Skip to main content

Bone and Mineral Disorders

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Part of the book series: Nutrition and Health ((NH))

  • 2388 Accesses

Abstract

Abnormal bone and mineral metabolism is a common complication of chronic kidney disease (CKD) and has been the subject of concern and controversy throughout the world [1–5]. Mounting evidence suggests that disorders of bone and mineral metabolism are associated with an increased risk for cardiovascular calcification, morbidity, and mortality [6, 7]. As kidney function declines, mineral homeostasis deteriorates leading to changes in the levels of various hormones such as parathyroid hormone (PTH), 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, other vitamin D metabolites, fibroblastic growth factor-23 (FGF23), and growth hormone. Eventually, serum and tissue concentrations of calcium and phosphorus become abnormal. The discovery of FGF23 has changed the understanding of abnormal phosphorus and vitamin D metabolism in CKD. FGF23 is a bone-derived hormone that increases phosphaturia and decreases the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D). Increased secretion of 1,25(OH)2D and high dietary phosphorus intake are considered to be the main stimuli of FGF23 secretion [8]. FGF23 levels increase early (CKD stage 2 or 3) and steadily increase as CKD progresses. This hormone stimulates an appropriate physiologic adaptation to maintain normal phosphorus balance. It helps to augment urinary phosphate excretion, increase PTH levels, and lower 1,25(OH)2D production by decreasing phosphorus absorption from the GI tract. Over time this adaptation fails causing a progressive decline in 1,25(OH)2D levels with additional consequences such as secondary hyperparathyroidism (SHPT). High FGF23 levels have been independently linked with adverse outcomes in CKD, such as cardiovascular disease and mortality. Additionally, treatment with activated vitamin D compounds stimulates FGF23 which has reinforced the need to reconsider the risks and benefits of using activated vitamin D and to determine the optimal doses to treat CKD-mineral and bone disorder (CKD-MBD) [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Kidney Foundation. KDOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42 Suppl 3:S1–202.

    Google Scholar 

  2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 2009;76 Suppl 113:S1–130.

    Google Scholar 

  3. Uhlig K, Berns JS, Kestenbaum B, Kumar R, Leonard MB, Martin KJ, Sprague SM, Goldfarb S. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the diagnosis, evaluation, and treatment of CKD-Mineral and Bone Disorder (CKD-MBD). Am J Kidney Dis. 2010;55(5):773–99.

    Article  PubMed  Google Scholar 

  4. Manns BJ, Hodsman A, Zimmerman DL, Mendelssohn DC, Soroka SD, Chan C, Jindal K, Klarenbach S. Canadian Society of Nephrology commentary on the 2009 KDIGO clinical practice guideline for the diagnosis, evaluation, and treatment of CKD-Mineral and Bone Disorder (CKD-MBD). Am J Kidney Dis. 2010;55(5):800–12.

    Article  PubMed  Google Scholar 

  5. Goldsmith DJA, Covic A, Fouque D, Locatelli F, Olgaard K, Rodriquez M, Spasovski G, Urena P, Zoccali C, London GM, Vanholder R. Editorial review: endorsement of the Kidney Disease Improving Global Outcomes (KDIGO) Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guidelines: a European Renal Best Practice (ERBP) commentary statement. Nephrol Dial Transplant. 2010;10:1093.

    Google Scholar 

  6. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie E, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  7. Young EW, Akia T, Albert J, McCarthy J, Kerr PG, Mendelssohn DC, Jadoul M. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients on Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2004;44:S34–8.

    Article  CAS  Google Scholar 

  8. Gutierrez OM. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the “trade-off” hypothesis. Clin J Am Soc Nephrol. 2010;5(9):1710–6.

    Article  CAS  PubMed  Google Scholar 

  9. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    Article  CAS  PubMed  Google Scholar 

  10. Olgaard K, editor. Clinical guide to bone and mineral metabolism in CKD. New York, NY: National Kidney Foundation; 2006.

    Google Scholar 

  11. Llach F, Yudd M. Pathogenic, clinical, and therapeutic aspects of secondary hyperparathyroidism. Am J Kidney Dis. 1998;32 Suppl 2:S3–12.

    CAS  PubMed  Google Scholar 

  12. Malluche H, Faugere D. Hyperphosphatemia: pharmacologic intervention yesterday, today, and tomorrow. Clin Nephrol. 2000;54(4):309–17.

    CAS  PubMed  Google Scholar 

  13. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006;281:6120–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jüppner H. Phosphate and FGF-23. Kidney Int. 2011;79 Suppl 121:S24–7.

    Article  Google Scholar 

  15. Burnett SM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  CAS  PubMed  Google Scholar 

  16. Isakova T, Gutierrez OM, Wolf M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 2009;76(7):705–16.

    Article  CAS  PubMed  Google Scholar 

  17. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutiérrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M; Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9.

    Google Scholar 

  18. Bacchetta J, Fouque D. FGF23 and Klotho. 2011. www.tecomedical.com

  19. Razzaque MS. Klotho and Na+, K +-ATPase activity: solving the calcium metabolism dilemma. Nephrol Dial Transplant. 2008;23:459–61.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Silver J, Levi R. Cellular and molecular mechanisms of secondary hyperparathyroidism. Clin Nephrol. 2005;63(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  21. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, MacDonald PN, Brown AJ. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97(11):2534–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Malluche HH, Mawad H, Monier-Faugere M-C. Effects of treatment of renal osteodystrophy on bone histology. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S157–63.

    Article  PubMed  Google Scholar 

  23. Sutton AL, Cameron EC. Renal osteodystrophy: pathophysiology. Semin Nephrol. 1992;12(2):91–100.

    CAS  PubMed  Google Scholar 

  24. Slatopolsky E, Brown A, Dusso A. Calcium, phosphorus, and vitamin D disorders in uremia. Contrib Nephrol. 2005;149:261–71.

    Article  CAS  PubMed  Google Scholar 

  25. Coburn JW, Koeppel MH, Brickman AS, Massry SG. Study of intestinal absorption of calcium in patients with renal failure. Kidney Int. 1973;3:264–72.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez M, Martin-Malo A, Martinez ME, Torres A, Felsenfeld AJ, Llach F. Calcemic response to parathyroid hormone in renal failure: role of phosphorus and its effect on calcitriol. Kidney Int. 1991;40:1055–62.

    Article  CAS  PubMed  Google Scholar 

  27. Massry SG, Stein R, Garty J, Arueff AI, Coburn JW, Norman AW, Friedler RM. Skeletal resistance to the calcemic action of parathyroid hormone in uremia: role of 1,25 (OH)2 D3. Kidney Int. 1976;9:467–74.

    Article  CAS  PubMed  Google Scholar 

  28. Hoyland JA, Picton ML. Cellular mechanisms of renal osteodystrophy. Kidney Int Suppl. 1999;73:S8–13.

    Article  CAS  PubMed  Google Scholar 

  29. Couttenye MM, D’Haese PC, Verschoren WJ, Behets GJ, Schrooten I, De Broe ME. Low bone turnover in patients with renal failure. Kidney Int Suppl. 1999;73:S70–6.

    Article  CAS  PubMed  Google Scholar 

  30. Salusky IB, Goodman WG. Adynamic renal osteodystrophy: is there a problem? J Am Soc Nephrol. 2001;12:1978–85.

    CAS  PubMed  Google Scholar 

  31. Coen G. Adynamic bone disease: an update and overview. J Nephrol. 2005;18(2):117–22.

    PubMed  Google Scholar 

  32. Sanchez C, Auziliadora BM, Selgas R, Mate A, Millan I, Eugenia Martinez M, Lopez-Barea F. Parathormone secretion in peritoneal dialysis patients with adynamic bone disease. Am J Kidney Dis. 2000;36(5):953–61.

    Article  CAS  Google Scholar 

  33. Gupta A, Kallenback LR, Zasuwa G, Devine GW. Race is a major determinant of secondary hyperparathyroidism in uremic patients. J Am Soc Nephrol. 2000;11(2):330–4.

    CAS  PubMed  Google Scholar 

  34. Galassi A, Spiegel DM, Bellasi A, Block GA, Raggi P. Accelerated vascular calcification and relative hypoparathyroidism in incident hemodialysis diabetic patients receiving calcium binders. Nephrol Dial Transplant. 2006;21(11):3215–22.

