Skip to main content

Hypertension and Cardiovascular Disease in Developing Countries

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 1591 Accesses

Abstract

Hypertension is a major global chronic noncommunicable disease (NCD). One-quarter of the world’s adult population has hypertension, and this is likely to increase to 29 % by 2025. Due to epidemiologic shifts, the absolute numbers of patients affected by hypertension in low- and middle-income countries are likely to grow, as increased globalization and economic improvement lead to urbanization and longer life expectancy. Increasing longevity provides longer periods of exposure to the risk factors of cardiovascular disease (CVD), resulting in a greater probability of clinically manifest CVD events. Compounding this high burden of hypertension is a lack of awareness and insufficient treatment in those with hypertension.

The survivors of an economic transition period are more likely to present the phenotype of lower birth weight coupled with either stunting or a higher body mass index in childhood or adulthood which appears to be associated with the highest risks of morbid cardiovascular, renal, and metabolic outcomes into adulthood. The combination of population-wide and individual interventions may save millions of lives and considerably reduce human suffering from NCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omran A. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Q. 1971;49:509–38.

    CAS  Google Scholar 

  2. WHO Global status report on noncommunicable diseases 2010. http://www.who.int/nmh/publications/ncd_report2010/en/index.html Last Accessed 7 Aug 2012.

  3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365: 217–23.

    PubMed  Google Scholar 

  4. Reid CM, Thrift AG. Hypertension 2020: confronting tomorrow’s problem today. Clin Exp Pharmacol Physiol. 2005;32:374–6.

    Article  CAS  PubMed  Google Scholar 

  5. Yach D. The global burden of chronic disease: overcoming impediments to prevention and control. JAMA. 2004;291:2616–22.

    Article  CAS  PubMed  Google Scholar 

  6. Reddy KS. Cardiovascular disease in India. World Health Stat Q. 1993;46:101–7.

    CAS  PubMed  Google Scholar 

  7. Mittal BV, Singh AK. Hypertension in the developing world: challenges and opportunities. Am J Kidney Dis. 2010;55:590–8.

    Article  PubMed  Google Scholar 

  8. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, Farzadfar F, Stevens GA, Lim SS, Riley LM, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Pressure). National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet. 2011;377:568–77.

    Article  PubMed  Google Scholar 

  9. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.

    Article  PubMed  Google Scholar 

  10. Ananda SS, Yusuf S. Stemming the global tsunami of cardiovascular disease. Lancet. 2011;377: 529–32.

    Article  Google Scholar 

  11. Farzadfar F, Finucane MM, Danaei G, Pelizzari PM, Cowan MJ, Paciorek CJ, Singh GM, Lin JK, Stevens GA, Riley LM, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Cholesterol). National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet. 2011;377:578–86.

    Article  PubMed  Google Scholar 

  12. Guidelines Subcommittee. WHO–ISH hypertension guidelines for the management of hypertension. J Hypertens. 1999;17:151–83.

    Google Scholar 

  13. Gupta R, Sharma AK. Prevalence of hypertension and subtypes in an Indian rural population: clinical and electrocardiographic correlates. J Hum Hypertens. 1994;8:823–9.

    CAS  PubMed  Google Scholar 

  14. Gupta R, Guptha S, Gupta VP, Prakash H. Prevalence and determinants of hypertension in the urban population of Jaipur in western India. J Hypertens. 1995;13:1193–200.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Wu Y, Zhao L, Li Y, Yang J, Zhou B, Cooperative Research Group of the Study on Trends of Cardiovascular Diseases in China and Preventive Strategy for the 21st Century. Trends in prevalence, awareness, treatment and control of hypertension in the middle-aged population of China, 1992–1998. Hypertens Res. 2004;27:703–9.

    Article  PubMed  Google Scholar 

  16. Mbanya JC, Minkoulou EM, Salah JN, Balkau B. The prevalence of hypertension in rural and urban Cameroon. Int J Epidemiol. 1998;27:181–5.

    Article  CAS  PubMed  Google Scholar 

  17. Addo J, Smeeth L, Leon DA. Hypertension in sub-Saharan Africa: a systematic review. Hypertension. 2007;50:1012–8.

    Article  CAS  PubMed  Google Scholar 

  18. World Health Organization Reducing risks, promoting healthy life World Health Organization, Geneva 2002. http://www.who.int/whr/2002/overview/en/index.html. Accessed 7 Aug 2012.

  19. Razak F, Anand SS, Shannon H, Vuksan V, Davis B, Jacobs R, Teo KK, McQueen M, Yusuf S. Defining obesity cut points in a multiethnic population. Circulation. 2007;115:2111–8.

    Article  PubMed  Google Scholar 

  20. Unwin N, Harland J, White M, Bhopal R, Winocour P, Stephenson P, Watson W, Turner C, Alberti KG. Body mass index, waist circumference, waist-hip ratio, and glucose intolerance in Chinese and Europid adults in Newcastle, UK. J Epidemiol Community Health. 1997;51:160–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tiago AD, Samani NJ, Candy GP, Brooksbank R, Libhaber EN, Sareli P, Woodiwiss AJ, Norton GR. Angiotensinogen gene promoter region variant modifies body size-ambulatory blood pressure relations in hypertension. Circulation. 2002;106:1483–7.

    Article  CAS  PubMed  Google Scholar 

  22. Touyz RM, Milne FJ, Seftel HC, Reinach SG. Magnesium, calcium, sodium and potassium status in normotensive and hypertensive Johannesburg residents. S Afr Med J. 1987;72:377–81.

    CAS  PubMed  Google Scholar 

  23. Campese VM, Parise M, Karubian F, Bigazzi R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension. 1991;18:805–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwide prevalence of hypertension: a systematic review. J Hypertens. 2004;22:11–9.

    Article  CAS  PubMed  Google Scholar 

  25. Barker DJP, Martyn CN, Osmond C, Haleb CN, Fall CHD. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307:1524–7.

    Article  CAS  PubMed  Google Scholar 

  26. Martyn CN, Barker DJP, Jespersen S, Greenwald S, Osmond C, Berry C. Growth in utero, adult blood pressure and arterial compliance. Br Heart J. 1995;73:116–21.

    Article  CAS  PubMed  Google Scholar 

  27. Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.

    Article  CAS  PubMed  Google Scholar 

  28. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.

    Article  CAS  PubMed  Google Scholar 

  29. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  CAS  PubMed  Google Scholar 

  30. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  CAS  PubMed  Google Scholar 

  31. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298:564–7.

    Article  CAS  PubMed  Google Scholar 

  32. Barker DJP. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004;58:114–5.

    Article  CAS  PubMed  Google Scholar 

  33. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  CAS  PubMed  Google Scholar 

  34. Barker DJP, Osmond C, Winter PD, Margetts BM, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  CAS  PubMed  Google Scholar 

  35. Kermack WO, McKendrick AG, McKinlay PL. Death-rates in Great Britain and Sweden. Some general regularities and their significance. Lancet. 1934;223:698–703.

    Article  Google Scholar 

  36. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977;31:91–5.

    CAS  PubMed  Google Scholar 

  37. Wadsworth ME, Cripps HA, Midwinter RE, Colley JR. Blood pressure in a national birth cohort at the age of 36 related to social and familial factors, smoking, and body mass. Br Med J. 1985;291:1534–8.

    Article  CAS  Google Scholar 

  38. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  CAS  PubMed  Google Scholar 

  39. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    CAS  PubMed  Google Scholar 

  40. Hales CN, Barker DJP. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  41. Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156:38–50.

    CAS  PubMed  Google Scholar 

  42. Thoman EB, Levine S. Hormonal and behavioral changes in the rat mother as a function of early experience treatments of the offspring. Physiol Behav. 1970;5:1417–21.

    Article  CAS  PubMed  Google Scholar 

  43. Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965;28: 1029–40.

    CAS  PubMed  Google Scholar 

  44. Mcmillen C, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    Article  CAS  PubMed  Google Scholar 

  45. West-Eberhard MJ. Developmental plasticity and evolution. New York: Oxford University Press; 2003.

    Google Scholar 

  46. Bateson P, Barker D, Clutton-Brock T, Deb D, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Mirazón Lahr M, Macnamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE. Developmental plasticity and human health. Nature. 2004;430(430):419–21.

    Article  CAS  PubMed  Google Scholar 

  47. Gluckman PD, Hanson MA. Living with the past: evolution, development and patterns of disease. Science. 2004;305:1733–6.

    Article  CAS  PubMed  Google Scholar 

  48. Gluckman PD, Hanson MA. Mismatch. How our world no longer fits our bodies. Oxford: Oxford University Press; 2006.

    Google Scholar 

  49. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease; a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19.

    Article  PubMed  Google Scholar 

  50. Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology. New York: Macmillan; 1957.

    Google Scholar 

  51. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61(5),Part 2 Supplement:5R–10R.

    Google Scholar 

  52. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355–77.

    Article  CAS  PubMed  Google Scholar 

  53. Bagby SP. Maternal nutrition, low nephron number, and hypertension in later life: pathways of nutritional programming. J Nutr. 2007;137:1066–72.

    CAS  PubMed  Google Scholar 

  54. Guyton AC, Coleman TG, Cowley Jr AV, Scheel KW, Manning Jr RD, Norman Jr RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–94.

    Article  CAS  PubMed  Google Scholar 

  55. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure less of one, more the other? Am J Hypertens. 1988;1:335–47.

    Article  CAS  PubMed  Google Scholar 

  56. Gilbert T, Lelievre-Pegorier M, Merlet-Benichou C. Long-term effects of mild oligonephronia induced in utero by gentamicin in the rat. Pediatr Res. 1991;30:450–6.

    Article  CAS  PubMed  Google Scholar 

  57. Celsi G, Kistner A, Aizman R, Eklöf AC, Ceccatelli S, de Santiago A, Jacobson SH. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res. 1998;44:317–22.

    Article  CAS  PubMed  Google Scholar 

  58. Lelièvre-Pégorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Bénichou C. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–62.

    Article  PubMed  Google Scholar 

  59. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59:238–45.

    Article  CAS  PubMed  Google Scholar 

  60. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49:460–7.

    Article  CAS  PubMed  Google Scholar 

  61. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol. 2003;285:R962–70.

    CAS  PubMed  Google Scholar 

  62. Brook JS, Whiteman M, Brook DW. Transmission of risk factors across three generations. Psychol Rep. 1999;85:227–41.

    CAS  PubMed  Google Scholar 

  63. Lumey LH, Stein AD. Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol. 1997;146:810–9.

    Article  CAS  PubMed  Google Scholar 

  64. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20:345–52.

    Article  CAS  PubMed  Google Scholar 

  65. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  66. Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD. Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens. 2008;17:258–65.

    Article  PubMed  Google Scholar 

  67. Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol. 1992;99:296–301.

    Article  CAS  PubMed  Google Scholar 

  68. Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian aborigines. A group at high risk for renal disease and hypertension. Kidney Int. 2006;70:104–10.

    Article  CAS  PubMed  Google Scholar 

  69. Thrift AG, Srikanth V, Fitzgerald SM, Kalyanram K, Kartik K, Hoppe CC, Walker KZ, Evans RG. Potential roles of high salt intake and maternal malnutrition in the development of hypertension in disadvantaged populations. Clin Exp Pharmacol Physiol. 2010;37:e78–90.

    Article  CAS  PubMed  Google Scholar 

  70. Barker DJ, Osmond C, Law CM. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health. 1989;43:237–40.

    Article  CAS  PubMed  Google Scholar 

  71. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94:3246–50.

    Article  CAS  PubMed  Google Scholar 

  72. Boyko EJ. Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care. 2000;23:1260–4.

    Article  CAS  PubMed  Google Scholar 

  73. Eriksson JG, Osmond C, Barker DJ. Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care. 2003;26:3006–10.

    Article  PubMed  Google Scholar 

  74. Law CM, de Swiet M, Osmond C, Fayers PM, Barker DJ, Cruddas AM, Fall CH. Initiation of hypertension in utero and its amplification throughout life. BMJ. 1993;306:24–7.

    Article  CAS  PubMed  Google Scholar 

  75. Whincup P, Cook D, Papacosta O, Walker M. Birth weight and blood pressure: cross sectional and longitudinal relations in childhood. BMJ. 1995;311:773–6.

    Article  CAS  PubMed  Google Scholar 

  76. Uiterwaal CS, Anthony S, Launer LJ, Witteman JC, Trouwborst AM, Hofman A, Grobbee DE. Birth weight, growth, and blood pressure: an annual follow-up study of children aged 5 through 21 years. Hypertension. 1997;(2 Pt 1):267–71.

    Google Scholar 

  77. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kajantie E, Osmond C, Barker DJ, Forsén T, Phillips DI, Eriksson JG. Size at birth as a predictor of mortality in adulthood: a follow-up of 350,000 person-years. Int J Epidemiol. 2005;34:655–63.

    Article  PubMed  Google Scholar 

  79. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med. 2000;160:1472–6.

    Article  CAS  PubMed  Google Scholar 

  80. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET, Frölich M, van der Heijden BJ, Dutch POPS-19 Collaborative Study Group. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol. 2005;16:2762–8.

    Article  CAS  PubMed  Google Scholar 

  81. Bergvall N, Iliadou A, Johansson S, de Faire U, Kramer MS, Pawitan Y, Pedersen NL, Lichtenstein P, Cnattingius S. Genetic and shared environmental factors do not confound the association between birth weight and hypertension: a study among Swedish twins. Circulation. 2007;115:2931–8.

    Article  PubMed  Google Scholar 

  82. Cutfield WS, Hofman PL, Mitchell M, Morison IM. Could epigenetics play a role in the developmental origins of health and disease. Pediatr Res. 2007;61(5, Part 2) Supplement:68R–75R.

    Google Scholar 

  83. Lurbe E, Torro I, Rodríguez C, Alvarez V, Redón J. Birth weight influences blood pressure values and variability in children and adolescents. Hypertension. 2001;38:389–93.

    Article  CAS  PubMed  Google Scholar 

  84. Levitt NS, Steyn K, De Wet T, Morrell C, Edwards R, Ellison GT, Cameron N. An inverse relation between blood pressure and birth weight among 5 year old children from Soweto, South Africa. J Epidemiol Community Health. 1999;53:264–8.

    Article  CAS  PubMed  Google Scholar 

  85. Law CM, Egger P, Dada O, Delgado H, Kylberg E, Lavin P, Tang GH, von Hertzen H, Shiell AW, Barker DJ. Body size at birth and blood pressure among children in developing countries. Int J Epidemiol. 2001;30:52–7.

    Article  CAS  PubMed  Google Scholar 

  86. Walker SP, Gaskin P, Powell CA, Bennett FI, Forrester TE, Grantham-McGregor S. The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11–12 years. J Epidemiol Community Health. 2001;55:394–8.

    Article  CAS  PubMed  Google Scholar 

  87. Barros FC, Victora CG. Increased blood pressure in adolescents who were small for gestational age at birth: a cohort study in Brazil. Int J Epidemiol. 1999;28:676–81.

    Article  CAS  PubMed  Google Scholar 

  88. Nelson RG, Morgenstern H, Bennett PH. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am J Epidemiol. 1998;148(7): 650–6.

    Article  CAS  PubMed  Google Scholar 

  89. Hoy WE, Rees M, Kile E, Mathews JD, Wang ZA. New dimension to the barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int. 1999;56:1072–7.

    Article  CAS  PubMed  Google Scholar 

  90. Bavdekar A, Yajnik CS, Fall CHD, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes. 1999;48:2422–9.

    Article  CAS  PubMed  Google Scholar 

  91. Adair LS, Cole TJ. Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension. 2003;41:451–6.

    Article  CAS  PubMed  Google Scholar 

  92. http://www.who.int/nutrition/topics/feto_maternal/en/index.html (2012). Accessed last on 7 Aug 2012.

  93. Murray CJL, Lopez AD. Global comparative assessments in the health sector. Geneva: World Health Organization; 1994.

    Google Scholar 

  94. Low birth weight: country, regional and global estimates, WHO, UNICEF http://www.childinfo.org/files/low_birthweight_from_EY.pdf (2004). Accessed last on 7 Aug, 2012.

  95. de Onis M, Blössner M. The world health organization global database on child growth and malnutrition: methodology and applications. Int J Epidemiol. 2003; 32(4):518–26.

    Article  PubMed  Google Scholar 

  96. Working with individuals, families and communities to improve maternal and newborn health. 2003. http://www.who.int/reproductivehealth/en/. Last Accessed 7 Aug 2012.

  97. Making pregnancy safer. http://www.who.int/making_pregnancy_safer/en/. Last Accessed 7 Aug 2012.

  98. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet. 2001;357:413–9.

    Article  CAS  PubMed  Google Scholar 

  99. Singhal A, Fewtrell M, Cole TJ, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet. 2003;361:1089–97.

    Article  CAS  PubMed  Google Scholar 

  100. Prevention of Cardiovascular Disease. Guidelines for assessment and management of cardiovascular risk. http://www.who.int/cardiovascular_diseases/guidelines/Fulltext.pdf. Last Accessed 7 Aug 2012.

  101. Bakris GL, Ritz E, Day WK. Hypertension and kidney disease is a marriage that should be prevented. Am J Kidney Dis. 2009;2009(53):373–6.

    Article  Google Scholar 

  102. Bauchner H, Frenk J. Health, economics, and the 2012 G8 summit. JAMA. 2012;307:2102–4.

    Article  CAS  PubMed  Google Scholar 

  103. World Health Organization Stepwise Approach to surveillance (STEPS) Program, http://www.who.int/chp/steps/en. Last Accessed 7 Aug 2012.

  104. Murray CJ, Lauer JA, Hutubessy RC, Niessen L, Tomijima N, Rodgers A, Lawes CM, Evans DB, Murray CJ, Lauer JA, Hutubessy RC, Niessen L, Tomijima N, Rodgers A, Lawes CM, Evans DB. Effectiveness and costs of interventions to lower systolic blood pressure and cholesterol: a global and regional analysis on reduction of cardiovascular-disease risk. Lancet. 2003;361:717–25.

    Article  PubMed  Google Scholar 

  105. Wang G, Labarthe D. The cost-effectiveness of interventions designed to reduce sodium intake. J Hypertens. 2011;29:1693–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera H. Koch M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, V.H. (2013). Hypertension and Cardiovascular Disease in Developing Countries. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics