Skip to main content

Cholesterol Metabolism and Oxidative Stress in Alzheimer’s Disease

  • Chapter
  • First Online:
  • 2149 Accesses

Abstract

Cholesterol has a prominent role in cell structure and function, in the brain, including signal transduction, neurotransmitter release, synaptogenesis, and membrane trafficking. Perturbation of cholesterol trafficking in the brain is potentially linked to the pathogenesis of Alzheimer’s disease (AD). Cholesterol is unable to pass the blood–brain barrier, and its level in the brain depends exclusively on de novo synthesis and elimination, which rely on local transcription of ApoE and cassette transporters (ABCA1, ABCG1, and ABCG4) involved in the lipid transfer across membranes. These pathways are controlled by oxysterols. In order to maintain homeostasis, cholesterol is converted into 24-hydroxycholesterol by the neuronal specific cholesterol 24-hydroxylase, which is located in the endoplasmic reticulum. The putative role of upregulated oxidative stress in AD has raised interest in nonenzymatic oxysterols, which are generated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system and by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The analysis of oxysterols is a valuable tool to noninvasively investigating the role of cholesterol metabolism in the pathogenesis of neurodegeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iuliano L. The oxidant stress hypothesis of atherogenesis. Lipids. 2001;36(Suppl):S41–4.

    Article  PubMed  CAS  Google Scholar 

  2. Pikuleva IA. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering. Expert Opin Drug Metab Toxicol. 2008;4:1403–14.

    Article  PubMed  CAS  Google Scholar 

  3. Björkhem I, Eggertsen G. Genes involved in initial steps of bile acid synthesis. Curr Opin Lipidol. 2001;12:97–103.

    Article  PubMed  Google Scholar 

  4. Heverin M, Meaney S, Brafman A, Shafir M, Olin M, Shafaati M, von Bahr S, Larsson L, Lovgren-Sandblom A, Diczfalusy U, Parini P, Feinstein E, Bjorkhem I. Studies on the cholesterol-free mouse: strong activation of LXR-regulated hepatic genes when replacing cholesterol with desmosterol. Arterioscler Thromb Vasc Biol. 2007;27:2191–7.

    Article  PubMed  CAS  Google Scholar 

  5. Björkhem I, Reihner E, Angelin B, Ewerth S, Akerlund JE, Einarsson K. On the possible use of the serum level of 7 alpha-hydroxycholesterol as a marker for increased activity of the cholesterol 7 alpha-hydroxylase in humans. J Lipid Res. 1987;28:889–94.

    PubMed  Google Scholar 

  6. Bodin K, Bretillon L, Aden Y, Bertilsson L, Broome U, Einarsson C, Diczfalusy U. Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem. 2001;276:38685–9.

    Article  PubMed  CAS  Google Scholar 

  7. Diczfalusy U, Miura J, Roh HK, Mirghani RA, Sayi J, Larsson H, Bodin KG, Allqvist A, Jande M, Kim JW, Aklillu E, Gustafsson LL, Bertilsson L. 4Beta-hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics. 2008;18:201–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson JA, Steckbeck SR, Spencer TA. Biosynthesis of 24,25-epoxycholesterol from squalene 2,3;22,23-dioxide. J Biol Chem. 1981;256:1067–8.

    PubMed  CAS  Google Scholar 

  9. Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164:457–68.

    Article  PubMed  CAS  Google Scholar 

  10. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47:469–84.

    Article  PubMed  CAS  Google Scholar 

  11. Gardner HW. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med. 1989;7:65–86.

    Article  PubMed  CAS  Google Scholar 

  12. Iuliano L, Micheletta F, Natoli S, Ginanni Corradini S, Iappelli M, Elisei W, Giovannelli L, Violi F, Diczfalusy U. Measurement of oxysterols and alpha-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem. 2003;312:217–23.

    Article  PubMed  CAS  Google Scholar 

  13. Larsson H, Bottiger Y, Iuliano L, Diczfalusy U. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radic Biol Med. 2007;43:695–701.

    Article  PubMed  CAS  Google Scholar 

  14. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383:728–31.

    Article  PubMed  CAS  Google Scholar 

  15. Murphy C, Murray AM, Meaney S, Gafvels M. Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism. Biochem Biophys Res Commun. 2007;355:359–64.

    Article  PubMed  CAS  Google Scholar 

  16. Olkkonen VM, Hynynen R. Interactions of oxysterols with membranes and proteins. Mol Aspects Med. 2009;30:123–33.

    Article  PubMed  CAS  Google Scholar 

  17. Mann RK, Beachy PA. Novel lipid modifications of secreted protein signals. Annu Rev Biochem. 2004;73:891–923.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy RC, Johnson KM. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem. 2008;283:15521–5.

    Article  PubMed  CAS  Google Scholar 

  19. Li-Hawkins J, Lund EG, Bronson AD, Russell DW. Expression cloning of an oxysterol 7alpha-hydroxylase selective for 24-hydroxycholesterol. J Biol Chem. 2000;275:16543–9.

    Article  PubMed  CAS  Google Scholar 

  20. Meaney S, Heverin M, Panzenboeck U, Ekstrom L, Axelsson M, Andersson U, Diczfalusy U, Pikuleva I, Wahren J, Sattler W, Bjorkhem I. Novel route for elimination of brain oxysterols across the blood–brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res. 2007;48:944–51.

    Article  PubMed  CAS  Google Scholar 

  21. Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res. 2011;50:357–71.

    Article  PubMed  CAS  Google Scholar 

  22. Björkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24:806–15.

    Article  PubMed  Google Scholar 

  23. Björkhem I, Leoni V, Meaney S. Genetic connections between neurological disorders and cholesterol metabolism. J Lipid Res. 2010;51:2489–503.

    Article  PubMed  Google Scholar 

  24. de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol. 2008;3:505–30.

    Article  PubMed  Google Scholar 

  25. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10:333–44.

    Article  PubMed  CAS  Google Scholar 

  26. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, Bjorkhem I. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA. 1996;93:9799–804.

    Article  PubMed  CAS  Google Scholar 

  27. Xie C, Lund EG, Turley SD, Russell DW, Dietschy JM. Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res. 2003;44:1780–9.

    Article  PubMed  CAS  Google Scholar 

  28. Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA. 1999;96:7238–43.

    Article  PubMed  CAS  Google Scholar 

  29. Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA. 2006;103:3869–74.

    Article  PubMed  CAS  Google Scholar 

  30. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA. 2004;101:2173–8.

    Article  PubMed  CAS  Google Scholar 

  31. Leoni V, Masterman T, Patel P, Meaney S, Diczfalusy U, Bjorkhem I. Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood–brain and blood-cerebrospinal fluid barriers. J Lipid Res. 2003;44:793–9.

    Article  PubMed  CAS  Google Scholar 

  32. Wong J, Quinn CM, Guillemin G, Brown AJ. Primary human astrocytes produce 24(S),25-epoxycholesterol with implications for brain cholesterol homeostasis. J Neurochem. 2007;103:1764–73.

    Article  PubMed  CAS  Google Scholar 

  33. Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci. 2011;12:284–96.

    Article  PubMed  Google Scholar 

  34. Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  PubMed  CAS  Google Scholar 

  35. Kivipelto M, Solomon A. Cholesterol as a risk factor for Alzheimer’s disease – epidemiological evidence. Acta Neurol Scand Suppl. 2006;185:50–7.

    Article  PubMed  CAS  Google Scholar 

  36. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43:1467–72.

    Article  PubMed  CAS  Google Scholar 

  37. Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport. 1999;10:1699–705.

    Article  PubMed  CAS  Google Scholar 

  38. Howland DS, Trusko SP, Savage MJ, Reaume AG, Lang DM, Hirsch JD, Maeda N, Siman R, Greenberg BD, Scott RW, Flood DG. Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J Biol Chem. 1998;273:16576–82.

    Article  PubMed  CAS  Google Scholar 

  39. van den Kommer TN, Dik MG, Comijs HC, Lutjohann D, Lips P, Jonker C, Deeg DJ. The role of extracerebral cholesterol homeostasis and ApoE e4 in cognitive decline. Neurobiol Aging. 2012;33(622):e617–28.

    Google Scholar 

  40. Solomon A, Kareholt I, Ngandu T, Winblad B, Nissinen A, Tuomilehto J, Soininen H, Kivipelto M. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology. 2007;68:751–6.

    Article  PubMed  CAS  Google Scholar 

  41. Stewart R, White LR, Xue QL, Launer LJ. Twenty-six-year change in total cholesterol levels and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2007;64:103–7.

    Article  PubMed  Google Scholar 

  42. Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener. 2009;4:1.

    Article  PubMed  Google Scholar 

  43. Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Bjorkhem I. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res. 2004;45:186–93.

    Article  PubMed  CAS  Google Scholar 

  44. Bjorkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med. 2009;30:171–9.

    Article  PubMed  Google Scholar 

  45. Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem. 2005;280:7377–87.

    Article  PubMed  CAS  Google Scholar 

  46. Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T, Kim TW, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J. 2008;22:1073–82.

    Article  PubMed  CAS  Google Scholar 

  47. Kettle AJ, Clark BM, Winterbourn CC. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem. 2004;279:18521–5.

    Article  PubMed  CAS  Google Scholar 

  48. Babior BM, Takeuchi C, Ruedi J, Gutierrez A, Wentworth Jr P. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci USA. 2003;100:3031–4.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Q, Powers E, Nieva J, Huff M, Dendle M, Bieschke J, Glabe C, Eschenmoser A, Wentworth P, Lerner R. Metabolite-initiated protein misfolding may trigger Alzheimer’s disease. Proc Natl Acad Sci. 2004;101:4752.

    Article  PubMed  CAS  Google Scholar 

  50. Kettle AJ, Winterbourn CC. Do neutrophils produce ozone? An appraisal of current evidence. Biofactors. 2005;24:41–5.

    Article  PubMed  CAS  Google Scholar 

  51. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, Xu G, Numazawa M, Matsuzaki Y. Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res. 2009;50:350–7.

    Article  PubMed  CAS  Google Scholar 

  52. Waterham HR. Inherited disorders of cholesterol biosynthesis. Clin Genet. 2002;61:393–403.

    Article  PubMed  CAS  Google Scholar 

  53. Korade Z, Xu L, Shelton R, Porter NA. Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. J Lipid Res. 2010;51:3259–69.

    Article  PubMed  CAS  Google Scholar 

  54. Karrenbauer VD, Leoni V, Lim ET, Giovannoni G, Ingle GT, Sastre-Garriga J, Thompson AJ, Rashid W, Davies G, Miller DH, Bjorkhem I, Masterman T. Plasma cerebrosterol and magnetic resonance imaging measures in multiple sclerosis. Clin Neurol Neurosurg. 2006;108:456–60.

    Article  PubMed  Google Scholar 

  55. Leoni V, Strittmatter L, Zorzi G, Zibordi F, Dusi S, Garavaglia B, Venco P, Caccia C, Souza AL, Deik A, Clish CB, Rimoldi M, Ciusani E, Bertini E, Nardocci N, Mootha VK, Tiranti V. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab. 2012;105:463–71.

    Article  PubMed  CAS  Google Scholar 

  56. Leoni V, Caccia C. Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids. 2011;164:515–24.

    Article  PubMed  CAS  Google Scholar 

  57. Leoni V, Mariotti C, Tabrizi SJ, Valenza M, Wild EJ, Henley SM, Hobbs NZ, Mandelli ML, Grisoli M, Bjorkhem I, Cattaneo E, Di Donato S. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain. 2008;131:2851–9.

    Article  PubMed  Google Scholar 

  58. Leoni V, Masterman T, Diczfalusy U, De Luca G, Hillert J, Bjorkhem I. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci Lett. 2002;331:163–6.

    Article  PubMed  CAS  Google Scholar 

  59. Koschack J, Lutjohann D, Schmidt-Samoa C, Irle E. Serum 24S-hydroxycholesterol and hippocampal size in middle-aged normal individuals. Neurobiol Aging. 2009;30:898–902.

    Article  PubMed  CAS  Google Scholar 

  60. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80.

    Article  PubMed  CAS  Google Scholar 

  61. Kolsch H, Heun R, Kerksiek A, Bergmann KV, Maier W, Lutjohann D. Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett. 2004;368:303–8.

    Article  PubMed  CAS  Google Scholar 

  62. Besga A, Cedazo-Minguez A, Kareholt I, Solomon A, Bjorkhem I, Winblad B, Leoni V, Hooshmand B, Spulber G, Gonzalez-Pinto A, Kivipelto M, Wahlund LO. Differences in brain cholesterol metabolism and insulin in two subgroups of patients with different CSF biomarkers but similar white matter lesions suggest different pathogenic mechanisms. Neurosci Lett. 2012;510:121–6.

    Article  PubMed  CAS  Google Scholar 

  63. Zuliani G, Donnorso MP, Bosi C, Passaro A, Dalla Nora E, Zurlo A, Bonetti F, Mozzi AF, Cortese C. Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer’s disease or vascular dementia: a case–control study. BMC Neurol. 2011;11:121.

    Article  PubMed  CAS  Google Scholar 

  64. Solomon A, Leoni V, Kivipelto M, Besga A, Oksengard AR, Julin P, Svensson L, Wahlund LO, Andreasen N, Winblad B, Soininen H, Bjorkhem I. Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer’s disease. Neurosci Lett. 2009;462:89–93.

    Article  PubMed  CAS  Google Scholar 

  65. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res. 2000;41:195–8.

    PubMed  CAS  Google Scholar 

  66. Iuliano L, Monticolo R, Straface G, Spoletini I, Gianni W, Caltagirone C, Bossu P, Spalletta G. Vitamin E and enzymatic/oxidative stress-driven oxysterols in amnestic mild cognitive impairment subtypes and Alzheimer’s disease. J Alzheimers Dis. 2010;21:1383–92.

    PubMed  CAS  Google Scholar 

  67. Arca M, Natoli S, Micheletta F, Riggi S, Di Angelantonio E, Montali A, Antonini TM, Antonini R, Diczfalusy U, Iuliano L. Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Radic Biol Med. 2007;42:698–705.

    Article  PubMed  CAS  Google Scholar 

  68. Iuliano L, Monticolo R, Straface G, Zullo S, Galli F, Boaz M, Quattrucci S. Association of cholesterol oxidation and abnormalities in fatty acid metabolism in cystic fibrosis. Am J Clin Nutr. 2009;90:477–84.

    Article  PubMed  CAS  Google Scholar 

  69. Micheletta F, Natoli S, Misuraca M, Sbarigia E, Diczfalusy U, Iuliano L. Vitamin E supplementation in patients with carotid atherosclerosis: reversal of altered oxidative stress status in plasma but not in plaque. Arterioscler Thromb Vasc Biol. 2004;24:136–40.

    Article  PubMed  CAS  Google Scholar 

  70. Corradini SG, Micheletta F, Natoli S, Iappelli M, Di Angelantonio E, De Marco R, Elisei W, Siciliano M, Rossi M, Berloco P, Attili AF, Diczfalusy U, Iuliano L. High preoperative recipient plasma 7beta-hydroxycholesterol is associated with initial poor graft function after liver transplantation. Liver Transpl. 2005;11:1494–504.

    Article  PubMed  Google Scholar 

  71. Teunissen CE, Dijkstra CD, Polman CH, Hoogervorst EL, von Bergmann K, Lutjohann D. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett. 2003;347:159–62.

    Article  PubMed  CAS  Google Scholar 

  72. Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, Hillert J, Bjorkhem I. Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med. 2004;42:186–91.

    Article  PubMed  CAS  Google Scholar 

  73. Shafaati M, Solomon A, Kivipelto M, Bjorkhem I, Leoni V. Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders. Neurosci Lett. 2007;425:78–82.

    Article  PubMed  CAS  Google Scholar 

  74. Leoni V, Shafaati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO. Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci Lett. 2006;397:83–7.

    Article  PubMed  CAS  Google Scholar 

  75. Schonknecht P, Lutjohann D, Pantel J, Bardenheuer H, Hartmann T, von Bergmann K, Beyreuther K, Schroder J. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett. 2002;324:83–5.

    Article  PubMed  CAS  Google Scholar 

  76. Schule R, Siddique T, Deng HX, Yang Y, Donkervoort S, Hansson M, Madrid RE, Siddique N, Schols L, Bjorkhem I. Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J Lipid Res. 2009;51:819–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the collaboration along the years of Prof. I. Björkhem, Prof. U. Diczfalusy, Dr. A. Salomon, Prof. M. Kivipelto, Dr. M. Shafaati at Karolinska Insitutet, Stockholm, Sweden. The authors are grateful for discussion with all members of the European Network on Oxysterols Research (ENOR)(www.oxysterols.com). This work was supported by grants from Ministero dell’ Università, Ricerca Scientifica e Tecnologica (PRIN 2007L7BHK8) and Sapienza University of Rome (to L.I.); and Italian Ministry of Health (Fondi per giovani Ricercatori 2008) (to V.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Iuliano M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iuliano, L., Leoni, V. (2013). Cholesterol Metabolism and Oxidative Stress in Alzheimer’s Disease. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_9

Download citation

Publish with us

Policies and ethics