Skip to main content

Diabetes Mellitus and Chronic Kidney Disease (Stages 1–5)

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Abstract

Diabetes mellitus is a disease marked by high levels of blood glucose resulting from defects in insulin production (type 1 diabetes) or insulin sensitivity (type 2 diabetes). Symptoms of diabetes include weight loss, polyuria, polydipsia, and polyphagia. Type 2 diabetes (T2DM) represents approximately 90 % of all patients with diabetes. Risk factors for T2DM include age, genetics, ethnicity, and obesity. T2DM is a progressive condition, which generally begins with insulin resistance and an initial compensatory increase in the production of insulin by the pancreas. Over time, unless there is removal of the precipitating condition (i.e., insulin resistance), the pancreas eventually begins to lose its ability to produce the quantity of insulin required to maintain normoglycemia. The rate of pancreatic decline varies based on many factors but generally takes approximately 5–10 years to develop into diabetes. In the case of T2DM, symptoms of diabetes are usually rare or mild and can often be overlooked. As such, many individuals with T2DM have already developed complications by the time they are diagnosed with the disease. From that point onwards, the production of insulin from the pancreatic beta cells continues to decline over the course of the disease. Although T2DM is a chronic, progressive disease, steps can be taken to control the disease and to lower the risk of associated complications. Today, almost 26 million people (8 % of the population) in the United States have diabetes, and due to the chronic nature and frequently overlooked symptoms listed above, nearly one-third are unaware that they have the disease [1]. An estimated 79 million people have prediabetes [1]; a condition characterized by insulin resistance that results in an above normal blood glucose reading without meeting the cutoffs for the diagnosis of diabetes (Table 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association Web site. http://www.diabetes.org. Diabetes Statistics and National Diabetes Fact Sheet, 2011. Accessed 4 June 2012.

  2. American Diabetes Association. Standards of medical care in diabetes—2012. Diabetes Care. 2012;35 Suppl 1:S11–63.

    Google Scholar 

  3. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW. American Diabetes Association: nephropathy in diabetes (position statement). Diabetes Care. 2004;27 Suppl 1:S79–83.

    PubMed  Google Scholar 

  4. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Google Scholar 

  5. Nesbitt KN. An overview of diabetic nephropathy. J Pharmacy Practice. 2004;17(1):75–9.

    Google Scholar 

  6. Schwarz S, Trivedi BK, Kalantar-Zadeh K, Kovesdy CP. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin J Am Soc Nephrol. 2006;1:825–31.

    CAS  PubMed  Google Scholar 

  7. Adler S. Diabetic nephropathy: linking histology, cell biology and genetics. Kidney Int. 2004;66:2095.

    PubMed  Google Scholar 

  8. Krolewski AS. Genetics of diabetic nephropathy: evidence for major and minor gene effects. Kidney Int. 1999;55:1582.

    CAS  PubMed  Google Scholar 

  9. Cooper ME. Pathogenesis, prevention and treatment of diabetic nephropathy. Lancet. 1998;352:213.

    CAS  PubMed  Google Scholar 

  10. Nelson RG, Knowler WC, Pettitt DJ, et al. Diabetic kidney disease in Pima Indians. Diabetes Care. 1993;16:335.

    CAS  PubMed  Google Scholar 

  11. Brancati FL, Whittle JC, Whelton PK, et al. The excess incidence of diabetic end stage renal disease among blacks. A population based study of potential explanatory factors. JAMA. 1992;268:3079.

    CAS  PubMed  Google Scholar 

  12. Smith SR, Svetky LP, Dennis VW. Racial differences in the incidence and progression of renal diseases. Kidney Int. 1991;40:815.

    CAS  PubMed  Google Scholar 

  13. Morales E, Valero MA, León M, Hernández E, Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003;41(2):319.

    PubMed  Google Scholar 

  14. Orchard TJ, Dorman JS, Maser RE, et al. Prevalence and complications of IDDM by sex and duration. Pittsburg Epidemiology of Diabetes Complications Study II. Diabetes. 1990;39:116.

    Google Scholar 

  15. Newman DJ, Mattock MB, Dawnay AB, et al. Systematic review on early albumin testing for early detection of diabetic complications. Health Technol Assess. 2005;9:iii.

    CAS  PubMed  Google Scholar 

  16. DCCT/EDIC Research Group, Nathan DM, Zinman B, et al. Modern day clinical course of type 1 diabetes after 30 years duration: the DCCT/EDIC and Pittsburg Epidemiology of Diabetes Complications Experience (1983–2005). Arch Intern Med. 2009;169:1307.

    PubMed Central  PubMed  Google Scholar 

  17. Schering D, Kasten S. The link between diabetes and cardiovascular disease. J Pharmacy Practice. 2004;17(1):61–5.

    Google Scholar 

  18. Ritz E, Stefanski A. Diabetic nephropathy in type 2 diabetes. Am J Kidney Dis. 1996;27:167.

    CAS  PubMed  Google Scholar 

  19. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int. 2011;80(1):17.

    PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro III AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604.

    PubMed Central  PubMed  Google Scholar 

  21. Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, Hamm LL, Lewis JB, Mauer M, Navis GJ, Steffes MW, Eggers PW, Coresh J, Levey AS. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486.

    PubMed Central  PubMed  Google Scholar 

  22. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39 Suppl 1:S1–266.

    Google Scholar 

  23. Namyi Y, Milite CP, Inzucchi SE. Evidence-based treatment of diabetic nephropathy. Pract Diabetol. 2005;December:36–41.

    Google Scholar 

  24. Peppa M, Raptis SA. Advanced glycation end products and cardiovascular disease. Curr Diabetes Rev. 2008;4(2):92–100.

    CAS  PubMed  Google Scholar 

  25. Stirban A, Negrean M, Götting C, Uribarri J, Gawlowski T, Stratmann B, Kleesiek K, Koschinsky T, Vlassara H, Tschoepe D. Dietary advanced glycation end products and oxidative stress: in vivo effects on endothelial function and adipokines. Ann N Y Acad Sci. 2008;1126:276–9.

    CAS  PubMed  Google Scholar 

  26. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Google Scholar 

  27. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Google Scholar 

  28. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: (UKPDS 38). BMJ. 1998;317(7160):703–13.

    Google Scholar 

  29. Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.

    CAS  PubMed  Google Scholar 

  30. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    CAS  PubMed  Google Scholar 

  31. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55:1310–7.

    PubMed  Google Scholar 

  32. Gerstein HC, Miller ME, Byington RP, et al. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    CAS  PubMed  Google Scholar 

  33. Duckworth W, Abraira C, Moritz T, et al. Glucose control and Vascular Complications in Veterans with Type 2 Diabetes (VADT). N Engl J Med. 2009;360:129–39.

    CAS  PubMed  Google Scholar 

  34. Patel A, MacMahon S, Chalmers J, et al. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    CAS  PubMed  Google Scholar 

  35. The ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Google Scholar 

  36. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S, Dickstein K, Keltai M, Metsärinne K, Oto A, Parkhomenko A, Piegas LS, Svendsen TL, Teo KK, Yusuf S; ONTARGET Investigators. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.

    Google Scholar 

  37. Gaede P, Lund-Anderson H, Parving HH, Pederson O. Effect of a multi-factorial intervention on mortality in T2DM (Steno-2). N Engl J Med. 2008;358:580–91.

    CAS  PubMed  Google Scholar 

  38. Delahanty LM. Implications of the Diabetes Control and Complications Trial for renal outcomes and medical nutrition therapy. J Ren Nutr. 1998;8:59–63.

    CAS  PubMed  Google Scholar 

  39. American Diabetes Association. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.

    Google Scholar 

  40. National Kidney Foundation. KDOQI clinical practice guidelines for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49 Suppl 2:S1–179.

    Google Scholar 

  41. Brand-Miller J, Hayne S, Petocz P, et al. Low glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2003;26:2261–7.

    PubMed  Google Scholar 

  42. Durst SW, Schering D. Hypertension management in the diabetes patient. J Pharmacy Practice. 2004;17(1):55–60.

    Google Scholar 

  43. National High Blood Pressure Education Program. The seventh report of the Joint National Committee on Detection, Evaluation, and Treatment. JAMA. 2003;289:2560–72.

    Google Scholar 

  44. National Kidney Foundation. KDOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43 Suppl 1:S115–9.

    Google Scholar 

  45. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Google Scholar 

  46. American Diabetes Association. Dyslipidemia management in adults with diabetes (position statement). Diabetes Care. 2004;27 Suppl 1:S68–71.

    Google Scholar 

  47. Pagenkemper JJ. Nutrition management of diabetes in chronic kidney disease. In: Byham-Gray L, Wiesen K, editors. A clinical guide to nutrition care in kidney disease. Chicago IL: American Dietetic Association; 2004.

    Google Scholar 

  48. Ross TA, Boucher JL, O’Connell BS, editors. American dietetic association guide to diabetes medical nutrition therapy and education by the Diabetes Care and Education Dietetic Practice Group. Chicago, IL: American Dietetic Association; 2005.

    Google Scholar 

  49. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am. 2003;32:805–22.

    PubMed  Google Scholar 

  50. Saiki A, Nagayama D, Ohhira M, Endoh K, Ohtsuka M, Koide N, Oyama T, Miyashita Y, Shirai K. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int J Obes (Lond). 2005;29(9):1115.

    CAS  Google Scholar 

  51. National Academy of Sciences, Institute of Medicine. Dietary reference intakes: energy, carbohydrate, fiber, fat, fatty acids cholesterol, protein, and amino acids. Washington, DC: National Academy Press; 2002.

    Google Scholar 

  52. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293:43–53.

    CAS  PubMed  Google Scholar 

  53. American Diabetes Association. Nutrition recommendation and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2008;31 Suppl 1:S61–72.

    Google Scholar 

  54. National Kidney Foundation. K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35:S40–5, S58–61.

    Google Scholar 

  55. Kopple JD, Chumlea W, Gassman J. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57:1688–703.

    CAS  PubMed  Google Scholar 

  56. Evidence-Based Nutrition Practice Guideline on Chronic Kidney Disease. July 2010. http://andevidencelibrary.com. Copyrighted by the Academy of Nutrition and Dietetics. Accessed 10 Dec 2012.

  57. Byham-Gray LD. Weighing the evidence: energy determinations across the spectrum of kidney disease. J Ren Nutr. 2006;16(1):17–26.

    PubMed  Google Scholar 

  58. Cuppari L, Ikizler TA. Energy balance in advanced chronic kidney disease and end-stage renal disease. Semin Dial. 2010;23(4):373–7.

    PubMed  Google Scholar 

  59. Avesani CM, Cuppari L, Silva AC, et al. Resting energy expenditure in pre-dialysis diabetic patients. Nephrol Dial Transplant. 2001;16:556–60.

    CAS  PubMed  Google Scholar 

  60. Kamimura MA, Avesani CM, Bazanelli AP, Baria F, Draibe SA, Cuppari L. Are prediction equations reliable for estimating resting energy expenditure in chronic kidney disease patients. Nephrol Dial Transplant. 2011;26(2):544–50.

    PubMed  Google Scholar 

  61. http://www.diabetes.ca/for-professionals/resources/nutrition/beyond-basics/

  62. Monnier L, Colette C. Targeting prandial hyperglycemia: how important is it and how best to do this? Curr Diab Rep. 2008;8(5):368–74.

    CAS  PubMed  Google Scholar 

  63. Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, Mayer-Davis E, Kulkarni K, Geil P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement of the American Diabetes Association. Diabetes Care. 2004;27:2226–71.

    Google Scholar 

  64. Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr. 2010;104:797–802.

    CAS  PubMed  Google Scholar 

  65. Opperman AM, Venter CS, Oosthusizen W, et al. Meta-analysis of the health effects of using the glycaemic index in meal planning. Br J Nutr. 2004;92:367–81.

    CAS  PubMed  Google Scholar 

  66. Wolever TM, Gibbs AL, Mehling C, et al. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C-reactive protein. Am J Clin Nutr. 2008;87:114–25.

    CAS  PubMed  Google Scholar 

  67. Anderson JW, Randles KM, Kendall CW, et al. Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr. 2004;23:5–17.

    PubMed  Google Scholar 

  68. Nuttall FQ, Gannon MC. Metabolic response of people with type 2 diabetes to a high protein diet. Nutr Metab. 2004;1(1):6.

    Google Scholar 

  69. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31:954–61.

    CAS  PubMed  Google Scholar 

  70. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and non-diabetic renal disease: a meta-analysis. Ann Intern Med. 1996;124:627–32.

    CAS  PubMed  Google Scholar 

  71. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220–8.

    PubMed  Google Scholar 

  72. Robertson LM, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev. 2007;(4):CD002181.

    Google Scholar 

  73. Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.

    CAS  PubMed  Google Scholar 

  74. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller III ER, Simons-Morton DG, Karanja N, Lin PH. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    CAS  PubMed  Google Scholar 

  75. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values. Diabetes Care. 2008;31:2281–3.

    PubMed  Google Scholar 

  76. Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardio-renal indices and C-reactive protein indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care. 2008;31(4):648–54.

    CAS  PubMed  Google Scholar 

  77. Aabadakht L, Esmaillzadeh A. Soy protein consumption and kidney related biomarkers among type 2 diabetics: a crossover randomized clinical trial. J Ren Nutr. 2009;19(6):479–86.

    Google Scholar 

  78. Teixeira SR, Tappenden KA, Carson L, Jones R, Prabhudesai M, Marshall WP, Erdman JW. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile n men with type 2 diabetes mellitus and nephropathy. J Nutr. 2004;134(8):1874–80.

    CAS  PubMed  Google Scholar 

  79. American Heart Association. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96.

    Google Scholar 

  80. Hamazaki T, Takazakura E, Osawa K, Urakaze M, Yano S. Reduction in microalbuminuria in diabetics by eicosapentaenoic acid ethyl ester. Lipids. 1990;9:541–5.

    Google Scholar 

  81. Rossing P, Hansen BV, Nielsen FS, Myrup B, Holmer G, Parving HH. Fish oil in diabetic nephropathy. Diabetes Care. 1996;19:1214–9.

    CAS  PubMed  Google Scholar 

  82. The ORIGIN Trial Investigators. N-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–18.

    Google Scholar 

  83. National Kidney Foundation. KDOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45 Suppl 3:S90–5.

    Google Scholar 

  84. Butt P, Bierness D, Cesa F, Gliksman L, Paradis C, Stockwell T. Alcohol and health in Canada: a summary of evidence and guidelines for low-risk drinking. Ottawa, ON: Canadian Centre on Substance Abuse; 2011.

    Google Scholar 

  85. Centres for Disease Control and Prevention (CDC). Alcohol-related disease impact (ARDI). Atlanta, GA: CDC. http://www.cdc.gov/alcohol/ardi.htm. Accessed 15 June 2012.

  86. Howard AA, Arnsten JH, Gourevitch MN. Effect of alcohol consumption on diabetes mellitus: a systematic review. Ann Intern Med. 2004;140:211–9.

    PubMed  Google Scholar 

  87. Bantle AE, Thomas W, Bantle JP. Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus. Metabolism. 2008;57:241–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ajani UA, Gaziano JM, Lotufo PA, Liu S, Hennekens CH, Buring JE, Manson JE. Alcohol consumption and risk of coronary heart disease by diabetes status. Circulation. 2000;102(5):500.

    CAS  PubMed  Google Scholar 

  89. Solomon CG, Hu FB, Stampfer MJ, Colditz GA, Speizer FE, Rimm EB, Willett WC, Manson JE. Moderate alcohol consumption and risk of coronary heart disease among women with type 2 diabetes mellitus. Circulation. 2000;102(5):494.

    CAS  PubMed  Google Scholar 

  90. Tanasescu M, Hu FB, Willett WC, Stampfer MJ, Rimm EB. Alcohol consumption and risk of coronary heart disease among men with type 2 diabetes mellitus. J Am Coll Cardiol. 2001;38(7):1836.

    CAS  PubMed  Google Scholar 

  91. Ahmed AT, Karter AJ, Warton M, Doan JU, Weisner CM. The relationship between alcohol consumption and glycemic control among patients with diabetes: The Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med. 2008;23:275–82.

    PubMed Central  PubMed  Google Scholar 

  92. Nakamura T, Fujiwara N, Sugaya T, Ueda Y, Koide H. Effect of red wine on urinary protein, 8 hydroxydeoxyguanosine, and liver-type fatty acid binding protein excretion in patients with diabetic nephropathy. Metabolism. 2009;58:1185–90.

    CAS  PubMed  Google Scholar 

  93. Fitch C, Keim KS, Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics: use of nutritive and nonnutritive sweeteners. J Acad Nutr Diet. 2012;112:739–58.

    PubMed  Google Scholar 

  94. US Departments of Agriculture and Health and Human Services. Dietary guidelines for Americans. 7th ed. Washington, DC: US Government Printing Office; 2010.

    Google Scholar 

  95. Johnson RK, Appel LJ, Brands M, et al. Dietary sugars intake and cardiovascular health. A scientific statement from the American Heart Association. Circulation. 2009;120(11):1011–20.

    CAS  PubMed  Google Scholar 

  96. Segersten U, Holm PK, Bjorklund P, et al. 25-Hydroxyvitamin D31alpha-hydroxylase expression in breast cancer and use of non-1alphahydroxylated vitamin D analogue. Breast Cancer Res. 2005;7:R980–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Van Driel M, Koedam M, Buurman CJ, et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J. 2006;20:2417–9.

    PubMed  Google Scholar 

  98. Somjen D, Weisman Y, Kohen F, et al. 25-Hydroxyvitamin D3-1alphahydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation. 2005;111:1666–71.

    CAS  PubMed  Google Scholar 

  99. Segersten U, Correa P, Hewison M, et al. 25-Hydroxyvitamin D(3)-1alphahydroxylase expression in normal and pathological parathyroid glands. J Clin Endocrinol Metab. 2002;87:2967–72.

    CAS  PubMed  Google Scholar 

  100. Gonzalez EA, Sachdeva A, Oliver DA, et al. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am J Nephrol. 2004;24:503–10.

    CAS  PubMed  Google Scholar 

  101. LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am J Kidney Dis. 2005;45:1026–33.

    CAS  PubMed  Google Scholar 

  102. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–8.

    CAS  PubMed  Google Scholar 

  103. Zisman AL, Hristova M, Ho LT, et al. Impact of ergocalciferol treatment of vitamin D deficiency on serum parathyroid hormone concentrations in chronic kidney disease. Am J Nephrol. 2007;27:36–43.

    CAS  PubMed  Google Scholar 

  104. Al-Aly Z, Qazi RA, González EA, Zeringue A, Martin KJ. Changes in serum 25-hydroxyvitamin D and plasma intact PTH levels following treatment with ergocalciferol in patients with CKD. Am J Kidney Dis. 2007;50(1):59.

    CAS  PubMed  Google Scholar 

  105. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guidelines for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76 Suppl 113:1.

    Google Scholar 

  106. Daskalopoulou SS, Khan NA, Quinn RR. The 2012 Canadian hypertension education program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy. Can J Cardiol. 2012;28(3):270–87.

    PubMed  Google Scholar 

  107. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42 Suppl 3:S1–201.

    Google Scholar 

  108. Medicare program; revisions to payment policies and five-year review of and adjustments to the relative value units under the physician fee schedule for calendar year 2002; final rule, 66 Federal Register 55246-55332 (2001) (codified at 42 CFR 405).

    Google Scholar 

  109. Additional clarification for medical nutrition therapy (MNT) services. CMS Program Memorandum Intermediaries/Carriers. Transmittal AB-02-059. 1 May 2002. Change request 2142. http://www.cms.hhs.gov/manuals/pm_trans/AB02059.pdf. Accessed 3 April 2006.

  110. Medicare program, expanded coverage for outpatient diabetes self-management training and diabetes outcome measurements; final rule and notice. 65 Federal Register 83130-83154 (2000) (codified at 42 CFR 410, 414,424,480, 498).

    Google Scholar 

  111. Daugherty KK. Review of insulin therapy. J Pharmacy Practice. 2004;17(1):10–9.

    Google Scholar 

  112. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1C. Diabetes Care. 2003;26:881–5.

    PubMed  Google Scholar 

  113. Holstein A, Stumvoll M. Contraindications can damage your health: is metformin a case in point? Diabetologia. 2005;48:2454–9.

    CAS  PubMed  Google Scholar 

  114. Nissen SE, Wolski K. Rosiglitazone re-visited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170:1191–201.

    CAS  PubMed  Google Scholar 

  115. Kermode-Scott B. Meta-analysis confirms raised risk of bladder cancer from pioglitazone. BMJ. 2012;345:e4541.

    PubMed  Google Scholar 

  116. Drucker DJ. Incretin-based therapies: a clinical need filled by unique metabolic effects. Diabetes Educ. 2006;32 Suppl 2:S65–71.

    Google Scholar 

  117. Kruger DF, Martin CL, Sadler CE. New insights into glucose regulation. Diabetes Educ. 2006;32:221–8.

    PubMed  Google Scholar 

  118. Hanefeld M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc Diabetol. 2007;6:20.

    PubMed Central  PubMed  Google Scholar 

  119. DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA. 2003;289:2254–64.

    CAS  PubMed  Google Scholar 

  120. Cornell S, Briggs A. Newer treatment strategies for the management of type 2 diabetes mellitus. J Pharmacy Practice. 2004;17(1):49–54.

    Google Scholar 

  121. Centers for Disease Control and Prevention (CDC). Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes—United States and Puerto Rico, 1996–2007. MMWR Morb Mortal Wkly Rep. 2010;59(42):1361.

    Google Scholar 

  122. National Institute of Diabetes and Digestive and Kidney Diseases. United States Renal Data System: USRDS 2005 annual data report. Bethesda, MD: National Institutes of Health; 2005.

    Google Scholar 

  123. Wolfe RA, Gaylin DS, Port FK, Held PJ, Wood CL. Using USRDS generated mortality tables to compare local ESRD mortality rates to national rates. Kidney Int. 1992;42(4):991.

    CAS  PubMed  Google Scholar 

  124. United States Renal Data System. Excerpts from the USRDS 2005 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2006;47 Suppl 1:S1.

    Google Scholar 

  125. Locatelli F, Pozzoni P, DelVecchio L. Renal replacement therapy in patients with diabetes and ESRD. J Am Soc Nephrol. 2004;15:S25–9.

    PubMed  Google Scholar 

  126. Lok CE, Oliver MJ, Rothwell DM, Hux JE. The growing volume of diabetes related dialysis: a population based study. Nephrol Dial Transplant. 2004;19:3098–103.

    PubMed  Google Scholar 

  127. Pumim LB, Heimburger O, Qureshi AR, et al. Accelerated lean body mass loss in incidence chronic dialysis patients with diabetes mellitus. Kidney Int. 2005;3:2368–74.

    Google Scholar 

  128. Siew ED, Ikizler TA. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease. Semin Dial. 2010;23(4):378–82.

    PubMed  Google Scholar 

  129. Mak RD, DeFronzo RA. Glucose and insulin metabolism in uremia. Nephron. 1993;61:377.

    Google Scholar 

  130. Mak RH. Impact of end-stage renal disease and dialysis on glycemic control. Semin Dial. 2000;13:4–8.

    CAS  PubMed  Google Scholar 

  131. Shrishrimal K, Hart P, Michota F. Managing diabetes in hemodialysis patients: observations and recommendations. Cleve Clin J Med. 2009;76(11):649–55.

    PubMed  Google Scholar 

  132. Biesenback G, Raml A, Schmekal B, et al. Decreased insulin requirement in relation to GFR in nephropathy in type 1 and insulin-treated type 2 diabetic patients. Diabet Med. 2003;20:642–5.

    Google Scholar 

  133. Kovesdy CP, Park JC, Kalantar-Zadeh K. Glycemic control and burnt-out diabetes in ESRD. Semin Dial. 2010;23:148–56.

    PubMed  Google Scholar 

  134. Akmal M. Hemodialysis in diabetic patients. Am J Kidney Dis. 2001;38:S195–9.

    CAS  PubMed  Google Scholar 

  135. Morioka T, Emoto M, Tabata T, et al. Glycemic control is a predictor of survival for diabetic patients on hemodialysis. Diabetes Care. 2001;24:909–13.

    CAS  PubMed  Google Scholar 

  136. Burrowes JD, et al. Effects of dietary intake, appetite, and eating habits on dialysis and non-dialysis treatment days in hemodialysis patients: cross-sectional results from the HEMO study. J Ren Nutr. 2003;13(3):191–8.

    PubMed  Google Scholar 

  137. Burmeister JE, Scapini A, da Rosa Miltersteiner D, et al. Glucose added dialysis fluid prevents asymptomatic hypoglycaemia in regular hemodialysis. Nephrol Dial Transplant. 2007;22:1184–9.

    CAS  PubMed  Google Scholar 

  138. Jackson MA, Holland MR, Nicholas J, et al. Hemodialysis-induced hypoglycemia in diabetic patients. Clin Nephrol. 2000;54:30–4.

    CAS  PubMed  Google Scholar 

  139. Jackson MA, Holland MR, Nicholas J, et al. Occult hypoglycaemia caused by hemodialysis. Clin Nephrol. 1999;51:242–7.

    CAS  PubMed  Google Scholar 

  140. Sitter T, Sauter M. Impact of glucose in PD: saint or sinner? Perit Dial Int. 2005;25:415–25.

    CAS  PubMed  Google Scholar 

  141. Torun D, Ogurzkurt L, Sezer S, et al. Hepatic subcapsular steatosis as a complication associated with intraperitoneal insulin treatment in diabetic peritoneal dialysis patients. Perit Dial Int. 2005;25:595–600.

    Google Scholar 

  142. Strid H, Simren M, Johansson A, et al. The prevalence of gastrointestinal symptoms in patients with chronic renal failure is increased and associated with impaired psychological well-being. Nephrol Dial Transplant. 2002;17:1434.

    PubMed  Google Scholar 

  143. Gokal R. Peritoneal dialysis in the 21st century: an analysis of current problems and future developments. J Am Soc Nephrol. 2002;12:S104–16.

    Google Scholar 

  144. Yao Q, Lindholm B, Heimburger O. Peritoneal dialysis prescription for diabetic patients. Perit Dial Int. 2005;25:S76–9.

    PubMed  Google Scholar 

  145. Liu J, Rosner MH. Lipid abnormalities associated with end-stage renal disease. Semin Dial. 2006;19:32–40.

    PubMed  Google Scholar 

  146. Wong Y-H, Szeto C-C, Chow K-M, et al. Rosiglitazone reduces insulin requirements and c-reactive protein levels in type 2 diabetes patients receiving peritoneal dialysis. Am J Kidney Dis. 2005;46:713–9.

    CAS  PubMed  Google Scholar 

  147. Quellhorst E. Insulin therapy during peritoneal dialysis: pros and cons of various forms of administration. J Am Soc Nephrol. 2002;12:S92–6.

    Google Scholar 

  148. Diaz-Buxo JA. Blood glucose control in diabetics: I. Semin Dial. 1993;6:392.

    Google Scholar 

  149. Daniels ID, Markell MS. Blood glucose control in diabetics: II. Semin Dial. 1993;6:394.

    Google Scholar 

  150. Tzamaloukas AH, Oreopoulos DG. Subcutaneous versus intraperitoneal insulin in the management of diabetics on CAPD: a review. In: Khanna R, Nolph KD, Prowant B, et al., editors. Advances in peritoneal dialysis, vol. 7. Toronto: University of Toronto Press; 1991. p. 81–5.

    Google Scholar 

  151. Khalili KI, Lan FP, Hanbridge AE, et al. Hepatic subcapsular steatosis in response to intraperitoneal insulin delivery: CT findings and prevalence. AJR Am J Roentgenol. 2003;180:1601–4.

    PubMed  Google Scholar 

  152. Selgas R, Lopez-Riva A, Alvaro F, et al. Insulin influence on the mitogenic-induced effect of the peritoneal effluent in CAPD patients. In: Khanna R, Nolph KD, Prowant B, et al., editors. Advances in peritoneal dialysis, vol. 7. Toronto: University of Toronto Press; 1991. p. 161–4.

    Google Scholar 

  153. Ansari A, Thomas S, Goldsmith D. Assessing glycemic control with diabetes and end-stage renal disease. Am J Kidney Dis. 2004;41:523–31.

    Google Scholar 

  154. Uhlig K, Levey AS, Sarnak MJ. Traditional cardiac risk factors in individuals and chronic kidney disease. Semin Dial. 2003;16:116–27.

    Google Scholar 

  155. KDOQI clinical practice guidelines and clinical recommendations for cardiovascular disease in dialysis patients. http://www.kidney.org/professionals/kdoqi/guidelines_cvd/guide11.htm. Accessed 2 Dec 2012.

  156. Szeto CC, Chow KM, Kwan BC, et al. New-onset hyperglycemia in non-diabetic Chinese patients started on peritoneal dialysis. Am J Kidney Dis. 2007;49:524.

    CAS  PubMed  Google Scholar 

  157. De Boer MJ, Miedema K, Casparie AF. Glycosylated haemoglobin in renal failure. Diabetologia. 1980;18(6):437.

    PubMed  Google Scholar 

  158. Scott MG, Hoffmann JW, Meltzer VN, Siegfried BA, Chan KM. Effects of azotemia on results of the boronate-agarose affinity and ion-exchange methods for glycated hemoglobin. Clin Chem. 1984;30(6):896.

    CAS  PubMed  Google Scholar 

  159. Wettre S, Lundberg M. Kinetics of glycosylated haemoglobin in uraemia determined on ion-exchange and affinity chromatography: no increase in the rate of glycosylation. Diabetes Res. 1986;3(2):107.

    CAS  PubMed  Google Scholar 

  160. Paisey R, Banks R, Holton R, Young K, Hopton M, White D, Hartog M. Glycosylated haemoglobin in uraemia. Diabet Med. 1986;3(5):445.

    CAS  PubMed  Google Scholar 

  161. Joy MS, Cefalu WT, Hogan SL, Nachman PH. Long-term glycemic control measurements in diabetic patients receiving hemodialysis. Am J Kidney Dis. 2002;39(2):297.

    PubMed  Google Scholar 

  162. Williams ME, Lacson Jr E, Wang W, et al. Glycemic control and extended hemodialysis survival in patients with diabetes mellitus: comparative results of traditional and time-dependent Cox model analyses. Clin J Am Soc Nephrol. 2010;5:1595–601.

    PubMed  Google Scholar 

  163. Duong U, Mehrotra R, Molnar MZ, et al. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin J Am Soc Nephrol. 2011;6:1041–8.

    CAS  PubMed  Google Scholar 

  164. Ricks J, Molnar MZ, Kovesdy CP, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012;61:708–15.

    CAS  PubMed  Google Scholar 

  165. Kalantar-Zadeh K. A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death. Diabetes Care. 2012;35:1625–8.

    PubMed  Google Scholar 

  166. KDOQI. KDOQI clinical practice guidelines and clinical recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49:S62–73.

    Google Scholar 

  167. Mehrotra R, Kalantar-Zadeh K, Adler S. Assessment of glycemic control in dialysis patients with diabetes: glycosylated haemoglobin or glycated albumin? Clin J Am Soc Nephrol. 2011;6:1520–2.

    CAS  PubMed  Google Scholar 

  168. Freedman BI, Shenoy RN, Planer JA, et al. Comparison of glycated albumin and haemoglobin A1c concentration in diabetic subjects on peritoneal and hemodialysis. Perit Dial Int. 2010;30:72–9.

    CAS  PubMed  Google Scholar 

  169. Peacock TP, Shihabi ZK, Bleyer AJ, et al. Comparison of glycated albumin and haemoglobin A1c levels in diabetic subjects on hemodialysis. Kidney Int. 2008;73:1062.

    CAS  PubMed  Google Scholar 

  170. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2007;20 Suppl 1:S4–41.

    Google Scholar 

  171. Gerich JE. The importance of controlling postprandial hyperglycemia. Pract Diabetol. 2005;24:22–6.

    Google Scholar 

  172. Hirsch IB, Bergenstal RM, Parkin CG, et al. A real-world approach to insulin therapy in primary care practice. Clin Diabetes. 2005;23:78–86.

    Google Scholar 

  173. Klonoff DC. Continuous glucose monitoring. Diabetes Care. 2005;28:1231–9.

    PubMed  Google Scholar 

  174. National Kidney Foundation. KDOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35 Suppl 1:S1–140.

    Google Scholar 

  175. Pupim LB, Flakoll PJ, Majchrzak KM, et al. Increased muscle protein breakdown in chronic hemodialysis patients with type 2 diabetes mellitus. Kidney Int. 2005;68:1857–65.

    PubMed  Google Scholar 

  176. Noori N, Kopple JD. Effect of diabetes mellitus on protein-energy wasting and protein wasting in end-stage renal disease. Semin Dial. 2010;23(2):178–84.

    PubMed  Google Scholar 

  177. Cano NJM, Roth H, Aparicio M, et al. Malnutrition in hemodialysis diabetic patients: evaluation and prognostic influence. Kidney Int. 2002;62:593–601.

    PubMed  Google Scholar 

  178. Chavez EM, Taylor GW, Borrel LN, Ship JA. A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;92:281–91.

    Google Scholar 

  179. Moore PA, Guggenheimer J, Etzel KR, et al. Type 1 diabetes mellitus, xerostomia and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:281–91.

    CAS  PubMed  Google Scholar 

  180. Meurman JH, Collin HL, Niskanen L, et al. Saliva in non-insulin-dependent diabetic patients and control subjects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86:69–76.

    CAS  PubMed  Google Scholar 

  181. Chavez EM, Borrell LN, Taylor GW, et al. A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:166–73.

    CAS  PubMed  Google Scholar 

  182. Sreebny LM, Yu A, Green A, et al. Xerostomia in diabetes mellitus. Diabetes Care. 1992;15:900–4.

    CAS  PubMed  Google Scholar 

  183. Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003;23:365–72.

    PubMed  Google Scholar 

  184. Grodstein G, Harrison A, Roberts C, et al. Impaired gastric emptying in hemodialysis patients (abstract). Kidney Int. 1979;16:952.

    Google Scholar 

  185. Schoenmakere G, Vanholder R, Rottey S, Duym P, Lameire N. Relationship between gastric emptying and clinical and biochemical factors in chronic haemodialysis patients. Nephrol Dial Transplant. 2001;16(9):1850.

    PubMed  Google Scholar 

  186. Rothstein RD, Alavi A. The evaluation of the patient with gastroparesis secondary to insulin-dependent diabetes mellitus. J Nucl Med. 1992;33(9):1707.

    CAS  PubMed  Google Scholar 

  187. Brown-Cartwright D, Smith HJ, Feldman M. Gastric emptying of an indigestible solid in patients with end-stage renal disease on continuous ambulatory peritoneal dialysis. Gastroenterology. 1988;95(1):49.

    CAS  PubMed  Google Scholar 

  188. Bird NJ, Streather CP, O’Doherty MJ, Barton IK, Gaunt JI, Nunan TO. Gastric emptying in patients with chronic renal failure on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1994;9(3):287.

    CAS  PubMed  Google Scholar 

  189. Fernström A, Hylander B, Grybäck P, Jacobsson H, Hellström PM. Gastric emptying and electrogastrography in patients on CAPD. Perit Dial Int. 1999;19(5):429.

    PubMed  Google Scholar 

  190. Duby JJ, Campbell RK, Setter SM, et al. Diabetic neuropathy: an intensive review. Am J Health Syst Pharm. 2004;61:160–76.

    CAS  PubMed  Google Scholar 

  191. Vinik AI, Master R, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–74.

    PubMed  Google Scholar 

  192. Syed AA, Rattansingh A, Furtado SD. Current perspectives on the management of gastroparesis. J Postgrad Med. 2005;51:54–60.

    CAS  PubMed  Google Scholar 

  193. Lin Z, Forster J, Sarosiek I, et al. Treatment of diabetic gastroparesis by high-frequency gastric electrical stimulation. Diabetes Care. 2004;27:1071–6.

    PubMed  Google Scholar 

  194. Rayner CK, Samson M, Jones KL, Horowitz M. Relationship of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 2001;24L:371–81.

    Google Scholar 

  195. Funnell MM, Greene DA. Diabetic neuropathy. In: Funnell MM, Hunt C, Kulkarni K, Rubin RR, Yarborough PC, editors. A core curriculum for diabetes education. 3rd ed. Chicago: American Association of Diabetes Educators; 1998. p. 709–43.

    Google Scholar 

  196. Parrish CR, Pastors JG. Nutritional management of gastroparesis in people with diabetes. Diabetes Spectrum. 2007;20(4):231–4.

    Google Scholar 

  197. Staels B, Handelsman Y, Fonseca V. Bile acid sequestrants for lipid and glucose control. Curr Diab Rep. 2010;10(1):70–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Karl DM. Learning to use pramlintide. Pract Diabetol. 2006;25:43–6.

    Google Scholar 

  199. Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Chen X, Zhu L, Striker GE, Vlassara H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care. 2011;34(7):1610–6.

    CAS  PubMed  Google Scholar 

  200. KDIGO. 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:5–14. doi:10.1038/kisup.2012.77.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Whitham R.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whitham, D., Parpia, A.S. (2014). Diabetes Mellitus and Chronic Kidney Disease (Stages 1–5). In: Byham-Gray, L., Burrowes, J., Chertow, G. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-685-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-685-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-684-9

  • Online ISBN: 978-1-62703-685-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics