Skip to main content

Cell Compartmentalization and Endocytosis in Planctomycetes: Structure and Function in Complex Bacteria

  • Chapter
  • First Online:
Planctomycetes: Cell Structure, Origins and Biology

Abstract

Planctomycetes are unique among the domain Bacteria in possessing cells with a complex plan defined by internal membranes forming separated compartments within the cell. They also possess other unique features such as cell walls composed of protein as a major polymer instead of the peptidoglycan typical of other bacteria. All species examined display an underlying shared cell organization in which an internal intracytoplasmic membrane separates two major cell compartments, an outer ribosome-free paryphoplasm and a more central ribosome-containing pirellulosome. Some planctomycete species have three compartments, where further membranes within the pirellulosome define another compartment, the anammoxosome in anammox planctomycetes and the membrane-bounded nuclear body in Gemmata obscuriglobus. Compartments are preserved when new cells are formed during division. Functional features which are correlated with structural compartmentalization in planctomycetes include in G. obscuriglobus the ability to take up proteins within the paryphoplasm of the cell by a mechanism similar to receptor-mediated endocytosis of eukaryotes. Novel molecular and cell biology features for bacteria can be predicted to accompany such structural and functional complexity and are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anammox:

Anaerobic ammonium oxidation

PVC:

Planctomycetes, Verrucomicrobia, and Chlamydiae

TEM:

Transmission electron microscopy

CM:

Cytoplasmic membrane

CW:

Cell wall

N:

Nucleoid

MC:

Membrane-coating

References

  • Anderson DJ, Hetzer MW (2007) Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol 9:1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Bacia K, Schwille P, Kurzchalia T (2005) Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci U S A 102:3272–3277

    Article  PubMed  CAS  Google Scholar 

  • Butler MK (2007) Planctomycete diversity and cell biology: perspectives from the molecular, cellular and organism levels. School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland

    Google Scholar 

  • Butler MK, Wang J, Webb RI, Fuerst JA (2002) Molecular and ultrastructural confirmation of classification of ATCC 35122 as a strain of Pirellula staleyi. Int J Syst Evol Microbiol 52:1663–1667

    Article  PubMed  CAS  Google Scholar 

  • Castoreno AB, Wang Y, Stockinger W, Jarzylo LA, Du H, Pagnon JC, Shieh EC, Nohturfft A (2005) Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins. Proc Natl Acad Sci U S A 102:13129–13134

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2010) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7

    Article  PubMed  Google Scholar 

  • Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci U S A 98:5619–5624

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Wang GZ, Zhang HY (2007) Sterol biosynthesis and prokaryotes-to-eukaryotes evolution. Biochem Biophys Res Commun 363:885–888

    Article  PubMed  CAS  Google Scholar 

  • Damste JSS, Rijpstra WIC, Schouten S, Fuerst JA, Jetten MSM, Strous M (2004) The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Org Geochem 35:561–566

    Article  Google Scholar 

  • Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381

    Article  PubMed  Google Scholar 

  • Dougherty TJ (1985) Analysis of Neisseria gonorrhoeae peptidoglycan by reverse phase, high-pressure liquid chromatography. J Bacteriol 163:69–74

    PubMed  CAS  Google Scholar 

  • Ebersbach G, Jacobs-Wagner C (2007) Exploration into the spatial and temporal mechanisms of bacterial polarity. Trends Microbiol 15:101–108

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    Article  PubMed  CAS  Google Scholar 

  • Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Franzmann PD, Skerman VB (1984) Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie Van Leeuwenhoek 50:261–268

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141(Pt 7):1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2010) Protein uptake by bacteria: an endocytosis-like process in the planctomycete Gemmata obscuriglobus. Commun Integr Biol 3:572–575

    Article  PubMed  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 88:8184–8188

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Gwilliam HG, Lindsay M, Lichanska A, Belcher C, Vickers JE, Hugenholtz P (1997) Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl Environ Microbiol 63:254–262

    PubMed  CAS  Google Scholar 

  • Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov and Phycisphaerae classis nov in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Stuhrmann T, Reinhardt R, Rabus R (2005) Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ Microbiol 7:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Galletta BJ, Cooper JA (2009) Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 21:20–27

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Godchaux W, Schabtach E, Castenholz RW (1987a) Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs. J Bacteriol 169:2702–2707

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Schabtach E, Castenholz RW (1987b) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284

    Article  CAS  Google Scholar 

  • Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303

    Article  PubMed  CAS  Google Scholar 

  • Hart EA, Hua L, Darr LB, Wilson WK, Pang JH, Matsuda SPT (1999) Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. J Am Chem Soc 121:9887–9888

    Article  CAS  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  PubMed  CAS  Google Scholar 

  • Herskovits AA, Shimoni E, Minsky A, Bibi E (2002) Accumulation of endoplasmic membranes and novel membrane-bound ribosome-signal recognition particle receptor complexes in Escherichia coli. J Cell Biol 159:403–410

    Article  PubMed  CAS  Google Scholar 

  • Hieu CX, Voigt B, Albrecht D, Becher D, Lombardot T, Glockner FO, Amann R, Hecker M, Schweder T (2008) Detailed proteome analysis of growing cells of the planctomycete Rhodopirellula baltica SH1T. Proteomics 8:1608–1623

    Article  PubMed  CAS  Google Scholar 

  • Iniesta AA, Shapiro L (2008) A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc Natl Acad Sci U S A 105:16602–16607

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Glockner FO, Kolter R (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Environ Microbiol 77:5826–5829

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO, Mascher T, Kolter R (2012) Planctomycetes comparative genomics: identification of proteins likely involved in morphogenesis, cell division and signal transduction. J Bacteriol 194(23):6419–6430

    Article  PubMed  CAS  Google Scholar 

  • Kamneva OK, Knight SJ, Liberles DA, Ward NL (2012) Analysis of genome content evolution in PVC bacterial super-phylum: assessment of candidate genes associated with cellular organization and life-style. Genome Biol Evol. doi:10.1093/gbe/evs1113

    PubMed  Google Scholar 

  • König E, Schlesner H, Hirsch P (1984) Cell-wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205

    Article  Google Scholar 

  • Kulichevskaya IS, Ivanova AO, Belova SE, Baulina OI, Bodelier PL, Rijpstra WI, Sinninghe Damste JS, Zavarzin GA, Dedysh SN (2007) Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int J Syst Evol Microbiol 57:2680–2687

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PL, Damste JS, Dedysh SN (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Baulina OI, Bodelier PL, Rijpstra WI, Damste JS, Dedysh SN (2009) Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 59:357–364

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Serkebaeva YM, Kim Y, Rijpstra WI, Damste JS, Liesack W, Dedysh SN (2012) Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front Microbiol 3:146

    Article  PubMed  Google Scholar 

  • Lee K-C (2010) Cell compartmentalization and cell division in phyla Planctomycetes and Verrucomicrobia. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane

    Google Scholar 

  • Lee KC, Webb RI, Fuerst JA (2009) The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization. BMC Cell Biol 10:4

    Article  PubMed  Google Scholar 

  • Levi-Setti R, Gavrilov KL, Rizzo PJ (2008) Divalent cation distribution in dinoflagellate chromosomes imaged by high-resolution ion probe mass spectrometry. Eur J Cell Biol 87:963–976

    Article  PubMed  CAS  Google Scholar 

  • Lewis PJ, Thaker SD, Errington J (2000) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19:710–718

    Article  PubMed  CAS  Google Scholar 

  • Lieber A, Leis A, Kushmaro A, Minsky A, Medalia O (2009) Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J Bacteriol 191:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Liesack W, Konig H, Schlesner H, Hirsch P (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch Microbiol 145:361–366

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Hosmer HM, Fuerst JA (1995) Effects of fixative and buffer on morphology and ultrastructure of a fresh-water planctomycete, Gemmata obscuriglobus. J Microbiol Methods 21:45–54

    Article  Google Scholar 

  • Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143:739–748

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 107:12883–12888

    Article  PubMed  CAS  Google Scholar 

  • Matias VR, Beveridge TJ (2006) Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Maurelli AT (2006) Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14:70–77

    Article  PubMed  CAS  Google Scholar 

  • McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM (2011) Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 33:810–817

    Article  PubMed  CAS  Google Scholar 

  • Medema MH, Zhou M, van Hijum SA, Gloerich J, Wessels HJ, Siezen RJ, Strous M (2010) A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMC Genomics 11:299

    Article  PubMed  Google Scholar 

  • Nachar VR, Savka FC, McGroty SE, Donovan KA, North RA, Dobson RC, Buckley LJ, Hudson AO (2012) Genomic and biochemical analysis of the diaminopimelate and lysine biosynthesis pathway in Verrucomicrobium spinosum: identification and partial characterization of L, L-diaminopimelate aminotransferase and UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-meso-diaminopimelate Ligase. Front Microbiol 3:183

    Article  PubMed  Google Scholar 

  • Nickell S, Hegerl R, Baumeister W, Rachel R (2003) Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J Struct Biol 141:34–42

    Article  PubMed  Google Scholar 

  • Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 100:15352–15357

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer KH, Petroni G (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190:3192–3202

    Article  PubMed  CAS  Google Scholar 

  • Reynaud EG, Devos DP (2011) Transitional forms between the three domains of life and evolutionary implications. Proc Biol Sci 278:3321–3328

    Article  PubMed  Google Scholar 

  • Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281

    Article  PubMed  Google Scholar 

  • Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp, Pirellula spp, and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145

    Article  Google Scholar 

  • Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JM (1978) Isolation and ultrastructure of freshwater strains of Planctomyces. Curr Microbiol 1:65–70

    Article  Google Scholar 

  • Schmidt JM, Starr MP (1980) Some ultrastructural features of Planctomyces bekefii, Morphotype1 of the Blastocaulis-Planctomyces group of budding and appendaged bacteria. Curr Microbiol 4:189–194

    Article  Google Scholar 

  • Schmidt JM, Starr MP (1982) Ultrastructural features of budding cells in a prokaryote belonging to Morphotype-IV of the Blastocaulis-Planctomyces group. Curr Microbiol 7:7–11

    Article  Google Scholar 

  • Speth DR, van Teeseling MC, Jetten MS (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 3:304

    PubMed  Google Scholar 

  • Stackebrandt E, Wehmeyer U, Liesack W (1986) 16S ribosomal RNA- and cell wall analysis of Gemmata obscuriglobus, a new member of the order Planctomycetales. FEMS Microbiol Lett 37:289–292

    Article  CAS  Google Scholar 

  • Staley JT (1973) Budding bacteria of the Pasteuria-Blastobacter group. Can J Microbiol 19: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Studholme DJ, Fuerst JA, Bateman A (2004) Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica. FEMS Microbiol Lett 236:333–340

    Article  PubMed  CAS  Google Scholar 

  • Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc Lond B Biol Sci 361:951–968

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    Article  PubMed  CAS  Google Scholar 

  • Tekniepe BL, Schmidt JM, Starr MP (1981) Life-cycle of a budding and appendaged bacterium belonging to Morphotype-IV of the Blastocaulis-Planctomyces Group. Curr Microbiol 5:1–6

    Article  Google Scholar 

  • Tekniepe BL, Schmidt JM, Starr MP (1982) Immunoferritin labeling shows denovo synthesis of surface components in buds of a prokaryote belonging to morphotype-IV of the Blastocaulis-Planctomyces Group. Curr Microbiol 7:1–6

    Article  Google Scholar 

  • Trias J, Jarlier V, Benz R (1992) Porins in the cell wall of mycobacteria. Science 258:1479–1481

    Article  PubMed  CAS  Google Scholar 

  • van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MS, Strous M (2008a) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190:708–717

    Article  PubMed  Google Scholar 

  • van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Yakushevska A, Verkleij AJ, Jetten MS, Strous M (2008b) Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J Struct Biol 161:401–410

    Article  PubMed  Google Scholar 

  • van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI, Harhangi HR, Camp HJ, Fuerst JA, Verkleij AJ, Jetten MS, Strous M (2009) Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes. Mol Microbiol 73:1009–1019

    Article  PubMed  Google Scholar 

  • van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS, Strous M (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Mol Microbiol 77:701–715

    Article  PubMed  Google Scholar 

  • Voigt B, Hieu CX, Hempel K, Becher D, Schluter R, Teeling H, Glockner FO, Amann R, Hecker M, Schweder T (2012) Cell surface proteome of the marine planctomycete Rhodopirellula baltica. Proteomics 12:1781–1791

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jenkins C, Webb RI, Fuerst JA (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 68:417–422

    Article  PubMed  CAS  Google Scholar 

  • Wecker P, Klockow C, Schuler M, Dabin J, Michel G, Glockner FO (2010) Life cycle analysis of the model organism Rhodopirellula baltica SH 1(T) by transcriptome studies. Microb Biotechnol 3:583–594

    Article  PubMed  CAS  Google Scholar 

  • Yee B (2012) The diversity and cell biology of Planctomycetes. School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland

    Google Scholar 

  • Yee B, Sagulenko E, Fuerst JA (2011) Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 157:2012–2021

    Article  PubMed  CAS  Google Scholar 

  • Yee B, Sagulenko E, Morgan GP, Webb RI, Fuerst JA (2012) Electron tomography of the nucleoid of Gemmata obscuriglobus reveals complex liquid crystalline cholesteric structure. Front Microbiol 3:326

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council for its support of research in planctomycetes in the laboratory of J.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Fuerst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuerst, J.A., Webb, R.I., Sagulenko, E. (2013). Cell Compartmentalization and Endocytosis in Planctomycetes: Structure and Function in Complex Bacteria. In: Fuerst, J. (eds) Planctomycetes: Cell Structure, Origins and Biology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-502-6_2

Download citation

Publish with us

Policies and ethics