Skip to main content

Ion and Fluid Dynamics in Hypertension

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 1594 Accesses

Abstract

The role of ion transport in hypertension has been the focus of much investigation, and manipulation of ion transport is utilized therapeutically. However, the mechanisms behind sodium flux that lead to hypertension are not well understood. Target proteins and diuretic agents, monogenic forms of hypertension, and genetic disorders of renal salt wasting have all provided insight into these pathways. This chapter reviews some of the channels involved in blood pressure regulation and their relevance to human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  PubMed  CAS  Google Scholar 

  2. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004; 114(2 Suppl 4th Report):555–76.

    Google Scholar 

  3. Akita S, Sacks FM, Svetkey LP, Conlin PR, Kimura G. Effects of the Dietary Approaches to Stop Hypertension (DASH) diet on the pressure-natriuresis relationship. Hypertension. 2003;42(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  4. Obarzanek E, Proschan MA, Vollmer WM, Moore TJ, Sacks FM, Appel LJ, et al. Individual blood pressure responses to changes in salt intake: results from the DASH-Sodium trial. Hypertension. 2003;42(4):459–67.

    Article  PubMed  CAS  Google Scholar 

  5. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT collaborative research group. JAMA. 2000; 283(15):1967–75.

    Google Scholar 

  6. Diuretic versus alpha-blocker as first-step antihypertensive therapy: final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2003; 42(3):239–46.

    Google Scholar 

  7. Malo ME, Fliegel L. Physiological role and regulation of the Na+/H + exchanger. Can J Physiol Pharmacol. 2006;84(11):1081–95.

    Article  PubMed  CAS  Google Scholar 

  8. Diez J, Alonso A, Garciandia A, Lopez R, Gomez-Alamillo C, Arrazola A, et al. Association of increased erythrocyte Na+/H + exchanger with renal Na + retention in patients with essential hypertension. Am J Hypertens. 1995;8(2):124–32.

    Article  PubMed  CAS  Google Scholar 

  9. Canessa M, Morgan K, Goldszer R, Moore TJ, Spalvins A. Kinetic abnormalities of the red blood cell sodium-proton exchange in hypertensive patients. Hypertension. 1991;17(3):340–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fortuno A, Tisaire J, Lopez R, Bueno J, Diez J. Angiotensin converting enzyme inhibition corrects Na+/H + exchanger overactivity in essential hypertension. Am J Hypertens. 1997;10(1):84–93.

    Article  PubMed  CAS  Google Scholar 

  11. Syme PD, Aronson JK, Thompson CH, Williams EM, Green Y, Radda GK. Na+/H + and HCO3-/Cl- exchange in the control of intracellular pH in vivo in the spontaneously hypertensive rat. Clin Sci (Lond). 1991;81(6):743–50.

    CAS  Google Scholar 

  12. Dudley CR, Taylor DJ, Ng LL, Kemp GJ, Ratcliffe PJ, Radda GK, et al. Evidence for abnormal Na+/H + antiport activity detected by phosphorus nuclear magnetic resonance spectroscopy in exercising skeletal muscle of patients with essential hypertension. Clin Sci (Lond). 1990;79(5):491–7.

    CAS  Google Scholar 

  13. Hayashi M, Yoshida T, Monkawa T, Yamaji Y, Sato S, Saruta T. Na+/H + −exchanger 3 activity and its gene in the spontaneously hypertensive rat kidney. J Hypertens. 1997;15(1):43–8.

    PubMed  CAS  Google Scholar 

  14. Kobayashi K, Monkawa T, Hayashi M, Saruta T. Expression of the Na+/H + exchanger regulatory protein family in genetically hypertensive rats. J Hypertens. 2004;22(9):1723–30.

    Article  PubMed  CAS  Google Scholar 

  15. Kelly MP, Quinn PA, Davies JE, Ng LL. Activity and expression of Na(+)-H + exchanger isoforms 1 and 3 in kidney proximal tubules of hypertensive rats. Circ Res. 1997;80(6):853–60.

    Article  PubMed  CAS  Google Scholar 

  16. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H + exchanger. Nat Genet. 1998;19(3):282–5.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu H, Sagnella GA, Dong Y, Miller MA, Onipinla A, Markandu ND, et al. Molecular variants of the sodium/hydrogen exchanger type 3 gene and essential hypertension. J Hypertens. 2004;22(7):1269–75.

    Article  PubMed  CAS  Google Scholar 

  18. Brater DC. Diuretic therapy. N Engl J Med. 1998;339(6):387–95.

    Article  PubMed  CAS  Google Scholar 

  19. Gimenez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens. 2006;15(5):517–23.

    Article  PubMed  CAS  Google Scholar 

  20. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  PubMed  CAS  Google Scholar 

  22. Salvati P, Ferrario RG, Bianchi G. Diuretic effect of bumetanide in isolated perfused kidneys of Milan hypertensive rats. Kidney Int. 1990;37(4):1084–9.

    Article  PubMed  CAS  Google Scholar 

  23. Capasso G, Rizzo M, Garavaglia ML, Trepiccione F, Zacchia M, Mugione A, et al. Upregulation of apical sodium-chloride cotransporter and basolateral chloride channels is responsible for the maintenance of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2008;295(2):F556–67.

    Article  PubMed  CAS  Google Scholar 

  24. Cacciafesta M, Ferri C, Carlomagno A, De Angelis C, Scuteri A, Guidoni L, et al. Erythrocyte Na-K-Cl cotransport activity in low renin essential hypertensive patients. A 23Na nuclear magnetic resonance study. Am J Hypertens. 1994;7(2):151–8.

    PubMed  CAS  Google Scholar 

  25. Cusi D, Fossali E, Piazza A, Tripodi G, Barlassina C, Pozzoli E, et al. Heritability estimate of erythrocyte Na-K-Cl cotransport in normotensive and hypertensive families. Am J Hypertens. 1991;4(9):725–34.

    PubMed  CAS  Google Scholar 

  26. Cusi D, Niutta E, Barlassina C, Bollini P, Cesana B, Stella P, et al. Erythrocyte Na+, K+, Cl- cotransport and kidney function in essential hypertension. J Hypertens. 1993;11(8):805–13.

    Article  PubMed  CAS  Google Scholar 

  27. Righetti M, Cusi D, Stella P, Rivera R, Bernardi L, del Vecchio L, et al. Na+, K+, Cl- cotransport is a marker of distal tubular function in essential hypertension. J Hypertens. 1995;13(12 Pt 2):1775–8.

    PubMed  CAS  Google Scholar 

  28. Fava C, Montagnana M, Rosberg L, Burri P, Almgren P, Jonsson A, et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum Mol Genet. 2008;17(3):413–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kashlan OB, Kleyman TR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res. 2012;15;318(9):1011–9.

    Google Scholar 

  30. Husted RF, Takahashi T, Stokes JB. IMCD cells cultured from Dahl S rats absorb more Na + than Dahl R rats. Am J Physiol. 1996;271(5 Pt 2):F1029–36.

    PubMed  CAS  Google Scholar 

  31. Husted RF, Takahashi T, Stokes JB. The basis of higher Na + transport by inner medullary collecting duct cells from Dahl salt-sensitive rats: implicating the apical membrane Na + channel. J Membr Biol. 1997;156(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  32. Persu A, Barbry P, Bassilana F, Houot AM, Mengual R, Lazdunski M, et al. Genetic analysis of the beta subunit of the epithelial Na + channel in essential hypertension. Hypertension. 1998;32(1):129–37.

    Article  PubMed  CAS  Google Scholar 

  33. Su YR, Rutkowski MP, Klanke CA, Wu X, Cui Y, Pun RY, et al. A novel variant of the beta-subunit of the amiloride-sensitive sodium channel in African Americans. J Am Soc Nephrol. 1996;7(12):2543–9.

    PubMed  CAS  Google Scholar 

  34. Cui Y, Su YR, Rutkowski M, Reif M, Menon AG, Pun RY. Loss of protein kinase C inhibition in the beta-T594M variant of the amiloride-sensitive Na + channel. Proc Natl Acad Sci USA. 1997;94(18):9962–6.

    Article  PubMed  CAS  Google Scholar 

  35. Baker EH, Dong YB, Sagnella GA, Rothwell M, Onipinla AK, Markandu ND, et al. Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet. 1998;351(9113):1388–92.

    Article  PubMed  CAS  Google Scholar 

  36. Hollier JM, Martin DF, Bell DM, Li JL, Chirachanchai MG, Menon DV, et al. Epithelial sodium channel allele T594M is not associated with blood pressure or blood pressure response to amiloride. Hypertension. 2006;47(3):428–33.

    Article  PubMed  CAS  Google Scholar 

  37. Jones DP, Chesney RW. Tubular function. In: Avner ED, Harmon WH, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 46–7.

    Google Scholar 

  38. Melzi ML, Bertorello A, Fukuda Y, Muldin I, Sereni F, Aperia A. Na, K-ATPase activity in renal tubule cells from Milan hypertensive rats. Am J Hypertens. 1989;2(7):563–6.

    PubMed  CAS  Google Scholar 

  39. Parenti P, Villa M, Hanozet GM, Ferrandi M, Ferrari P. Increased Na pump activity in the kidney cortex of the Milan hypertensive rat strain. FEBS Lett. 1991;290(1–2):200–4.

    Article  PubMed  CAS  Google Scholar 

  40. Blaustein MP, Zhang J, Chen L, Song H, Raina H, Kinsey SP, et al. The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension. 2009;53(2):291–8.

    Article  PubMed  CAS  Google Scholar 

  41. Haupert Jr GT. Circulating inhibitors of sodium transport at the prehypertensive stage of essential hypertension. J Cardiovasc Pharmacol. 1988;12 Suppl 3:S70–6.

    PubMed  CAS  Google Scholar 

  42. Cao C, Payne K, Lee-Kwon W, Zhang Z, Lim SW, Hamlyn J, et al. Chronic ouabain treatment induces vasa recta endothelial dysfunction in the rat. Am J Physiol Renal Physiol. 2009;296(1):F98–106.

    Article  PubMed  CAS  Google Scholar 

  43. Murrell JR, Randall JD, Rosoff J, Zhao JL, Jensen RV, Gullans SR, et al. Endogenous ouabain: upregulation of steroidogenic genes in hypertensive hypothalamus but not adrenal. Circulation. 2005;112(9):1301–8.

    Article  PubMed  CAS  Google Scholar 

  44. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol. 1993;264(6 Pt 1):C1367–87.

    PubMed  CAS  Google Scholar 

  45. Juhaszova M, Blaustein MP. Distinct distribution of different Na + pump alpha subunit isoforms in plasmalemma. Physiological implications. Ann NY Acad Sci. 1997;834:524–36.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrandi M, Minotti E, Salardi S, Florio M, Bianchi G, Ferrari P. Ouabainlike factor in Milan hypertensive rats. Am J Physiol. 1992;263(4 Pt 2):F739–48.

    PubMed  CAS  Google Scholar 

  47. Tao QF, Hollenberg NK, Price DA, Graves SW. Sodium pump isoform specificity for the digitalis-like factor isolated from human peritoneal dialysate. Hypertension. 1997;29(3):815–21.

    Article  PubMed  CAS  Google Scholar 

  48. Song H, Lee MY, Kinsey SP, Weber DJ, Blaustein MP. An N-terminal sequence targets and tethers Na + pump alpha2 subunits to specialized plasma membrane microdomains. J Biol Chem. 2006;281(18):12929–40.

    Article  PubMed  CAS  Google Scholar 

  49. Pritchard TJ, Parvatiyar M, Bullard DP, Lynch RM, Lorenz JN, Paul RJ. Transgenic mice expressing Na + −K + −ATPase in smooth muscle decreases blood pressure. Am J Physiol Heart Circ Physiol. 2007;293(2):H1172–82.

    Article  PubMed  CAS  Google Scholar 

  50. Hamlyn JM, Hamilton BP, Manunta P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J Hypertens. 1996;14(2):151–67.

    Article  PubMed  CAS  Google Scholar 

  51. Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K + −ATPase. J Biol Chem. 2000;275(36):27832–7.

    PubMed  CAS  Google Scholar 

  52. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z. Ouabain interaction with cardiac Na+/K + −ATPase initiates signal cascades independent of changes in intracellular Na + and Ca2+ concentrations. J Biol Chem. 2000;275(36):27838–44.

    PubMed  CAS  Google Scholar 

  53. Ferrari P, Ferrandi M, Valentini G, Bianchi G. Rostafuroxin: an ouabain antagonist that corrects renal and vascular Na + −K + − ATPase alterations in ouabain and adducin-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R529–35.

    Article  PubMed  CAS  Google Scholar 

  54. Ferrari P, Ferrandi M, Tripodi G, Torielli L, Padoani G, Minotti E, et al. PST 2238: a new antihypertensive compound that modulates Na, K-ATPase in genetic hypertension. J Pharmacol Exp Ther. 1999;288(3):1074–83.

    PubMed  CAS  Google Scholar 

  55. Ferrandi M, Molinari I, Barassi P, Minotti E, Bianchi G, Ferrari P. Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J Biol Chem. 2004;279(32):33306–14.

    Article  PubMed  CAS  Google Scholar 

  56. Staessen JA, Thijs L, Stolarz-Skrzypek K, Bacchieri A, Barton J, Espositi ED, et al. Main results of the Ouabain and Adducin for Specific Intervention on Sodium in Hypertension Trial (OASIS-HT): a randomized placebo-controlled phase-2 dose-finding study of rostafuroxin. Trials. 2011;12:13.

    Article  PubMed  CAS  Google Scholar 

  57. Ferrandi M, Molinari I, Torielli L, Padoani G, Salardi S, Rastaldi MP, et al. Adducin- and ouabain-related gene variants predict the antihypertensive activity of rostafuroxin, part 1: experimental studies. Sci Transl Med. 2010;2(59):59–86. 59ra86.

    Article  Google Scholar 

  58. Lanzani C, Citterio L, Glorioso N, Manunta P, Tripodi G, Salvi E, et al. Adducin- and ouabain-related gene variants predict the antihypertensive activity of rostafuroxin, part 2: clinical studies. Sci Transl Med. 2010;2(59):59–87. 59ra87.

    Article  Google Scholar 

  59. Bianchi G, Tripodi G, Casari G, Salardi S, Barber BR, Garcia R, et al. Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci USA. 1994;91(9):3999–4003.

    Article  PubMed  CAS  Google Scholar 

  60. Tripodi G, Valtorta F, Torielli L, Chieregatti E, Salardi S, Trusolino L, et al. Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport. J Clin Invest. 1996;97(12):2815–22.

    Article  PubMed  CAS  Google Scholar 

  61. Efendiev R, Krmar RT, Ogimoto G, Zwiller J, Tripodi G, Katz AI, et al. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2–mu2 phosphorylation and impaired Na+, K + −ATPase trafficking in response to GPCR signals and intracellular sodium. Circ Res. 2004;95(11):1100–8.

    Article  PubMed  CAS  Google Scholar 

  62. Torielli L, Tivodar S, Montella RC, Iacone R, Padoani G, Tarsini P, et al. Alpha-Adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption. Am J Physiol Renal Physiol. 2008;295(2):F478–87.

    Article  PubMed  CAS  Google Scholar 

  63. Orlov SN, Adragna NC, Adarichev VA, Hamet P. Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am J Physiol. 1999;276(3 Pt 1):C511–36.

    PubMed  CAS  Google Scholar 

  64. Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet. 1997;349(9062):1353–7.

    Article  PubMed  CAS  Google Scholar 

  65. Kamitani A, Wong ZY, Fraser R, Davies DL, Connor JM, Foy CJ, et al. Human alpha-adducin gene, blood pressure, and sodium metabolism. Hypertension. 1998;32(1):138–43.

    Article  PubMed  CAS  Google Scholar 

  66. Kato N, Sugiyama T, Nabika T, Morita H, Kurihara H, Yazaki Y, et al. Lack of association between the alpha-adducin locus and essential hypertension in the Japanese population. Hypertension. 1998;31(3):730–3.

    Article  PubMed  CAS  Google Scholar 

  67. Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, et al. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283(1):F134–41.

    PubMed  CAS  Google Scholar 

  68. Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, et al. Osmotically inactive skin Na + storage in rats. Am J Physiol Renal Physiol. 2003;285(6):F1108–17.

    PubMed  CAS  Google Scholar 

  69. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na + storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–8.

    Article  PubMed  CAS  Google Scholar 

  70. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avram Z. Traum M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Traum, A.Z. (2013). Ion and Fluid Dynamics in Hypertension. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics