of lipolysis and insulin concentration in obese individual. Mol Cel Biochem. 2002;239:95–100.

    CAS  Google Scholar 

  37. Coe N, Smith A, Frohnert B, Watkins P, Bernlohr D. FATP1 is a very long chain acyl-CoA synthetase. J Biol Chem. 1999;274:36300–4.

    PubMed  CAS  Google Scholar 

  38. Richards M, Harp J, Orcy D, Schaffer J. FATP1 and long-chain acyl CoA synthetase 1 interact in adipocytes. J Lipid Res. 2006;47:665–72.

    PubMed  CAS  Google Scholar 

  39. Mac Garry JD, Foster D. Regulation of hepatic fatty acids oxidation and ketone body production. Ann Rev Biochem. 1980;49:395–411.

    Google Scholar 

  40. Vankoningsloo SB, Piens M, Lecocq C, Gilson A, De Pauw AL, Renard P, et al. Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid β-oxidation and glucose. J Lipid Res. 2005;46(6):1133–49.

    PubMed  CAS  Google Scholar 

  41. Gondret F, Ferré P, Dugail I. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J Lipid Res. 2001;42:106–13.

    PubMed  CAS  Google Scholar 

  42. Marin P, Hogh-Christiansen I, Jansson S, Kratkiewxky M, Holm G, Bjorntorp P. Uptake of glucose carbon in muscle glycogen and adipose tissue triglycerides in vivo in humans. Am J Physiol. 1992;263:E473–80.

    PubMed  CAS  Google Scholar 

  43. Diraison F, Yankah V, Letexier D, Dusserre E, Jones P, Beylot M. Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. J Lipid Res. 2003;44:846–53.

    PubMed  CAS  Google Scholar 

  44. Diraison F, Beylot M. Role of human liver lipogenesis and re esterification in triglycerides secretion and in FFA re esterification. Am J Physiol. 1998;274:E321–7.

    PubMed  CAS  Google Scholar 

  45. Hellerstein M, Christiansen M, Kaempfer S, Kletke C, Wu K, Reid S, et al. Measurement of de novo lipogenesis in humans using stable isotopes. J Clin Invest. 1991;87:1841–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Faix D, Neese R, Kletke C, Wolden S, Cesar D, Countlangus M, et al. Quantification of menstrual and diurnal periodocities in rates of cholesterol and fat synthesis in humans. J Lipid Res. 1993;34:2063–75.

    PubMed  CAS  Google Scholar 

  47. Aarsland A, Chinkes D, Wolfe R. Hepatic and whole body fat synthesis in humans during carbohydrate overfeeding. Am J Clin Nutr. 1997;65:1174–82.

    Google Scholar 

  48. Hudgins LC, Hellerstein MK, Seidman C, Neese R, Diakun J, Hirsh J. Human fatty synthesis is stimulated by a eucaloric low fat high carbohydrate diet. J Clin Invest. 1996;98:2081–91.

    Google Scholar 

  49. Letexier D, Pinteur C, Large V, Frering V, Beylot M. Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue. J Lipid Res. 2003;44:2127–34.

    PubMed  CAS  Google Scholar 

  50. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol. 2002;282:E46–51.

    CAS  Google Scholar 

  51. Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M. Mechanisms of the triglyceride and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes. 2002;51:3486–91.

    PubMed  CAS  Google Scholar 

  52. Diraison F, Beylot M, Moulin P. Contribution of hepatic de novo lipogenesis and re esterification of plasma NEFA to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 2003;29:478–85.

    PubMed  CAS  Google Scholar 

  53. Shrago E, Spennetta T, Gordon E. Fatty acid synthesis in human adipose tissue. J Biol Chem. 1969;244:905–12.

    Google Scholar 

  54. Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J. 2002;366:377–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Foretz M, Guichard C, Ferre P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A. 1999;96:12737–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Joseph S, Laffitte B, Patel P, Watson M, Matsukuma K, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;29:11019–25.

    Google Scholar 

  57. Uyeda K, Yamashita H, Kawaguchi T. Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol. 2002;63:13476–8.

    Google Scholar 

  58. Ferré P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res. 2007;68:72–82.

    PubMed  Google Scholar 

  59. Towle H. Glucose and cAMP: adversaries in the regulation of hepatic gene expression. Proc Natl Acad Sci U S A. 2001;98:13476–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation-dephosphorylation of the ChREBP. Proc Natl Acad Sci U S A. 2001;98:13710–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Iizuka K, Bruick R, Liang G, Horton J, Uyeda K. Deficiency of ChREBP reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101:7281–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription. Regulation of ChREBP by AMP-activated kinase. J Biol Chem. 2002;277:3829–35.

    PubMed  CAS  Google Scholar 

  63. Moustaid N, Jones B, Taylor J. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J Nutr. 1996;126:865–70.

    PubMed  CAS  Google Scholar 

  64. Claycombe K, Jones B, Standridge M, Guo Y, Chun J, Taylor J, et al. Insulin increases fatty acid synthase gene transcription in human adipocytes. Am J Physiol. 1998;274:R1253–9.

    PubMed  CAS  Google Scholar 

  65. LeLay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and SREBP-1c regulation of gene expression in 3T3-L1 adipocytes. J Biol Chem. 2002;277:35625–34.

    CAS  Google Scholar 

  66. Foufelle F, Gouhot B, Pegorier J, Perdereau D, Girard J, Ferre P. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. J Biol Chem. 1992;267:20543–6.

    PubMed  CAS  Google Scholar 

  67. He Z, Jiang T, Wang Z, Levi M, Li J. Modulation of carbohydrate response element-binding protein ChREBP gene expression in 3T3-L1 adipocyte and rat adipose tissue. Am J Physiol. 2004;287:E424–30.

    CAS  Google Scholar 

  68. Letexier D, Peroni O, Pinteur C, Beylot M. In vivo expression of carbohydrate responsive element binding protein in lean and obese rats. Diabetes Metab. 2005;31:558–66.

    PubMed  CAS  Google Scholar 

  69. Dentin R, Pegorier J, Benhamed F, Foufelle F, Ferré P, Fauveau V, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279:20314–26.

    PubMed  CAS  Google Scholar 

  70. Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484:333–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Gauthier K, Billon C, Bissler M, Beylot M, Lobaccaro J-M, Vanacker J-M, et al. Thyroid hormone receptor alpha and liver X receptor (LXR) regulate carbohydrate-response element-binding protein (ChREBP) expression in a tissue-selective manner. J Biol Chem. 2009;285(36):28156–63.

    Google Scholar 

  72. Hashimoto K, Ishida E, Matsumoto S, Okada S, Yamada M, Satoh T, et al. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology. 2009;150(7):3417–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Fukuda H, Iritani N, Sugimoto T, Ikeda H. Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acids and leptin in hepatocytes and adipocytes in normal and genetically obese rats. Eur J Biochem. 1999;260:505–11.

    PubMed  CAS  Google Scholar 

  74. Cnop M, Foufelle F, Velloso L. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012;18:59–68.

    PubMed  CAS  Google Scholar 

  75. Minehira K, Vega N, Vidal H, Acheson K, Tappy L. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int J Obes Relat Metab Disord. 2004;28:1291–8.

    PubMed  CAS  Google Scholar 

  76. Nadler S, Stoehr J, Schueler K, Tanimoto G, Yandell B, Attie A. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A. 2000;97:11371–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Inter. 2011;79:162–8.

    CAS  Google Scholar 

  78. Karlsson C, Lindell K, Otosson M, Sjostrom L, Calrsson B, Carlsson L. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab. 1998;83:3925–9.

    PubMed  CAS  Google Scholar 

  79. Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A, Sharma A. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens. 1999;17:555–60.

    PubMed  CAS  Google Scholar 

  80. Massiera F, Bloch-Faure M, Celler D, Murakami K, Fukamizu A, Gasc J, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;115:2727–9.

    Google Scholar 

  81. Kim S, Dugail I, Stanbridge M, Moustaid N. Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene: role of adipocyte determination and differenciation factor/sterol-regulatory-element-binding protein 1c. Biochem J. 2001;357:899–904.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Jones B, Stanbridge M, Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology. 1997;138:1512–9.

    PubMed  CAS  Google Scholar 

  83. Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, et al. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes. 2005;54:991–9.

    PubMed  CAS  Google Scholar 

  84. Van Harmelen V, Ariapart P, Hoffstedt J, Lundkist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obes Res. 2000;8:337–41.

    PubMed  Google Scholar 

  85. Guan H-P, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med. 2002;8(10):1122–8.

    PubMed  CAS  Google Scholar 

  86. Tan GD, Debard C, Tiraby C, Humphreys SM, Frayn KN, Langin D, et al. A “futile cycle” induced by thiazolidinediones in human adipose tissue? Nat Med. 2003;9(7):811–2.

    PubMed  CAS  Google Scholar 

  87. Reshef L, Olswang Y, Cassuto H, et al. Glyceroneogenesis and the triglycerides/fatty acid cycle. J Biol Chem. 2003;278:30413–8.

    PubMed  CAS  Google Scholar 

  88. Tanti J, Grillo S, Gremeaux T, Coffer P, Van Obberghen E, Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology. 1997;138:2005–10.

    PubMed  CAS  Google Scholar 

  89. Sniderman A, Maslowska M, Cianflone K. Of mice and men (and women) and the acylation-stimulating protein pathway. Curr Opin Lipidol. 2000;11:291–6.

    PubMed  CAS  Google Scholar 

  90. Cadoudal T, Leroyer S, Reis A, Tordjman J, Durant S, Fouque F, Collinet M, Quette J, Chauvet G, Beale E, Velho G, Antoine B, Benelli C, Forest C. Proposed involvement of adipocyte glyceroneogenesis and phosphoenolpyruvate carboxykinase in the metabolic syndrome. Biochimie. 2005;87:27–32.

    PubMed  CAS  Google Scholar 

  91. Leroyer S, Vatier C, Kadiri S, Quette J, Chapron C, Capeau J, et al. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue. J Lipid Res. 2011;52(2):207–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Cases S, Stone S, Zheng Y, Myers H, Lear S, Sande E, et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A. 1998;95:13018–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Cases S, Stone S, Zhou P, Yen E, Tow B, Lardizabal K, et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem. 2001;276:38870–6.

    PubMed  CAS  Google Scholar 

  94. Bell R, Coleman R. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;2:504–13.

    Google Scholar 

  95. Leung D. The structure and function of human lysophosphatidic acid acyltransferases. Front Biosci. 2001;6:944–53.

    Google Scholar 

  96. Agarwal A, Garg A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol Metab. 2003;14:214–21.

    PubMed  CAS  Google Scholar 

  97. Meegalla R, Billheimer J, Cheng D. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun. 2002;298:317–23.

    PubMed  CAS  Google Scholar 

  98. Chen H, Farese RJ. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol. 2004;25:482–6.

    PubMed  Google Scholar 

  99. Smith S, Cases S, Jensen D, Chen H, Sande E, Tow B, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet. 2000;25:87–90.

    PubMed  CAS  Google Scholar 

  100. Öst A, Örtegren U, Gustavsson J, Nystrom F, Stralfros P. Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem. 2005;280:5–8.

    PubMed  Google Scholar 

  101. Aboulaich N, Vener AV, Vener AV, Strålfors P. Hormonal control of reversible translocation of perilipin B to the plasma membrane in primary human adipocytes. J Biol Chem. 2006;281(17):11446–9.

    PubMed  CAS  Google Scholar 

  102. Fei W, Du X, Yang H. Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metabol. 2011;22(6):204–10.

    CAS  Google Scholar 

  103. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest. 2008;118(8):2808–21.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem. 2007;282(47):34213–8.

    PubMed  CAS  Google Scholar 

  105. Maeda N, Funahashi T, Hibuse T, Nagasawa A, Kishida K, Kuriyama H, et al. Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci U S A. 2004;101:17801–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, et al. Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem. 2001;276:36251–60.

    PubMed  CAS  Google Scholar 

  107. Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, Matsuda M, Nagaretani H, Ouchi N, Hotta K, Kihara S, Kadowaki T, Funahashi T, Matsuzawa Y. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor gamma. J Biol Chem. 2001;276:48572–9.

    PubMed  CAS  Google Scholar 

  108. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A. 2005;102:10993–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y. Human aquaporin adipose (AQPap) gene Genomic structure, promoter analysis and functional mutation. Eur J Biochem. 2002;269(7):1814–26.

    PubMed  CAS  Google Scholar 

  110. Beylot M, Martin C, Laville M, Riou JP, Cohen R, Mornex R. Lipolytic and ketogenic flux in hyperthyroidism. J Clin Endocrinol Metab. 1991;73:42–9.

    PubMed  CAS  Google Scholar 

  111. Bahr R, Hansson P, Sejersted O. Triglyceride/fatty acid cycling is increased after exercise. Metabolism. 1990;39:993–9.

    PubMed  CAS  Google Scholar 

  112. Wolfe R, Herndon D, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med. 1987;317:403–8.

    PubMed  CAS  Google Scholar 

  113. Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Smith A, Thompson B, Sanders M, Bernlohr D. Interaction of aP2 with the hormone-sensitive lipase: regulation by fatty acid and phsophorylation. J Biol Chem. 2007;282:32424–32.

    PubMed  CAS  Google Scholar 

  115. Coe N, Simpson M, Bernlohr D. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increase cellular fatty acid levels. J Lipid Res. 1999;40:967–72.

    PubMed  CAS  Google Scholar 

  116. Greenberg A, Egan JJ, Wek A, Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. 1991;266(17):11341–6.

    PubMed  CAS  Google Scholar 

  117. Yeaman S. Hormone-sensitive lipase: new roles for an old enzyme. Biochem J. 2004;379:11–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Osterlund T, Beussman D, Julenius K, Poon P, Linse S, Shabanowitz J, et al. Domain identification of hormone-sensitive lipase by circular dichroism and fluorescence spectroscopy, limited proteolysis, and mass spectrometry. J Biol Chem. 1999;274:15382–8.

    PubMed  CAS  Google Scholar 

  119. Shen W, Pate S, Hong R, Kraemer F. Hormone-sensitive lipase functions as an oligomer. Biochemistry. 2000;39:2392–8.

    PubMed  CAS  Google Scholar 

  120. Holm C, Davis R, Osterlund T, Schotz M, Fredrickson G. Identification of the active site serine residue of hormone-sensitive lipase by site-specific mutagenesis. FEBS Lett. 1994;344:234–8.

    PubMed  CAS  Google Scholar 

  121. Laurell H, Grober L, Vindis C, Lacombe T, Dauzats M, Holm C, et al. Species-specific alternative splicing generates a catalytically inactive form of human hormone-sensitive lipase. Biochem J. 1997;328:137–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Ray H, Arner P, Holm C, Langin D, Beylot M, Large V. The presence of the catalytically inactive form of HSL is associated with decreased lipolysis in abdominal sub-cutaneous adipose tissue of obese subjects. Diabetes. 2003;52:1417–22.

    PubMed  CAS  Google Scholar 

  123. Osterlund T, Contreras J, Holm C. Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase: apparent residues of the catalytic triad. FEBS Lett. 1997;403:259–62.

    PubMed  CAS  Google Scholar 

  124. Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang J-C. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem. 2012;287(11):8444–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Arner P, Hellström L, Warhenberg H, Brönnengard M. Beta-adrenoceptor expression in human fat cells from different regions. J Clin Invest. 1990;86:1595–600.

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Giorgino F, Laviola L, Eriksson J. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand. 2005;183:13–30.

    PubMed  CAS  Google Scholar 

  127. Garton A, Campbell D, Cohen P, Yeaman S. Primary structure of the site on bovine hormone-sensitive lipase phosphorylated by cyclic AMP dependent protein kinase. FEBS Lett. 1988;229:68–72.

    PubMed  CAS  Google Scholar 

  128. Garton A, Campbell D, Carling D, Hardie D, Colbran R, Yeaman S. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem. 1989;179:249–54.

    PubMed  CAS  Google Scholar 

  129. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem. 2005;280:25250–7.

    PubMed  CAS  Google Scholar 

  130. Anthonsen M, Ronnstand L, Wernstedt D, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998;273:215–21.

    PubMed  CAS  Google Scholar 

  131. Greenberg A, Shen W, Mullro K, Patel S, Souza S, Roth R, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extra-cellular signal-regulated kinase pathway. J Biol Chem. 2001;276:45456–61.

    PubMed  CAS  Google Scholar 

  132. Vossier S, Emmison N, Borthwick A, Yeaman S. cAMP activates MAP kinases and Elk-1 through a B-Raf and rap1-dependent pathway. Cell. 1997;89:73–82.

    Google Scholar 

  133. Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M. An unsuspected metabolic role for atrial natriuretic peptides. The control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids in humans. Arterioscler Thromb Vasc Biol. 2005;24:2032–42.

    Google Scholar 

  134. Hagström-Toft E, Bolindr J, Eriksson S, Arner P. Role of phosphodiesterase III in the anti-lipolytic effect of insulin in vivo. Diabetes. 1995;44:1170–5.

    PubMed  Google Scholar 

  135. Kitamuta T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Moll Cell Biol. 1999;19:6286–96.

    Google Scholar 

  136. Wood S, Emmison N, Borthwick A, Yeaman S. The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocyte. Biochem J. 1993;295:531–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Engfeldt P, Hellmer J, Wahrenberg H, Arner P. Effects of insulin on adreceptor binding and the role of catecholamine-induced lipolysis in isolated human fa cells. J Biol Chem. 1988;263:15553–60.

    PubMed  CAS  Google Scholar 

  138. Zhang J, Hupfeld C, Taylor S, Olefsky J, Tsien R. Insulin disrupts beta-adrenergic signalling to protein kinas A in adipocytes. Nature. 2005;437:569–73.

    PubMed  CAS  Google Scholar 

  139. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metabol. 2011;13(2):183–94.

    CAS  Google Scholar 

  140. Lafontan M. Advances in adipose tissue metabolism. Int J Obes. 2008;32:539–51.

    Google Scholar 

  141. Wang Z, Pini M, Yao T, Zhou Z, Sun C, Fantuzzi G, et al. Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am J Physiol Endocrinol Metabol. 2011;301(4):E703–12.

    CAS  Google Scholar 

  142. Haemmerle G, Zimmermann R, Zechner R. Letting lipids go: hormone-sensitive lipase. Curr Opin Lipidol. 2003;14:289–97.

    PubMed  CAS  Google Scholar 

  143. Osuga J, Ishibashi S, Oka T, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not obesity. Proc Natl Acad Sci U S A. 2000;97:787–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Okazaki H, Osuga J, Tamura Y, et al. Lipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases. Diabetes. 2002;51:3368–75.

    PubMed  CAS  Google Scholar 

  145. Haemmerle G, Zimmerman R, Hayn M, et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipocytes, muscle and testis. J Biol Chem. 2002;277:7806–15.

    Google Scholar 

  146. Zimmermann R, Strauus J, Haemmerle G, Shoiswohl G, Birner-Gruenberger R, Riederer G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–6.

    PubMed  CAS  Google Scholar 

  147. Villena A, Roy S, Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem. 2004;2004:47066–75.

    Google Scholar 

  148. Jenkins C, Mancuso D, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family member possessing triacylglycerol lipase and acylglycerol transacylases activities. J Biol Chem. 2004;279:48968–75.

    PubMed  CAS  Google Scholar 

  149. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes. 2005;54:3190–7.

    PubMed  CAS  Google Scholar 

  150. Ahmadian M, Duncan RE, Varady KA, Frasson D, Hellerstein MK, Birkenfeld AL, et al. Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes. 2009;58(4):855–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Zimmerman R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose tissue triglyceride lipase in lipolysis. Biochem Biophys Acta. 2009;1791:494–500.

    Google Scholar 

  152. Mairal A, Langin D, Arner P, Hoffstedt J. Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia. 2006;49:1629–36.

    PubMed  CAS  Google Scholar 

  153. Steinberg GR, Kemp BE, Watt MJ. Adipocyte triglyceride lipase expression in human obesity. Am J Physiol Endocrinol Metabol. 2007;293(4):E958–64.

    CAS  Google Scholar 

  154. Zecher Z, Strauss J, Haemmerle G, Lass A, Zimmerman R. Lipolysis: a pathway under construction. Curr Opin Lipidol. 2005;16:333–40.

    Google Scholar 

  155. Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 2006;3(5):309–19.

    PubMed  CAS  Google Scholar 

  156. Miyoshi H, Perfield JW, Souza SC, Shen W-J, Zhang H-H, Stancheva ZS, et al. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem. 2007;282(2):996–1002.

    PubMed  CAS  Google Scholar 

  157. Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. Embo J. 2011;30:4371–86.

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Ahmadian M, Abbott Marcia J, Tang T, Hudak Carolyn SS, Kim Y, Bruss M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13(6):739–48.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Soni K, Lehner R, Metalnikov P, O’Donnell P, Semache M, Gao W, et al. Carboxylesterase 3 (EC 3.1.1.1.) is a major adipocyte lipase. J Biol Chem. 2004;279:40683–9.

    PubMed  CAS  Google Scholar 

  160. Wei E, Ben Ali Y, Lyon J, Wang H, Nelson R, Dolinsky V, et al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. Cell Metab. 2010;11:183–93.

    PubMed  CAS  Google Scholar 

  161. Wei E, Gao W, Lehner R. Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux. J Biol Chem. 2007;282(11):8027–35.

    PubMed  CAS  Google Scholar 

  162. Baulande S, Lasnier F, Lucas M, et al. Adiponutrin, a transmembrane protein corresponding to a novel dietary and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem. 2001;276:33336–44.

    PubMed  CAS  Google Scholar 

  163. Liu Y, Moldes M, Bastard J, et al. Adiponutrin: a new gene regulated by energy balance in human adipose tissue. J Clin Endocrinol Metab. 2004;89:2684–9.

    PubMed  CAS  Google Scholar 

  164. Lake A, Sun Y, Li J, Kim J, Johnson J, Li D, et al. Expression, regulation an triglyceride hydrolase activity of adiponutrin family members. J Lipid Res. 2005;46:2477–87.

    PubMed  CAS  Google Scholar 

  165. Brasaemle D, Levin D, Adler-Wailes D, Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta. 2000;1493:251–62.

    Google Scholar 

  166. Sue C, Sztalryd C, Contreras J, Holm C, Himmel A, Londos C. Mutational analysis of the hormone-sensitive lipase translocation in adipocytes. J Biol Chem. 2003;41:2408–16.

    Google Scholar 

  167. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res. 2010;51:468–71.

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Londos C, Sztalryd C, Tansey J, Kimmel A. Role of PAT proteins in lipid metabolism. Biochimie. 2005;87:45–9.

    PubMed  CAS  Google Scholar 

  169. Brasaemle D, Barber T, Wolins N, Serrero G, Blanchette-Mackie E, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res. 1997;38:2249–63.

    PubMed  CAS  Google Scholar 

  170. Gao J, Serrero G. ADRP expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem. 1999;274:16825–30.

    PubMed  CAS  Google Scholar 

  171. Londos C, Gruia-Gray J, Brasaemle D, Rondidone C, Takeda T, Dwyer N, et al. Perilipin: possible roles in structure and metabolism of intracellular neutral lipids in adipocytes and steroidogenic cells. Int J Obes. 1996;20:S97–101.

    CAS  Google Scholar 

  172. Forcheron F, Legedz L, Chinetti G, Feugier P, Letexier D, Bricca G, et al. Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression. Arterioscler Thromb Vasc Biol. 2005;25:1711–7.

    PubMed  CAS  Google Scholar 

  173. Brasaemble D, Barber T, Kimmel A, Londos C. Post-translational regulation of perilipin expression. Stabilization by stored intracellular lipids. J Biol Chem. 1997;272:9378–87.

    Google Scholar 

  174. Dalen K, Schoonjans K, Ulven S, Weedon-Fekjaer M, Bentzen T, Koutnikova H, et al. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes. 2004;53:1243–52.

    PubMed  CAS  Google Scholar 

  175. Brasaemle D, Rubin B, Harten I, Gruia-Gray J, Kimmel A, Londos C. Perilipin A increases triacylglycerol storage by decreasing the triacylglycerol hydrolysis. J Biol Chem. 2000;275:38486–93.

    PubMed  CAS  Google Scholar 

  176. Sztalryd C, Xu G, Dorward H, Tansey J, Contreras J, Kimmel A, et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol. 2003;161:1093–103.

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Martinez-Botas J, Anderson J, Tessier D, Lapillonne A, Chang B, Quast M, et al. Absence of perilipin results in leanness and reverses obesity in Lepr (db/db) mice. Nat Genet. 2000;26:474–9.

    PubMed  CAS  Google Scholar 

  178. Tansey J, Sztalryd C, Gruia-Gray J, Roush D, Zee J, Gavrilova O, et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A. 2001;98:6494–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  179. Miyoshi H, Souza SC, Endo M, Sawada T, Perfield II JW, Shimizu C, et al. Perilipin overexpression in mice protects against diet-induced obesity. J Lipid Res. 2010;51(5):975–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  180. Kern P, Di Gregorio G, Lu T, Rasouli N, Ranganathan G. Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab. 2004;89:1352–8.

    PubMed  CAS  Google Scholar 

  181. Mottagui-Tabar S, Ryden M, Lofgren P, Faulds G, Hoffstedt J, Brookes A, et al. Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis. Diabetologia. 2003;16:789–97.

    Google Scholar 

  182. Wang Y, Sullivan S, Trujillo M, Lee M, Scheider S, Brolin R, et al. Perilipin expression in human adipose tissues: effects of severe obesity, gender and depot. Obes Res. 2003;11:930–6.

    PubMed  CAS  Google Scholar 

  183. Ray H, Pinteur C, Frering V, Beylot M, Large V. Depot-specific differences in perilipin and hormone-sensitive lipase expression in lean and obese. Lipids Health Dis. 2009;8(1):58.

    PubMed Central  PubMed  Google Scholar 

  184. Granneman J, Moore H, Motillo E, Zhu Z, Zhou L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem. 2011;286:5126–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  185. Wang H, Bell M, Sreenevasan U, Hu H, Liu J, Dalen K, et al. Unique regulation of adipose triglyceride lipase (ATGL) by Perilipin 5, a lipid droplet-associated protein. J Biol Chem. 2011;286(18):15707–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  186. Wang H, Sztalryd C. Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metabol. 2012;22:197–203.

    Google Scholar 

  187. Gong J, Sun Z, Peng L. CIDE proteins and metabolic disorders. Curr Opin Lipidol. 2009;20:121–6.

    PubMed  CAS  Google Scholar 

  188. Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One. 2011;6(12):e28614.

    PubMed Central  PubMed  CAS  Google Scholar 

  189. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, Li P. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One. 2008;3:e2890.

    PubMed Central  PubMed  Google Scholar 

  190. Li D, Zhang Y, Xu L, Zhou L, Wang Y, Xue B, et al. Regulation of gene expression by FSP27 in white and brown adipose tissue. BMC Genomics. 2010;11(1):446.

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Ranjit S, Boutet E, Gandhi P, Prot M, Tamori Y, Chawla A, et al. Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. J Lipid Res. 2011;52(2):221–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  192. Sawada T, Miyoshi H, Shimada K, Suzuki A, Okamatsu-Ogura Y, Perfield 2nd JW, Kondo T, Nagai S, Shimizu C, Yoshioka N, Greenberg AS, Kimura K, Koike T. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLoS One. 2010;5(11):e14006.

    PubMed Central  PubMed  Google Scholar 

  193. Le Lay S, Ferré P, Dugail I. Adipocyte cholesterol balance in obesity. Biochem Soc Trans. 2004;32:103–6.

    PubMed  Google Scholar 

  194. Prattes S, Hörl G, Hammer A, Blaschitz A, Graier W, Sattler W, et al. Intracellular distribution and mobilization of unesterifired cholesterol in adipocytes: triglycerides droplets are surrounded by cholesterol-rich ER like surface layer structures. J Cell Sci. 2000;113:2977–89.

    PubMed  CAS  Google Scholar 

  195. Kovanen P, Nikkila E, Miettenen T. Regulation of cholesterol synthesis and storage in fat cells. J Lipid Res. 1975;16:211–23.

    PubMed  CAS  Google Scholar 

  196. Tondu A, Robichon C, Yvan-Charvet L, Conne N, Leliepvre X, Hajduch E, et al. Insulin and angiotensin II induce the translocation of scavenger receptor type-BI from intra-cellular sites to the plasma membrane of adipocytes. J Biol Chem. 2005;280:33536–40.

    PubMed  CAS  Google Scholar 

  197. Dagher G, Donne N, Klein C, Ferré P, Dugail I. HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes. J Lipid Res. 2003;44:1811–20.

    PubMed  CAS  Google Scholar 

  198. Le Lay S, Hajduch E, Lindsay M, Le Lièpvre X, Thiele C, Ferré P, et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic. 2006;7:549–61.

    PubMed  Google Scholar 

  199. Le Lay S, Kreif S, Farneir C, Lefrère I, Le Liepovre X, Bazin R, et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J Biol Chem. 2001;276:16904–10.

    PubMed  Google Scholar 

  200. Le Lay S, Robichon C, Le Liepvre X, Dagher G, Feré P, Dugail I. Regulation of ABCA1 expression and cholesterol efflux during adipose differentiation of 3T3-L1 cells. J Lipid Res. 2003;44:1499–507.

    PubMed  Google Scholar 

  201. Aoki N, Yokoyama R, Asai N, Ohki M, Ohki Y, Kusubata K, et al. Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology. 2010;151(6):2567–76.

    PubMed  CAS  Google Scholar 

  202. Muller G, Schneider M, Biemer-Daub G, Wied S. Upregulation of lipid synthesis in small rat adipocytes by microvesicle-associated CD73 from large adipocytes. Obesity. 2011;19(8):1531–44.

    PubMed  Google Scholar 

  203. Müller G, Schneider M, Biemer-Daub G, Wied S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 2011;23:1207–23.

    PubMed  Google Scholar 

  204. Müller G, Wied S, Dearey EA, Biemer-Daub G. Glycosylphosphatidylinositol-anchored proteins coordinate lipolysis inhibition between large and small adipocytes. Metabolism. 2011;60(7):1021–3.

    PubMed  Google Scholar 

  205. Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun. 2010;398(4):723–9.

    PubMed  CAS  Google Scholar 

  206. Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25(8):2515–27.

    PubMed  CAS  Google Scholar 

  207. Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res. 2012;53(7):1245–53.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Beylot M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beylot, M. (2014). Metabolism of White Adipose Tissue. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics