Skip to main content

Toward the Development of Genetic Tools for Planctomycetes

  • Chapter
  • First Online:
Planctomycetes: Cell Structure, Origins and Biology

Abstract

Members of the phylum Planctomycetes possess a complex cell biology, including compartmentalization of their cytosol, elaborate life cycles, asymmetric cell division through budding, and construction of a proteinaceous cell wall that lacks peptidoglycan. That they perform endocytosis-like protein uptake using molecular components structurally similar to their eukaryotic counterparts prompted the controversial hypothesis that their ancestors participated in the evolution of the eukaryotic cell plan. In-depth analysis of these intriguing traits has been hampered by the lack of genetic tools for planctomycetes.

Here we first introduce three model planctomycetes—Gemmata obscuriglobus, Rhodopirellula baltica, and Planctomyces limnophilus—by describing aspects of their biology that are particularly relevant to genetic tool development. We then summarize the methods and tools for genetic analysis that have recently become available for planctomycetes. Lastly, we briefly outline the tools most urgently needed and suggest potentially fruitful directions for their development, thus opening the door to understanding the fascinating biology of the planctomycetes at a molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW, Eisenstark A (1974) The present state of phage taxonomy. Intervirology 3:201–219

    Article  PubMed  CAS  Google Scholar 

  • Bauer M, Lombardot T, Teeling H, Ward NL, Amann RI, Glöckner FO (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59:571–586

    Article  PubMed  CAS  Google Scholar 

  • Bauld J, Staley JT (1976) Planctomyces maris sp. nov.: a marine isolate of the Planctomyces-Blastocaulis group of budding bacteria. J Gen Microbiol 97:45–55

    Article  Google Scholar 

  • Binet R, Maurelli AT (2009) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci U S A 106:292–297

    Article  PubMed  CAS  Google Scholar 

  • Carpenter BM, McDaniel TK, Whitmire JM, Gancz H, Guidotti S, Censini S, Merrell DS (2007) Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl Environ Microbiol 73:7506–7514

    Article  PubMed  CAS  Google Scholar 

  • Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122

    Article  PubMed  CAS  Google Scholar 

  • Check Hayden E (2009) Genome sequencing: the third generation. Nature 457:768–769

    Article  PubMed  Google Scholar 

  • Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460

    Article  PubMed  CAS  Google Scholar 

  • Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavromatis K, Lucas S, Glavina T, Del R, Nolan M, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Ovchinikova G, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2009) Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). Stand Genomic Sci 1:308–316

    Article  PubMed  Google Scholar 

  • Collier DN, Spence C, Cox MJ, Phibbs PV (2001) Isolation and phenotypic characterization of Pseudomonas aeruginosa pseudorevertants containing suppressors of the catabolite repression control-defective crc-10 allele. FEMS Microbiol Lett 196:87–92

    Article  PubMed  CAS  Google Scholar 

  • Dabin J, Jam M, Czjzek M, Michel G (2008) Expression, purification, crystallization and preliminary X-ray analysis of the polysaccharide lyase RB5312 from the marine planctomycete Rhodopirellula baltica. Acta Crystallogr 64:224–227

    CAS  Google Scholar 

  • Dahlberg C, Bergstrom M, Andreasen M, Christensen BB, Molin S, Hermansson M (1998) Interspecies bacterial conjugation by plasmids from marine environments visualized by gfp expression. Mol Biol Evol 15:385–390

    Article  CAS  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Devos DP, Reynaud EG (2010) Evolution. Intermediate steps. Science 330:1187–1188

    Article  PubMed  CAS  Google Scholar 

  • Domman DB, Steven BT, Ward NL (2011) Random transposon mutagenesis of Verrucomicrobium spinosum DSM 4136(T). Arch Microbiol 193:307–312

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Gribaldo S (2010) Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc Natl Acad Sci U S A 107:12739–12740

    Article  PubMed  CAS  Google Scholar 

  • Frank CS, Langhammer P, Fuchs BM, Harder J (2011) Ammonium and attachment of Rhodopirellula baltica. Arch Microbiol 193:365–372

    PubMed  CAS  Google Scholar 

  • Franzmann PD, Skerman VB (1984) Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie Van Leeuwenhoek 50:261–268

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA (2005) Intracellular compartmentation in Planctomycetes. Annu Rev Microbiol 59:299–328

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Gwilliam HG, Lindsay M, Lichanska A, Belcher C, Vickers JE, Hugenholtz P (1997) Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl Environ Microbiol 63:254–262

    PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 88:8184–8188

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Stuhrmann T, Reinhardt R, Rabus R (2005a) Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ Microbiol 7:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Theiss D, Lange D, Mirgorodskaya E, Lombardot T, Glockner FO, Kube M, Reinhardt R, Amann R, Lehrach H, Rabus R, Gobom J (2005b) Towards the proteome of the marine bacterium Rhodopirellula baltica: mapping the soluble proteins. Proteomics 5:3654–3671

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5:240–251

    Article  PubMed  CAS  Google Scholar 

  • Gay P, Le Coq D, Steinmetz M, Ferrari E, Hoch JA (1983) Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153:1424–1431

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Schabtach E, Castenholz RW (1987) lsosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284

    Article  CAS  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303

    Article  PubMed  Google Scholar 

  • Göker M, Cleland D, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Beck B, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2011) Complete genome sequence of Isosphaera pallida type strain (IS1B). Stand Genomic Sci 4:63–71

    Article  PubMed  Google Scholar 

  • Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  PubMed  CAS  Google Scholar 

  • Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503

    PubMed  CAS  Google Scholar 

  • Hieu CX, Voigt B, Albrecht D, Becher D, Lombardot T, Glockner FO, Amann R, Hecker M, Schweder T (2008) Detailed proteome analysis of growing cells of the planctomycete Rhodopirellula baltica SH1T. Proteomics 8:1608–1623

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P, MĂĽller M (1985) Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst Appl Microbiol 6:276–280

    Article  Google Scholar 

  • Isaka K, Date Y, Sumino T, Yoshie S, Tsuneda S (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl Microbiol Biotechnol 70:47–52

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Jenkins C, Kedar V, Fuerst JA (2002) Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries. Genome Biol 3:0031.1–0031.11

    Article  Google Scholar 

  • Jogler C, Glockner FO, Kolter R (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Environ Microbiol 77:5826–5829

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Waldmann J, Huang X, Jogler M, Glöckner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430

    Article  PubMed  CAS  Google Scholar 

  • Kast P (1994) pKSS–a second-generation general purpose cloning vector for efficient positive selection of recombinant clones. Gene 138:109–114

    Article  PubMed  CAS  Google Scholar 

  • Kienesberger S, Gorkiewicz G, Joainig MM, Scheicher SR, Leitner E, Zechner EL (2007) Development of experimental genetic tools for Campylobacter fetus. Appl Environ Microbiol 73:4619–4630

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci U S A 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  • Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Planctomyces limnophilus type strain (Mu 290). Stand Genomic Sci 3:47–56

    Article  PubMed  Google Scholar 

  • Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE (2003) Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol Lett 229:195–202

    Article  PubMed  CAS  Google Scholar 

  • Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH (1989) Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 264:6427–6437

    PubMed  CAS  Google Scholar 

  • Leary BA, Ward-Rainey N, Hoover TR (1998) Cloning and characterization of Planctomyces limnophilus rpoN: complementation of a Salmonella typhimurium rpoN mutant strain. Gene 221:151–157

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Halgerson JS, Kim JH, O’Sullivan DJ (2007) Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector. Appl Environ Microbiol 73:4417–4424

    Article  PubMed  CAS  Google Scholar 

  • Lee KC, Webb RI, Fuerst JA (2009) The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization. BMC Cell Biol 10:4

    Article  PubMed  Google Scholar 

  • Lieber A, Leis A, Kushmaro A, Minsky A, Medalia O (2009) Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J Bacteriol 191:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Liesack W, Konig H, Schlesner H, Hirsch P (1986) Chemical-composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella planctomyces group. Arch Microbiol 145:361–366

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology-UK 143: 739–748

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in Planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429

    Article  PubMed  CAS  Google Scholar 

  • Lombardot T, Bauer M, Teeling H, Amann R, Glockner FO (2005) The transcriptional regulator pool of the marine bacterium Rhodopirellula baltica SH 1T as revealed by whole genome comparisons. FEMS Microbiol Lett 242:137–145

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 107:12883–12888

    Article  PubMed  CAS  Google Scholar 

  • LoVullo ED, Sherrill LA, Perez LL, Pavelka MS Jr (2006) Genetic tools for highly pathogenic Francisella tularensis subsp. tularensis. Microbiology 152:3425–3435

    Article  PubMed  CAS  Google Scholar 

  • Mally M, Cornelis GR (2008) Genetic tools for studying Capnocytophaga canimorsus. Appl Environ Microbiol 74:6369–6377

    Article  PubMed  CAS  Google Scholar 

  • McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM (2011) Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 33:810–817

    Article  PubMed  CAS  Google Scholar 

  • Olsen RH, DeBusscher G, McCombie WR (1982) Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 150:60–69

    PubMed  CAS  Google Scholar 

  • Qin X, Hartung JS (2001) Construction of a shuttle vector and transformation of Xylella fastidiosa with plasmid DNA. Curr Microbiol 43:158–162

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Gade D, Helbig R, Bauer M, Glockner FO, Kube M, Schlesner H, Reinhardt R, Amann R (2002) Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1 by a proteomic approach. Proteomics 2:649–655

    Article  PubMed  CAS  Google Scholar 

  • Rochelle PA, Fry JC, Day MJ (1989) Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures and mixed natural suspensions of epilithic bacteria. J Gen Microbiol 135:409–424

    PubMed  CAS  Google Scholar 

  • Sanchez-Romero JM, Diaz-Orejas R, De Lorenzo V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046

    PubMed  CAS  Google Scholar 

  • Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281

    Article  PubMed  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–D15

    Article  PubMed  CAS  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schuler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Article  PubMed  CAS  Google Scholar 

  • Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580

    Article  PubMed  CAS  Google Scholar 

  • Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E (1989) Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271–288

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Kube M, SchĂĽler D (2004) Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in non-magnetotactic mutants lacking flagellar filaments. Appl Environ Microbiol 70:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Schuler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    PubMed  CAS  Google Scholar 

  • Schweizer H (2008) Bacterial genetics: past achievements, present state of the field, and future challenges. Biotechniques 44(633–634):636–641

    Google Scholar 

  • Shapiro L, Agabian-Keshishian N, Bendis I (1971) Bacterial differentiation. Science 173:884–892

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  • Studholme DJ, Fuerst JA, Bateman A (2004) Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica. FEMS Microbiol Lett 236:333–340

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

    Article  PubMed  CAS  Google Scholar 

  • Wallner SR, Bauer M, Wurdemann C, Wecker P, Glockner FO, Faber K (2005) Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration. Angew Chem Int Ed Engl 44:6381–6384

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Staley JT, Fuerst JA, Giovannoni S, Schlesner H, Stackebrandt E (2006) The order Planctomycetales, including the Genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus Genera Brocadia, Kuenenia and Scalindua. In: Dworkin M (ed) The prokaryotes. Springer, New York, pp 757–793

    Chapter  Google Scholar 

  • Ward-Rainey N (1996) Genetic diversity in members of the order Planctomycetales. University of Warwick, Coventry, UK

    Google Scholar 

  • Ward-Rainey N, Rainey FA, Wellington EM, Stackebrandt E (1996) Physical map of the genome of Planctomyces limnophilus, a representative of the phylogenetically distinct planctomycete lineage. J Bacteriol 178:1908–1913

    PubMed  CAS  Google Scholar 

  • Wecker P, Klockow C, Ellrott A, Quast C, Langhammer P, Harder J, Glockner FO (2009) Transcriptional response of the model planctomycete Rhodopirellula baltica SH1(T) to changing environmental conditions. BMC Genomics 10:410

    Article  PubMed  Google Scholar 

  • Wecker P, Klockow C, Schuler M, Dabin J, Michel G, Glockner FO (2010) Life cycle analysis of the model organism Rhodopirellula baltica SH 1(T) by transcriptome studies. Microb Biotechnol 3:583–594

    Article  PubMed  CAS  Google Scholar 

  • Westwater C, Schofield DA, Schmidt MG, Norris JS, Dolan JW (2002) Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria. Microbiology 148:943–950

    PubMed  CAS  Google Scholar 

  • Winkelmann N, Harder J (2009) An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods 77:276–284

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann N, Jaekel U, Meyer C, Serrano W, Rachel R, Rossello-Mora R, Harder J (2010) Determination of the diversity of Rhodopirellula isolates from European seas by multilocus sequence analysis. Appl Environ Microbiol 76:776–785

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge our students, colleagues, and numerous collaborators. In particular, we thank Merry Youle and Frank Oliver Glöckner for critical review of the manuscript and Roberto Kolter for being a great host and mentor. We are grateful for Anja Stieler’s skillful technical assistance. The Marie Curie International Outgoing Fellowship of the European Union’s 7th Framework Programme and the Leibniz Society supported research in the authors’ laboratory at the DSMZ in Brunswick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jogler, M., Jogler, C. (2013). Toward the Development of Genetic Tools for Planctomycetes . In: Fuerst, J. (eds) Planctomycetes: Cell Structure, Origins and Biology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-502-6_6

Download citation

Publish with us

Policies and ethics