Skip to main content

Brain Hypometabolism, Oxidative Stress, Maternal Transmission, and Risk of Late-Onset Alzheimer’s Disease

  • Chapter
  • First Online:
Studies on Alzheimer's Disease

Abstract

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder associated with progressive loss of cognitive function. Positron emission tomography (PET) imaging with 2-[18F]fluoro-2-deoxy-d-glucose (FDG) as the tracer has long been used to measure resting-state cerebral metabolic rates of glucose, a proxy for neuronal activity. Several FDG-PET studies have shown that metabolic reductions occur decades before onset of AD symptoms, suggesting that metabolic deficits may be an upstream event in at least some late-onset AD cases. This review explores this possibility, initially by discussing the link between AD pathology and neurodegeneration, with a focus on the metabolic pathways involved in neuronal function and bioenergetics, and the relationship between glucose metabolism, oxidative stress, and AD. This will be followed by a summary of the FDG-PET method, ranging from physics to kinetic modeling, and PET findings in AD. We will then discuss recent findings of progressive FDG-PET hypometabolism in adult children of mothers, but not fathers, affected by late-onset AD. Given the connection between glucose metabolism and mitochondria and the fact that mitochondrial DNA is maternally inherited in humans, it will be argued that altered bioenergetics may be an upstream event in individuals with a maternal family history of AD. Biomarkers of AD have great potential for identifying AD endophenotypes in cognitively intact individuals at risk for AD, which may help direct investigation of potential susceptibility genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukull WA, Higdon R, Bowen JD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59(11):1737–46.

    Article  PubMed  Google Scholar 

  2. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  PubMed  CAS  Google Scholar 

  3. Delacourte A, David JP, Sergeant N, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology. 1999;52(6):1158–65.

    Article  PubMed  CAS  Google Scholar 

  4. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol. 2001;58(9):1395–402.

    Article  PubMed  CAS  Google Scholar 

  5. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991; 30(4):572–80.

    Article  PubMed  CAS  Google Scholar 

  6. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997; 278(5337):412–9.

    Article  PubMed  CAS  Google Scholar 

  7. Braak H, Braak E, Bohl J, Reintjes R. Age, neurofibrillary changes, A beta-amyloid and the onset of Alzheimer’s disease. Neurosci Lett. 1996;210(2):87–90.

    Article  PubMed  CAS  Google Scholar 

  8. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–12.

    Article  PubMed  CAS  Google Scholar 

  9. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006;7(4):278–94.

    Article  PubMed  CAS  Google Scholar 

  10. Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977;29(1):13–26.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, editors. Basic neurochemistry. New York: Raven; 1994. p. 645–80.

    Google Scholar 

  12. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38(3):357–66.

    Article  PubMed  CAS  Google Scholar 

  13. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915–22.

    Article  PubMed  CAS  Google Scholar 

  14. Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol. 1994;36(5):747–51.

    Article  PubMed  CAS  Google Scholar 

  15. Subbarao KV, Richardson JS, Ang LC. Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J Neurochem. 1990;55(1):342–5.

    Article  PubMed  CAS  Google Scholar 

  16. Kish SJ, Bergeron C, Rajput A, et al. Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem. 1992;59(2):776–9.

    Article  PubMed  CAS  Google Scholar 

  17. Cardoso SM, Proenca MT, Santos S, Santana I, Oliveira CR. Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging. 2004;25(1):105–10.

    Article  PubMed  CAS  Google Scholar 

  18. Parker Jr WD, Mahr NJ, Filley CM, et al. Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology. 1994;44(6):1086–90.

    Article  PubMed  Google Scholar 

  19. Valla J, Schneider L, Niedzielko T, et al. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion. 2006;6(6):323–30.

    Article  PubMed  CAS  Google Scholar 

  20. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001; 21(12):4183–7.

    PubMed  CAS  Google Scholar 

  21. Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal. 2012; 16(12):1434–55.

    Article  PubMed  CAS  Google Scholar 

  22. Reivich M, Kuhl D, Wolf A, et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.

    PubMed  CAS  Google Scholar 

  23. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  PubMed  CAS  Google Scholar 

  24. Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage. 2003;20(3):1894–8.

    Article  PubMed  Google Scholar 

  25. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25(12):621–5.

    Article  PubMed  CAS  Google Scholar 

  26. Mazziotta JC, Phelps ME. Positron emission tomography studies of the brain. In: Phelps ME, Mazziotta JC, Schelbert H, editors. Positron emission tomography & autoradiography: principles & applications for the brain & heart. New York: Raven; 1986. p. 493–579.

    Google Scholar 

  27. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371–88.

    Article  PubMed  CAS  Google Scholar 

  28. Sokoloff L. Modeling metabolic processes in the brain in vivo. Ann Neurol. 1984; 15(Suppl):S1–11.

    Article  PubMed  Google Scholar 

  29. Hawkins RA, Mans AM, Davis DW, Hibbard LS, Lu DM. Glucose availability to individual cerebral structures is correlated to glucose metabolism. J Neurochem. 1983;40(4):1013–8.

    Article  PubMed  CAS  Google Scholar 

  30. Iadecola C, Nakai M, Mraovitch S, Ruggiero DA, Tucker LW, Reis DJ. Global increase in cerebral metabolism and blood flow produced by focal electrical stimulation of dorsal medullary reticular formation in rat. Brain Res. 1983;272(1):101–14.

    Article  PubMed  CAS  Google Scholar 

  31. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.

    Article  PubMed  CAS  Google Scholar 

  32. Sandman CA, O'Halloran JP, Isenhart R. Is there an evoked vascular response? Science. 1984;224(4655):1355–7.

    Article  PubMed  CAS  Google Scholar 

  33. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331(6157):585–9.

    Article  PubMed  CAS  Google Scholar 

  34. Phelps ME, Mazziotta JC. Positron emission tomography: human brain function and biochemistry. Science. 1985;228(4701):799–809.

    Article  PubMed  CAS  Google Scholar 

  35. Schubert D. Glucose metabolism and Alzheimer’s disease. Ageing Res Rev. 2005;4(2):240–57.

    Article  PubMed  CAS  Google Scholar 

  36. Magistretti PJ, Pellerin L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci. 1999;14:177–82.

    PubMed  CAS  Google Scholar 

  37. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005; 32(4):486–510.

    Article  PubMed  CAS  Google Scholar 

  38. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  39. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.

    Article  PubMed  CAS  Google Scholar 

  40. Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.

    Article  PubMed  CAS  Google Scholar 

  41. Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease. Expert Rev Neurother. 2010;10(11):1667–73.

    Article  PubMed  CAS  Google Scholar 

  42. Blass JP. Alzheimer’s disease and Alzheimer’s dementia: distinct but overlapping entities. Neurobiol Aging. 2002;23(6):1077–84.

    Article  PubMed  Google Scholar 

  43. Grady CL, Haxby JV, Schlageter NL, Berg G, Rapoport SI. Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology. 1986; 36(10):1390–2.

    Article  PubMed  CAS  Google Scholar 

  44. Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008; 49(3):390–8.

    Article  PubMed  Google Scholar 

  45. Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.

    Article  PubMed  Google Scholar 

  46. Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59(4):673–81.

    Article  PubMed  Google Scholar 

  47. de Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci USA. 2001;98(19):10966–71.

    Article  PubMed  Google Scholar 

  48. Mosconi L, De Santi S, Li J, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging. 2008;29(5):676–92.

    Article  PubMed  CAS  Google Scholar 

  49. Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36(5):811–22.

    Article  PubMed  CAS  Google Scholar 

  50. Mosconi L, Sorbi S, de Leon MJ, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med. 2006;47(11):1778–86.

    PubMed  CAS  Google Scholar 

  51. Farrer LA, O'Sullivan DM, Cupples LA, Growdon JH, Myers RH. Assessment of genetic risk for Alzheimer’s disease among first-degree relatives. Ann Neurol. 1989;25(5):485–93.

    Article  PubMed  CAS  Google Scholar 

  52. Green RC, Cupples LA, Go R, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA. 2002;287(3):329–36.

    Article  PubMed  Google Scholar 

  53. Mosconi L, Berti V, Swerdlow RH, Pupi A, Duara R, de Leon M. Maternal transmission of Alzheimer’s disease: prodromal metabolic phenotype and the search for genes. Hum Genomics. 2010;4(3):170–93.

    Article  PubMed  CAS  Google Scholar 

  54. Mosconi L, Brys M, Switalski R, et al. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA. 2007; 104(48):19067–72.

    Article  PubMed  CAS  Google Scholar 

  55. Mosconi L, Mistur R, Switalski R, et al. Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology. 2009;72(6):513–20.

    Article  PubMed  CAS  Google Scholar 

  56. Mosconi L, Tsui W, Murray J, et al. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer’s disease. Neurobiol Aging. 2012;33(3):624.e1–9.

    Article  Google Scholar 

  57. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.

    Article  PubMed  CAS  Google Scholar 

  58. Tanzi RE, Bertram L. New frontiers in Alzheimer’s disease genetics. Neuron. 2001; 32(2):181–4.

    Article  PubMed  CAS  Google Scholar 

  59. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.

    Article  PubMed  CAS  Google Scholar 

  60. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23.

    PubMed  CAS  Google Scholar 

  61. Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem. 1994;63(6):2179–84.

    Article  PubMed  CAS  Google Scholar 

  62. Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J Neuropathol Exp Neurol. 1994;53(5):508–12.

    Article  PubMed  CAS  Google Scholar 

  63. Valla J, Berndt JD, Gonzalez-Lima F. Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci. 2001;21(13):4923–30.

    PubMed  CAS  Google Scholar 

  64. Swerdlow RH, Parks JK, Cassarino DS, et al. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1997;49(4):918–25.

    Article  PubMed  CAS  Google Scholar 

  65. Swerdlow RH, Kish SJ. Mitochondria in Alzheimer’s disease. Int Rev Neurobiol. 2002; 53:341–85.

    Article  PubMed  CAS  Google Scholar 

  66. Curti D, Rognoni F, Gasparini L, et al. Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients. Neurosci Lett. 1997;236(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  67. Mosconi L, de Leon M, Murray J, et al. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer’s disease. J Alzheimers Dis. 2011;27(3):483–90.

    PubMed  CAS  Google Scholar 

  68. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  PubMed  CAS  Google Scholar 

  69. Mosconi L, Rinne JO, Tsui WH, et al. Increased fibrillar amyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer’s. Proc Natl Acad Sci USA. 2010;107(13):5949–54.

    Article  PubMed  CAS  Google Scholar 

  70. Mosconi L, Glodzik L, Mistur R, et al. Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer’s. Biol Psychiatry. 2010;68(10):913–21.

    Article  PubMed  CAS  Google Scholar 

  71. Jack Jr CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.

    Article  PubMed  CAS  Google Scholar 

  72. Berti V, Mosconi L, Glodzik L, et al. Structural brain changes in normal individuals with a maternal history of Alzheimer’s. Neurobiol Aging. 2011;32(12):2325.e17–26.

    Article  Google Scholar 

  73. Honea RA, Swerdlow RH, Vidoni ED, Burns JM. Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology. 2011;76(9):822–9.

    Article  PubMed  Google Scholar 

  74. Honea RA, Swerdlow RH, Vidoni ED, Goodwin J, Burns JM. Reduced gray matter volume in normal adults with a maternal family history of Alzheimer disease. Neurology. 2010; 74(2):113–20.

    Article  PubMed  CAS  Google Scholar 

  75. Andrawis JP, Hwang KS, Green AE, et al. Effects of ApoE4 and maternal history of dementia on hippocampal atrophy. Neurobiol Aging. 2012;33(5):856–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NIA grants AG035137, AG032554 and AG13616, NIH/NCRR grant M01-RR0096, and the Alzheimer’s Association. The Authors are indebted to Prof. Alberto Pupi, University of Florence, Italy, for his many insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Mosconi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mosconi, L., Murray, J., McHugh, P., de Leon, M. (2013). Brain Hypometabolism, Oxidative Stress, Maternal Transmission, and Risk of Late-Onset Alzheimer’s Disease. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_10

Download citation

Publish with us

Policies and ethics