    Article  CAS  PubMed  Google Scholar 

  35. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB. Coronary artery calcification in young adults with end stage renal disease who are undergoing hemodialysis. N Engl J Med. 2000;342:1478–83.

    Article  CAS  PubMed  Google Scholar 

  36. Guérin AP, London GM, Marchais SJ, Metivier F. Arterial stiffening and vascular calcifications in end stage renal disease. Nephrol Dial Transplant. 2000;15:1014–21.

    Article  PubMed  Google Scholar 

  37. Blacher J, Guérin AP, Pannier B, Marchais SJ, London GM. Arterial calcification, arterial stiffness, and cardiovascular risk in end stage renal disease. Hypertension. 2001;38:938–42.

    Article  CAS  PubMed  Google Scholar 

  38. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, Drueke TB, Massey ZA. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int. 2012;23(7):2017–25.

    Article  CAS  PubMed  Google Scholar 

  39. Memon F, El-Abbadi M, Nakatani T, Taguchi T, Lanske B, Razzaque MS. Does FGF23-klotho activity influence vascular and soft tissue calcification through regulating phosphate homeostasis? Kidney Int. 2008;74(5):566–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mazhar AR, Johnson RJ, Gillen D, Stivelman JC, Ryan MJ, Davis CL, Stehman-Breen CO. Risk factors and mortality associated with calciphylaxis in end stage renal disease. Kidney Int. 2001;60:324–32.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed S, O’Neill KD, Hood AF. Calciphylaxis is associated with hyperphosphatemia and increased osteopontin expression by vascular smooth muscle cells. Am J Kidney Dis. 2001;37(6):1267–76.

    Article  CAS  PubMed  Google Scholar 

  42. Rogers NM, Teubner DJ, Coates PT. Calcemic uremic arteriolopathy: advances in pathogenesis and treatment. Semin Dial. 2007;20(2):150–7.

    Article  PubMed  Google Scholar 

  43. Fine A, Zacharias J. Calciphylaxis is usually non-ulcerating: risk factors, outcome, and therapy. Kidney Int. 2002;61:2210–7.

    Article  PubMed  Google Scholar 

  44. Kuchle C, Fricke H, Held E, Schiffl H. High-flux hemodialysis postpones clinical manifestation of dialysis related amyloidosis. Am J Nephrol. 1996;16(6):484–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ayli M, Ayli D, Azak A, Yuksel C, Atilgan G, Dede F, Akalin T, Abayli E, Camlibel M. The effect of high-flux hemodialysis on dialysis-associated amyloidosis. Ren Fail. 2005;27(1):31–4.

    PubMed  Google Scholar 

  46. Yamamoto S, Kazama JJ, Narita I, Naiki H, Gejyo F. Recent progress in understanding dialysis-related amyloidosis. Bone. 2009;45 Suppl 1:S39–42.

    Article  CAS  PubMed  Google Scholar 

  47. Moe SM, Drüeke TB. Controversies in bone and mineral metabolism in CKD. a bridge to improving healthcare outcomes and quality of life. Am J Kidney Dis. 2004;43(3):552–7.

    Article  PubMed  Google Scholar 

  48. Miller PD. Treatment of osteoporosis in chronic kidney disease and end-stage renal disease. Curr Osteoporos Rep. 2005;3(1):5–12.

    Article  PubMed  Google Scholar 

  49. Toffaletti JG. Calcium: is ionized calcium always right and total calcium always wrong? Clin Lab News. 2011;37(9):8–10.

    Google Scholar 

  50. Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors; Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Institute of Medicine; Dietary Reference Intakes for Calcium and Vitamin D. The National Academies Press, Washington, DC; 2011.

    Google Scholar 

  51. Martin KJ, González EA. Prevention and control of phosphate retention/hyperphosphatemia in CKD-MBD: what is normal, when to start, and how to treat? Clin J Am Soc Nephrol. 2011;6(2):440–6.

    Article  PubMed  Google Scholar 

  52. Qi Q, Monier-Faugere MC, Geng Z, Malluche HH. Predictive value of serum parathyroid hormone levels for bone turnover in patients on chronic maintenance dialysis. Am J Kidney Dis. 1995;26(4):622–31.

    Article  CAS  PubMed  Google Scholar 

  53. Martin KJ, Hruska KA, Lewis J, Anderson C, Slatopolsky E. The renal handling of parathyroid hormone. Role of peritubular uptake and glomerular filtration. J Clin Invest. 1977;60:808–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Martin KJ, Akhtar I, Gonzalez EA. Parathyroid hormone: new assays, new receptors. Semin Nephrol. 2004;24:3–9.

    Article  CAS  PubMed  Google Scholar 

  55. Goodman WG, Salusky IS, Jūppner H. New lessons from old assays: parathyroid hormone (PTH), its receptors, and the potential biological relevance of PTH fragments. Nephrol Dial Transplant. 2002;17(10):1731–6.

    Article  CAS  PubMed  Google Scholar 

  56. Joly D, Drueke TB, Alberti C, Houillier P, Lawson-Body E, Martin KJ, Massart C, Moe SM, Monge M, Souberb JC. Variation in serum and plasma PTH levels in second-generation assays in hemodialysis patients: a cross-sectional study. Am J Kidney Dis. 2008;51(6):987–95.

    Article  CAS  PubMed  Google Scholar 

  57. Canavese C, Barolo S, Gurioli L, Cadario A, Portigliatti M, Isaia G, Thea A, Marangella M, Bongiorno P, Cavagnino A, Peona C, Boero R, D’Amicone M, Cardelli R, Rossi P, Piccoli G. Correlations between bone histopathology and serum biochemistry in uremic patients on chronic hemodialysis. Int J Artif Organs. 1998;21:443–50.

    CAS  PubMed  Google Scholar 

  58. Moe SM, Drueke T. Improving global outcomes in mineral and bone disorders. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S127–30.

    Article  PubMed  Google Scholar 

  59. Uribarri J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial. 2007;20(4):295–301.

    Article  PubMed  Google Scholar 

  60. Sullivan CM, Leon JB, Sehgal AR. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Ren Nutr. 2007;17(5):350–4.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Carnovale E, Lugaro E, Lombardi-Boccia G. Phytic acid in faba bean and pea: effect on protein availability. Cereal Chem. 1988;65(2):114–7.

    CAS  Google Scholar 

  62. Vikas Kumar V, Sinha AK, Hariner PS, Becker K. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem. 2010;120(4):945–59.

    Article  Google Scholar 

  63. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS, Noori N, Hirschberg R, Benner D, Nissenson AR, Kopple JD. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519–30.

    Article  CAS  PubMed  Google Scholar 

  64. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  65. Oenning LL, Vogel J, Calvo MS. Accuracy of methods estimating calcium and phosphorus intake in daily diets. J Am Diet Assoc. 1988;88(9):1076–80.

    CAS  PubMed  Google Scholar 

  66. Zhang ZW, Shimbo S, Miyake K, et al. Estimates of mineral intakes using food composition tables vs measures by inductively-coupled plasma mass spectrometry: Part 1. Calcium, phosphorus and iron. Eur J Clin Nutr. 1999;53(3): 226–32.

    Article  CAS  PubMed  Google Scholar 

  67. Moreno-Torres R, Ruiz-Lopez MD, Artacho R, et al. Dietary intake of calcium, magnesium and phosphorus in an elderly population using duplicate diet sampling vs food composition tables. J Nutr Health Aging. 2001;5(4):253–5.

    CAS  PubMed  Google Scholar 

  68. US National Academy of Sciences; Institute of Medicine; Food and Nutrition Board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. 1997. http://www.nal.usda.gov/fnic/DRI//DRI_Calcium/146-189.pdf. Accessed 22 Feb 2012.

    Google Scholar 

  69. Langman CB, Cannata-Andia JB. Calcium in chronic kidney disease: myths and realities. Clin J Am Soc Nephrol. 2010;5 Suppl 1:S1–2.

    Article  PubMed  Google Scholar 

  70. Moe SM. Confusion on the complexity of calcium balance. Semin Dial. 2010;23(5):492–7.

    Article  PubMed  Google Scholar 

  71. Goodman WG. Medical management of secondary hyperparathyroidism in chronic renal failure. Nephrol Dial Transplant. 2003;18(3):iii2–8.

    CAS  PubMed  Google Scholar 

  72. Gutzwiller JP, Schneditz D, Huber AR, Schindler C, Gutzwiller CE. Estimating phosphate removal in haemodialysis: an additional tool to quantify dialysis dose. Nephrol Dial Transplant. 2002;17:1037–44.

    Article  CAS  PubMed  Google Scholar 

  73. Malberti F, Ravani P. The choice of dialysate calcium concentration in the management of patients on haemodialysis and haemodiafiltration. Nephrol Dial Transplant. 2003;18 Suppl 7:vii37–40.

    CAS  PubMed  Google Scholar 

  74. Brown AJ. Vitamin D analogues. Am J Kidney Dis. 1998;32(4 Suppl 2):S25–39.

    Article  CAS  PubMed  Google Scholar 

  75. Llach F, Keshav G, Goldblat MV, Lindberg JS, Sadler R, Delmez J, Arruda J, Lau A, Slatopolsky E. Suppression of parathyroid hormone secretion in hemodialysis patients by a novel vitamin D analog: 19-Nor-1,25-dihydroxyvitamin D2. Am J Kidney Dis. 1998;32(4 Suppl 2):S48–54.

    Article  CAS  PubMed  Google Scholar 

  76. Teng M, Wolf M, Lowrie E, Ofstun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    Article  CAS  PubMed  Google Scholar 

  77. Frazzo JM, Elangovan L, Maung HM, Chesney RW, Acchiardo SR, Bower JD, Kelly BJ, Rodriguez HJ, Norris KC, Robertson JA, Levine BS, Goodman WG, Gentile D, Mazess RB, Kylklo DM, Douglass LL, Bishop CW, Coburn JW. Intermittent doxercalciferol (1α hydroxyvitamin D2) therapy for secondary hyperparathyroidism. Am J Kidney Dis. 2000;36:550–61.

    Article  Google Scholar 

  78. Morii H, Ishimura E, Inoue T, Tabata T, Morita A, Nishii Y, Fukushima M. History of vitamin D treatment of renal osteodystrophy. Am J Nephrol. 1997;17:382–6.

    Article  CAS  PubMed  Google Scholar 

  79. Kandula P, Dobre M, Schold JD, Schreiber Jr MJ, Mehrotra R, Naveethan SD. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol. 2011;6(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  80. Monk RD, Bushinsky DA. Making sense of the latest advice on vitamin D therapy. J Am Soc Nephrol. 2011;22:994–8.

    Article  CAS  PubMed  Google Scholar 

  81. Block GA, Martin KJ, de Francisco ALM, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350:1516–25.

    Article  CAS  PubMed  Google Scholar 

  82. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, Colloton M, Karbon WE, Scherrer J, Shatzen E, Rishton G, Scully S, Qi M, Harris R, Lacey D, Martin D. Pharmacodynamics of Type II calcimimetic compound cinacalcet HCL. J Pharmacol Exp Ther. 2004;308:627–35.

    Article  CAS  PubMed  Google Scholar 

  83. Goodman WG. Calcimimetics: a remedy for all problems of excess parathyroid hormone activity in chronic kidney disease? Curr Opin Nephrol Hypertens. 2005;14(4):355–60.

    Article  CAS  PubMed  Google Scholar 

  84. Daugirdas JT, Chertow GM, Larive B, Pierratos A, Greene T, Ayus JC, Kendrick CA, James SH, Miller BW, Schulman G, Salusky IB, Kliger AS. Frequent Hemodialysis Network (FHN) Trial Group. Effects of frequent hemodialysis on measures of CKD mineral and bone disorder. J Am Soc Nephrol. 2012;23(4):727–38.

    Article  CAS  PubMed  Google Scholar 

  85. Mittendorf EA, Merlino JI, McHenry CR. Post-parathyroidectomy hypocalcemia: incidence, risk factors, and management. Am Surg. 2004;70(2):114–9.

    PubMed  Google Scholar 

  86. Richards ML, Wormuth J, Bingener J, Sirinek K. Parathyroidectomy in secondary hyperparathyroidism: is there an optimal operative management? Surgery. 2006;139(2):174–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda McCann R.D., C.S.R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCann, L. (2014). Bone and Mineral Disorders. In: Byham-Gray, L., Burrowes, J., Chertow, G. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-685-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-685-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-684-9

  • Online ISBN: 978-1-62703-685-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics