Skip to main content

Human Lipodystrophy: An Update in Molecular Genetics and Possible Mechanisms of Fat Loss

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

Lipodystrophy, a disease characterized by lack of adipose tissue, is either due to genetic defects or acquired. Genetic lipodystrophies are inherited both in an autosomal dominant or recessive fashion. Several genetic loci have been identified affecting differentiation of adipose tissue or lipid storage. Although it appears counterintuitive, lack of adipose tissue results in the same clinical burden seen in subjects with obesity, chiefly, insulin resistance, hypertriglyceridemia, fatty liver, and diabetes. This implies a role for adipose tissue at the center of energy homeostasis. Study of human lipodystrophies has provided a rich trove of genetic loci which affect adipogenesis and/or lipid storage (adipose tissue dysregulation) as illustrated by mutations in AGPAT2, BSCL2, LMNA, or ZMPSTE24 genes. Thus, identifying additional genetic loci in patients with lipodystrophies will continue to be a rich source of biological material to study loss of both white and brown adipose tissues. In this review I discuss the recent findings which have occurred over the last 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simha V, Agarwal AK. Inherited and acquired lipodystrophies; disorders of adipose tissue development, differentiation, and death. Totowa, NJ: Humana; 2007. p. 237–54.

    Google Scholar 

  2. Agarwal AK, Garg A. Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomics Hum Genet. 2006;7:175–99.

    Article  CAS  PubMed  Google Scholar 

  3. Garg A. Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.

    Article  CAS  PubMed  Google Scholar 

  4. Vantyghem MC, Balavoine AS, Douillard C, et al. How to diagnose a lipodystrophy syndrome. Ann Endocrinol (Paris). 2012;73:170–89.

    Article  CAS  Google Scholar 

  5. Farese Jr RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 2009;139:855–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Walther TC, Farese Jr RV. The life of lipid droplets. Biochim Biophys Acta. 2009;1791:459–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97.

    Article  CAS  PubMed  Google Scholar 

  8. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8:185–94.

    Article  CAS  PubMed  Google Scholar 

  9. Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hayer A, Stoeber M, Bissig C, Helenius A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic. 2010;11:361–82.

    Article  CAS  PubMed  Google Scholar 

  11. Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell. 2012;23:11–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim CA, Delepine M, Boutet E, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93:1129–34.

    Article  CAS  PubMed  Google Scholar 

  13. Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sinha B, Koster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144:402–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mayor S. Need tension relief fast? Try caveolae. Cell. 2011;144:323–4.

    Article  CAS  PubMed  Google Scholar 

  16. Dwianingsih EK, Takeshima Y, Itoh K, et al. A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol Genet Metab. 2010;101:233–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Rajab A, Straub V, McCann LJ, et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010;6:e1000874.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shastry S, Delgado MR, Dirik E, et al. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet A. 2010;152A:2245–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li F, Gu Y, Dong W, et al. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes. FEBS J. 2010;277:4173–83.

    Article  CAS  PubMed  Google Scholar 

  21. Yonezawa T, Kurata R, Kimura M, Inoko H. Which CIDE are you on? Apoptosis and energy metabolism. Mol Biosyt. 2011;7:91–100.

    Article  CAS  Google Scholar 

  22. Nishino N, Tamori Y, Tateya S, et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest. 2008;118:2808–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Toh SY, Gong J, Du G, et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One. 2008;3:e2890.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1:280–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Christianson JL, Boutet E, Puri V, et al. Identification of the lipid droplet targeting domain of the Cidea protein. J Lipid Res. 2010;51:3455–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu K, Zhou S, Kim JY, et al. Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA. Am J Physiol Endocrinol Metab. 2009;297:E1395–413.

    Article  CAS  PubMed  Google Scholar 

  27. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48:2547–59.

    Article  CAS  PubMed  Google Scholar 

  28. Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364:740–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gandotra S, Lim K, Girousse A, et al. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem. 2011;286:34998–5006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Agarwal AK, Xing C, DeMartino GN, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87:866–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A. 2011;108:14914–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Liu Y, Ramot Y, Torrelo A, et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 2012;64:895–907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kastner DL, Aksentijevich I, Goldbach-Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vigneron N, Van den Eynde BJ. Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Curr Opin Immunol. 2012;24:84–91.

    Article  CAS  PubMed  Google Scholar 

  35. Ebstein F, Kloetzel PM, Kruger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci. 2012;69:2543–58.

    Article  CAS  PubMed  Google Scholar 

  36. Graul-Neumann LM, Kienitz T, Robinson PN, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. Am J Med Genet A. 2010;152A:2749–55.

    Article  CAS  PubMed  Google Scholar 

  37. O’Neill B, Simha V, Kotha V, Garg A. Body fat distribution and metabolic variables in patients with neonatal progeroid syndrome. Am J Med Genet A. 2007;143A:1421–30.

    Article  PubMed  Google Scholar 

  38. Goldblatt J, Hyatt J, Edwards C, Walpole I. Further evidence for a marfanoid syndrome with neonatal progeroid features and severe generalized lipodystrophy due to frameshift mutations near the 3′ end of the FBN1 gene. Am J Med Genet A. 2011;155A:717–20.

    Article  PubMed  Google Scholar 

  39. Horn D, Robinson PN. Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. Am J Med Genet A. 2011;155A:721–4.

    Article  PubMed  Google Scholar 

  40. Whiteman P, Hutchinson S, Handford PA. Fibrillin-1 misfolding and disease. Antioxid Redox Signal. 2006;8:338–46.

    Article  CAS  PubMed  Google Scholar 

  41. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Munger JS, Sheppard D. Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol. 2011;3:a005017.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Jensen SA, Robertson IB, Handford PA. Dissecting the fibrillin microfibril: structural insights into organization and function. Structure. 2012;20:215–25.

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012;23:290–302.

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal AK, Arioglu E, De Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31:21–3.

    Article  CAS  PubMed  Google Scholar 

  46. Agarwal AK, Simha V, Oral EA, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88:4840–7.

    Article  CAS  PubMed  Google Scholar 

  47. Agarwal AK, Garg A. Genetic basis of lipodystrophies and management of metabolic complications. Annu Rev Med. 2006;57:297–311.

    Article  CAS  PubMed  Google Scholar 

  48. Lungu AO, Zadeh ES, Goodling A, et al. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2012;97:563–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cortes VA, Curtis DE, Sukumaran S, et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9:165–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gale SE, Frolov A, Han X, et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem. 2006;281:11082–9.

    Article  CAS  PubMed  Google Scholar 

  51. Subauste AR, Das AK, Li X, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes. 2012;61(11):2922–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Agarwal AK, Sukumaran S, Cortes VA, et al. Human 1-acylglycerol-3-phosphate O-acyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2(−/−) gene lipodystrophic mice. J Biol Chem. 2011;286:37676–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cui X, Wang Y, Tang Y, et al. Seipin ablation in mice results in severe generalized lipodystrophy. Hum Mol Genet. 2011;20:3022–30.

    Article  CAS  PubMed  Google Scholar 

  54. Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88:5433–7.

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Chang B, Saha P, et al. Berardinelli-Seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol Cell Biol. 2012;32:1099–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Cui X, Wang Y, Meng L, et al. Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy. Am J Physiol Endocrinol Metab. 2012;302:E705–13.

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal AK, Garg A. Seipin: a mysterious protein. Trends Mol Med. 2004;10:440–4.

    Article  CAS  PubMed  Google Scholar 

  58. Giralt M, Domingo P, Villarroya F. Adipose tissue biology and HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25:487–99.

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  60. Coffinier C, Hudon SE, Farber EA, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci U S A. 2007;104:13432–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Barrowman J, Hamblet C, Kane MS, Michaelis S. Requirements for efficient proteolytic cleavage of prelamin A by ZMPSTE24. PLoS One. 2012;7:e32120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pan Y, Garg A, Agarwal AK. Mislocalization of prelamin A Tyr646Phe mutant to the nuclear pore complex in human embryonic kidney 293 cells. Biochem Biophys Res Commun. 2007;355:78–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Goulbourne CN, Vaux DJ. HIV protease inhibitors inhibit FACE1/ZMPSTE24: a mechanism for acquired lipodystrophy in patients on highly active antiretroviral therapy? Biochem Soc Trans. 2010;38:292–6.

    Article  CAS  PubMed  Google Scholar 

  64. Caron M, Auclair M, Sterlingot H, et al. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS. 2003;17:2437–44.

    Article  CAS  PubMed  Google Scholar 

  65. Coffinier C, Hudon SE, Lee R, et al. A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells. J Biol Chem. 2008;283:9797–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Esposito V, Manente L, Viglietti R, et al. Comparative transcriptional profiling in HIV-infected patients using human stress arrays: clues to metabolic syndrome. In Vivo. 2012;26:237–42.

    CAS  PubMed  Google Scholar 

  67. Esposito V, Manente L, Lucariello A, et al. Role of FAP48 in HIV-associated lipodystrophy. J Cell Biochem. 2012;113(11):3446–54.

    Article  CAS  PubMed  Google Scholar 

  68. Huang CY, Chiang SF, Lin TY, et al. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One. 2012;7:e33657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Diaz-Delfin J, Domingo P, Wabitsch M, et al. HIV-1 Tat protein impairs adipogenesis and induces the expression and secretion of proinflammatory cytokines in human SGBS adipocytes. Antivir Ther. 2012;17:529–40.

    Article  CAS  PubMed  Google Scholar 

  70. Urs S, Venkatesh D, Tang Y, et al. Sprouty1 is a critical regulatory switch of mesenchymal stem cell lineage allocation. FASEB J. 2010;24:3264–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hong JH, Hwang ES, McManus MT, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309:1074–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by a grant from the National Institutes of Health R01-DK54387 and thanks Abhimanyu Garg for review, Baris Akinci for review of Table 15.1, and Katie Tunison for illustrations and copyediting of the manuscript. The author has no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Agarwal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Agarwal, A.K. (2014). Human Lipodystrophy: An Update in Molecular Genetics and Possible Mechanisms of Fat Loss. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics