Skip to main content

Brain Oxidative Stress in the Pathogenesis and Progression of Alzheimer’s Disease

  • Chapter
  • First Online:
Studies on Alzheimer's Disease

Abstract

Alzheimer’s disease is an age-related neurodegenerative disease and is characterized by the presence of senile plaques (SP), neurofibrillary tangles, and synapse loss. Amyloid-beta, one of the main components of SP, has been known to induce oxidative stress and is highly toxic. Using redox proteomics approaches a number of oxidatively modified proteins were identified in AD and mild cognitive impairment (MCI) brain that are consistent with the clinical presentation, pathology, and biochemistry. The identification of key proteins that are highly susceptible to amyloid-beta-mediated oxidation might serve as biomarkers for use in diagnosing and also in the identification of therapeutic targets to prevent or delay this devastating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-NT:

3-nitro tyrosine

AD:

Alzheimer’s disease

ADDL:

β-amyloid-derived-diffusible ligands

AGEs:

Advance glycation end products

AICD:

APPs intracellular c-terminal domain

APC:

Anaphase promoting complex

APOE 4 :

Apolipoprotein E allele 4

APP:

Amyloid precursor protein

Aβ:

Amyloid beta-peptide

AβPP:

β-amyloid precursor protein

BR:

Bilirubin-IX-alpha

BRCA 1:

Breast cancer type-1 susceptibility protein

BV:

Biliverdin-IX-alpha

BVR-A:

Biliverdin reductase-A

CBP:

Creb response binding protein

CDKs:

Cyclin-dependent kinases

CEL:

N-carboxyethyl-lysine

CML:

Nε-(carboxymethyl) lysine

c-MYC:

Cellular-myelocytomatosis

CR:

Carbonyl reductase

CSF:

Cerebral spinal fluid

DMDMAH-1:

Dimethylarginine dimethylaminohydrolase 1

DRP-2:

Dihydropyrimidinase-related protein 2

EOAD:

Early onset-AD

F2-IsoP:

F2-isoprostane

F4-NP:

F4-Neuroprostane

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Glycer-AGE:

Glyceraldehyde-derived AGEs

GPX:

Glutathione peroxidase

GRD:

Glutathione reductase

GRP:

Glucose regulated protein precursor

GSH:

Glutathione

GSK3β:

Glycogen synthase kinase 3-β

GST M:

Glutathione-S-transferase Mu

HNE:

4-hydroxy 2-trans-nonenal

HNE-GSH:

HNE-glutathione

HO-1:

Heme oxygenase-1

HO-2:

Heme oxygenase-2

HSPA8:

Heat shock protein A8

iASPP:

Inhibitor of apoptosis-stimulating protein of p53 (iASPP)

IDE:

Insulin degrading enzyme

IGF-1:

Insulin growth factor-1 (IGF-1)

IKKβ:

IkB kinase type β

iNOS:

Inducible nitric oxide synthase

IPL:

Inferior parietal lobule

LDH:

Lactate dehydrogenase

LOAD:

Late onset-AD

MAPK:

Mitogen-activated protein kinase

MCI/aMCI:

Non-amnestic/amnestic mild-cognitive impairment

MDA:

Malondialdehyde

MDH:

Malate dehydrogenase 1 (MDH)

Mdm-2:

Murine double minute-2

MMSE:

Mini-mental state examination

MnSOD:

Manganese superoxide dismutase

MRP3:

Multidrug resistant protein-3

mtDNA:

Mitochondrial DNA

nDNA:

Nuclear DNA

NF-E2:

Nuclear factor-erythroid 2

NFT:

Neurofibrillary tangles

NF-κB:

Nuclear factor kappa-B

NINCDS-ADRDA:

National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NPrG:

1-N2-propanodeoxyguanosine

Nrf-2:

Nuclear factor related factor 2

PDI:

Protein disulfide isomerase

PICALM:

Phosphatidylinositol-binding clathrin assembly protein

Pin1:

Peptidyl prolyl cis-trans isomerase

PLK:

Polo-like kinase

PP2A:

Protein phosphatase 2-A

PPIase:

Peptidyl-prolyl cis/trans isomerase

PRVI:

Peroxiredoxin 6

PS-1:

Presenilin-1

PS-2:

presenilin-2

Rb:

Retinoblastoma protein

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

rRNA:

Ribosomal RNA

RSNO:

S-nitrosothiols

SBP1:

Syntaxin binding protein I

SCFskp2 :

Skp cullin, F-box containing complex

SOD:

Superoxide dismutase

SOD1/SOD2:

Superoxide dismutase1/2

Thio-1:

Thioredoxin-1

TNF-α:

Tumor necrosis factor-α

TPI:

Triose phosphate isomerase (TPI)

tRNA:

transfer RNA

UCH l-1:

Ubiquitin carboxy-terminal hydrolase l-1

UPR:

Unfolded protein response

VDAC:

Voltage-dependent anion channel

References

  1. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103:373–83.

    Article  PubMed  CAS  Google Scholar 

  2. Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, Memo M, Butterfield DA. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis. 2008;29:456–64.

    Article  PubMed  CAS  Google Scholar 

  3. Balcz B, Kirchner L, Cairns N, Fountoulakis M, Lubec G. Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer’s disease. J Neural Transm. 2001(193–201).

    Google Scholar 

  4. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99:16093–8.

    Article  PubMed  CAS  Google Scholar 

  5. Barone E, Cenini G, Sultana R, Di Domenico F, Fiorini A, Perluigi M, Noel T, Wang C, Mancuso C, St Clair DK, Butterfield DA. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of Thioredoxin-1, Biliverdin Reductase-A, manganese superoxide dismutase, and nuclear factor kappa-b. Antioxid Redox Signal. 2012;16:1407–20.

    Article  PubMed  CAS  Google Scholar 

  6. Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P, Perluigi M, Mancuso C, Butterfield DA. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2011;25:623–33.

    PubMed  CAS  Google Scholar 

  7. Barone E, Di domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M, Allan Butterfield D. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radical Bio Med. 2012b.

    Google Scholar 

  8. Bogdanovic N, Zilmer M, Zilmer K, Rehema A, Karelson E. The Swedish APP670/671 Alzheimer’s disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement Geriatr Cogn Disord. 2001;12:364–70.

    Article  PubMed  CAS  Google Scholar 

  9. Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG. Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med. 2010;12:e19.

    Article  PubMed  Google Scholar 

  10. Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15:1807–21.

    Article  PubMed  CAS  Google Scholar 

  11. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  12. Buizza L, Cenini G, Lanni C, Ferrari-Toninelli G, Prandelli C, Govoni S, Buoso E, Racchi M, Barcikowska M, Styczynska M, Szybinska A, Butterfield DA, Memo M, Uberti D. Conformational altered p53 as an early marker of oxidative stress in Alzheimer’s disease. PLoS One. 2012;7:e29789.

    Article  PubMed  CAS  Google Scholar 

  13. Butterfield DA, Boyd-Kimball D. The critical role of methionine 35 in Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta. 2005;1703:149–56.

    Article  PubMed  CAS  Google Scholar 

  14. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7:548–54.

    Article  PubMed  CAS  Google Scholar 

  15. Butterfield DA, Hardas SS, Lange ML. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer disease: many pathways to neurodegeneration. J Alzheimers Dis. 2009;20(2):369–93.

    Google Scholar 

  16. Butterfield DA, Lange ML. Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem. 2009;111:915–33.

    Article  PubMed  CAS  Google Scholar 

  17. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis. 2006;22:223–32.

    Article  PubMed  CAS  Google Scholar 

  18. Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med. 2007;43:658–77.

    Article  PubMed  CAS  Google Scholar 

  19. Butterfield DA, Reed T, Perluigi M, De Marco C, Coccia R, Cini C, Sultana R. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett. 2006;397:170–3.

    Article  PubMed  CAS  Google Scholar 

  20. Butterfield DA, Stadtman ER. Protein oxidation processes in aging brain. Adv Cell Aging Gerontol. 1997;2:161–91.

    Article  CAS  Google Scholar 

  21. Cantero AV, Portero-Otin M, Ayala V, Auge N, Sanson M, Elbaz M, Thiers JC, Pamplona R, Salvayre R, Negre-Salvayre A. Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. FASEB J. 2007;21:3096–106.

    Article  PubMed  CAS  Google Scholar 

  22. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2008;33:450–8.

    Article  PubMed  CAS  Google Scholar 

  23. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem. 2002;82:1524–32.

    Article  PubMed  CAS  Google Scholar 

  24. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem. 2003;85:1394–401.

    Article  PubMed  CAS  Google Scholar 

  25. Cecarini V, Ding Q, Keller JN. Oxidative inactivation of the proteasome in Alzheimer’s disease. Free Radic Res. 2007;41:673–80.

    Article  PubMed  CAS  Google Scholar 

  26. Cenini G, Sultana R, Memo M, Butterfield DA. Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radic Biol Med. 2008;45:81–5.

    Article  PubMed  CAS  Google Scholar 

  27. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324:102–5.

    Article  PubMed  CAS  Google Scholar 

  28. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem. 2004;279:13256–64.

    Article  PubMed  CAS  Google Scholar 

  29. Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;14:S233–6.

    Article  PubMed  CAS  Google Scholar 

  30. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69:29–38.

    Article  PubMed  Google Scholar 

  31. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006;10:389–406.

    Article  PubMed  CAS  Google Scholar 

  32. Dalle-Donne I, Scaloni A, Butterfield DA. Redox proteomics: from protein modifications to cellular dysfunction and diseases. Hoboken, NJ: John Wiley and Sons; 2006.

    Book  Google Scholar 

  33. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A. 2009;106:1971–6.

    Article  PubMed  Google Scholar 

  34. Di Domenico F, Cenini G, Sultana R, Perluigi M, Uberti D, Memo M, Butterfield DA. Glutathionylation of the pro-apoptotic protein p53 in Alzheimer’s disease brain: implications for AD pathogenesis. Neurochem Res. 2009;34:727–33.

    Article  PubMed  Google Scholar 

  35. Evans TA, Raina AK, Delacourte A, Aprelikova O, Lee HG, Zhu X, Perry G, Smith MA. BRCA1 may modulate neuronal cell cycle re-entry in Alzheimer disease. Int J Med Sci. 2007;4:140–5.

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez-Vizarra P, Fernandez AP, Castro-Blanco S, Encinas JM, Serrano J, Bentura ML, Munoz P, Martinez-Murillo R, Rodrigo J. Expression of nitric oxide system in clinically evaluated cases of Alzheimer’s disease. Neurobiol Dis. 2004;15:287–305.

    Article  PubMed  CAS  Google Scholar 

  37. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet. 2001;358:201–5.

    Article  PubMed  CAS  Google Scholar 

  38. Frautschy SA, Baird A, Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A. 1991;88:8362–6.

    Article  PubMed  CAS  Google Scholar 

  39. Glabe CC. Amyloid accumulation and pathogensis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem. 2005;38:167–77.

    Article  PubMed  CAS  Google Scholar 

  40. Guix FX, Ill-Raga G, Bravo R, Nakaya T, de Fabritiis G, Coma M, Miscione GP, Villa-Freixa J, Suzuki T, Fernandez-Busquets X, Valverde MA, de Strooper B, Munoz FJ. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain. 2009;132:1335–45.

    Article  PubMed  Google Scholar 

  41. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–22.

    Article  PubMed  Google Scholar 

  42. Jack Jr CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52:1397–403.

    Article  PubMed  Google Scholar 

  43. Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ, Tangalos EG, Boeve BF, Knopman DS, Braak H, Petersen RC. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63:674–81.

    Article  PubMed  Google Scholar 

  44. Kapitulnik J, Maines MD. Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci. 2009;30:129–37.

    Article  PubMed  CAS  Google Scholar 

  45. Keeney JT, Swomley AM, Harris JL, Fiorini A, Mitov MI, Perluigi M, Sultana R, Butterfield DA. Cell cycle proteins in brain in mild cognitive impairment: insights into progression to Alzheimer disease. Neurotox Res. 2011.

    Google Scholar 

  46. Keeney JT, Swomley AM, Harris JL, Fiorini A, Mitov MI, Perluigi M, Sultana R, Butterfield DA. Cell cycle proteins in brain in mild cognitive impairment: insights into progression to Alzheimer disease. Neurotox Res. 2012;22:220–30.

    Article  PubMed  CAS  Google Scholar 

  47. Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer’s disease. J Neurochem. 2000;75:436–9.

    Article  PubMed  CAS  Google Scholar 

  48. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology. 2005;64:1152–6.

    Article  PubMed  CAS  Google Scholar 

  49. Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain. Neurobiol Aging. 2006;27:42–53.

    Article  PubMed  CAS  Google Scholar 

  50. Lovell MA, Xie C, Markesbery WR. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology. 1998;51:1562–6.

    Article  PubMed  CAS  Google Scholar 

  51. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.

    Article  PubMed  CAS  Google Scholar 

  52. Ma SL, Pastorino L, Zhou XZ, Lu KP. Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect against Alzheimer disease. J Biol Chem. 2012;287:6969–73.

    Article  PubMed  CAS  Google Scholar 

  53. Mancuso C. Heme oxygenase and its products in the nervous system. Antioxid Redox Signal. 2004;6:878–87.

    PubMed  CAS  Google Scholar 

  54. Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, Crook T, Del Sal G. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol. 2007;14:912–20.

    Article  PubMed  CAS  Google Scholar 

  55. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23:134–47.

    Article  PubMed  CAS  Google Scholar 

  56. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol. 2005;58:730–5.

    Article  PubMed  CAS  Google Scholar 

  57. Martinez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain pathol. 2009; 10.1111/j.1750-3639.2009.00326.

  58. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58:397–405.

    Article  PubMed  CAS  Google Scholar 

  59. Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature. 2006;440:528–34.

    Article  PubMed  CAS  Google Scholar 

  60. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, Coccia R, Butterfield DA. Redox proteomics identification of HNE-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl. 2009;3:682–93.

    Article  PubMed  CAS  Google Scholar 

  61. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27:190–8.

    Article  PubMed  CAS  Google Scholar 

  62. Rapoport SI. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 1999;249 Suppl 3:46–55.

    Article  PubMed  Google Scholar 

  63. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30:107–20.

    Article  PubMed  CAS  Google Scholar 

  64. Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI. A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol Dis. 2008;31:198–208.

    Article  PubMed  CAS  Google Scholar 

  65. Riederer IM, Schiffrin M, Kovari E, Bouras C, Riederer BM. Ubiquitination and cysteine nitrosylation during aging and Alzheimer’s disease. Brain Res Bull. 2009;80(4–5):233–41.

    Article  PubMed  CAS  Google Scholar 

  66. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005;8:247–68.

    PubMed  CAS  Google Scholar 

  67. Rizzolio F, Lucchetti C, Caligiuri I, Marchesi I, Caputo M, Klein-Szanto AJ, Bagella L, Castronovo M, Giordano A. Retinoblastoma tumor-suppressor protein phosphorylation and inactivation depend on direct interaction with Pin1. Cell Death Differ. 2012;19(7):1152–61.

    Article  PubMed  CAS  Google Scholar 

  68. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11:1306–13.

    Article  PubMed  CAS  Google Scholar 

  69. Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem. 2006;96:1005–15.

    Article  PubMed  CAS  Google Scholar 

  70. Schulze H, Schuler A, Stuber D, Dobeli H, Langen H, Huber G. Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer’s beta-amyloid precursor protein. J Neurochem. 1993;60:1915–22.

    Article  PubMed  CAS  Google Scholar 

  71. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    PubMed  CAS  Google Scholar 

  72. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci. 1997;17:2653–7.

    PubMed  CAS  Google Scholar 

  73. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: A redox proteomics analysis. Neurobiol Aging. 2006;27:918–25.

    Article  PubMed  CAS  Google Scholar 

  74. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging. 2006;27:1564–76.

    Article  PubMed  CAS  Google Scholar 

  75. Sultana R, Butterfield DA. Oxidatively modified GST and MRP1 in Alzheimer’s disease brain: implications for accumulation of reactive lipid peroxidation products. Neurochem Res. 2004;29:2215–20.

    Article  PubMed  CAS  Google Scholar 

  76. Sultana R, Butterfield DA. Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res. 2007;32:655–62.

    Article  PubMed  CAS  Google Scholar 

  77. Sultana R, Perluigi M, Butterfield DA. Redox proteomics identification of oxidatively modified proteins in Alzheimer’s disease brain and in vivo and in vitro models of AD centered around Abeta(1-42). J Chromatogr. 2006;833:3–11.

    CAS  Google Scholar 

  78. Sultana R, Perluigi M, Butterfield DA. Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol. 2009;118:131–50.

    Article  PubMed  CAS  Google Scholar 

  79. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis. 2006;22:76–87.

    Article  PubMed  CAS  Google Scholar 

  80. Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, Butterfield DA. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med. 2007;11:839–51.

    Article  PubMed  CAS  Google Scholar 

  81. Sultana R, Robinson RA, Bader Lange M, Fiorini A, Galvan V, Fombonne J, Baker A, Gorostiza O, Zhang J, Cai J, Pierce WM, Bredesen DE, Butterfield A. Do proteomics analyses provide insights into reduced oxidative stress in brain of an Alzheimer disease transgenic mouse model with a M631L APP substitution and thereby the importance of Abeta-resident methionine 35 in AD pathogenesis? Antioxid Redox Signal. 2012;17(11):1507–14.

    Article  PubMed  CAS  Google Scholar 

  82. Terni B, Boada J, Portero-Otin M, Pamplona R, Ferrer I. Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer’s disease pathology. Brain pathol. 2009; 10.1111/j.1750-3639.2009.00266.x.

  83. Tudor C, Lerner-Marmarosh N, Engelborghs Y, Gibbs PE, Maines MD. Biliverdin reductase is a transporter of haem into the nucleus and is essential for regulation of HO-1 gene expression by haematin. Biochem J. 2008;413:405–16.

    Article  PubMed  CAS  Google Scholar 

  84. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.

    Article  PubMed  CAS  Google Scholar 

  85. Volkel W, Sicilia T, Pahler A, Gsell W, Tatschner T, Jellinger K, Leblhuber F, Riederer P, Lutz WK, Gotz ME. Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem Int. 2006;48:679–86.

    Article  PubMed  Google Scholar 

  86. Yao Y, Zhukareva V, Sung S, Clark CM, Rokach J, Lee VM, Trojanowski JQ, Pratico D. Enhanced brain levels of 8,12-iso-iPF2alpha-VI differentiate AD from frontotemporal dementia. Neurology. 2003;61:475–8.

    Article  PubMed  CAS  Google Scholar 

  87. Zhou W, Yang Q, Low CB, Karthik BC, Wang Y, Ryo A, Yao SQ, Yang D, Liou YC. Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process. J Biol Chem. 2009;284:23980–8.

    Article  PubMed  CAS  Google Scholar 

  88. Zhu X, Raina AK, Perry G, Smith MA. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 2004;3:219–26.

    Article  PubMed  CAS  Google Scholar 

  89. Cristalli D, Arnal N, Maria F, de Alaniz M, Marra C. Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neural Sci. 2011;314(1–2):48–56.

    Google Scholar 

  90. Sultana R, Perlvigi M, Newman S, Pierce W, Cini C, Coccia R, Butterfield DA. Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer’s disease. Antioxid Redox Signaling. 2010;12:327–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Allan Butterfield Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sultana, R., Swomley, A.M., Butterfield, D.A. (2013). Brain Oxidative Stress in the Pathogenesis and Progression of Alzheimer’s Disease. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_8

Download citation

Publish with us

Policies and ethics