Skip to main content

Cardiovascular Influences on Blood Pressure

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 1618 Accesses

Abstract

The regulation of the heart and the vasculature are linked by the fundamental principles that the metabolic state of each organ or tissue is dependent on the relationship between metabolism and blood flow and that each organ or tissue has the ability to control its own blood flow according to local metabolic and functional needs. On a whole-body level, these principles are mediated through blood pressure homeostasis (a closed negative feedback loop that regulates mean arterial pressure around a set reference level). Mean systemic arterial pressure is defined as the product of the sum of all regional blood flows (cardiac output) and the parallel sum of all regional vascular resistances (total systemic vascular resistance), and this chapter discusses the important factors that regulate both cardiac output and systemic vascular resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall JE. Guyton and hall textbook of medical physiology. 12th ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  2. Coleman TG, Granger HJ, Guyton AC. Whole-body circulatory autoregulation and hypertension. Circ Res. 1971;28(5):76–87. Suppl 2.

    Article  PubMed  Google Scholar 

  3. Astrom KL, Murray RM. Feedback systems: an introduction for scientists and engineers. Princeton: Princeton University Press; 2008.

    Google Scholar 

  4. Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green; 1915.

    Google Scholar 

  5. Montani JP, Van Vliet BN. Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol. 2009;94(4):382–8.

    Article  PubMed  Google Scholar 

  6. Sharpey-Schafer EP. Venous tone: effects of reflex changes, humoral agents and exercise. Br Med Bull. 1963;19:145–8.

    CAS  PubMed  Google Scholar 

  7. de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science. 1985;230(4727):767–70.

    Article  PubMed  Google Scholar 

  8. Widmaier EP. Natriuretic peptides. In: Hershel R, Kevin T, editors. Vander’s human physiology. 11th ed. New York: McGraw-Hill; 2008. p. 509–10.

    Google Scholar 

  9. Sarzani R, Paci VM, Zingaretti CM, Pierleoni C, Cinti S, Cola G, et al. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens. 1995;13(11):1241–6.

    Article  CAS  PubMed  Google Scholar 

  10. Atisha D, Bhalla MA, Morrison LK, Felicio L, Clopton P, Gardetto N, et al. A prospective study in search of an optimal B-natriuretic peptide level to screen patients for cardiac dysfunction. Am Heart J. 2004;148(3):518–23.

    Article  CAS  PubMed  Google Scholar 

  11. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide study group. N Engl J Med. 2000;343(4):246–53.

    Article  CAS  PubMed  Google Scholar 

  12. Guyton AC, Coleman TG, Cowley Jr AV, Scheel KW, Manning Jr RD, Norman Jr RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52(5):584–94.

    Article  CAS  PubMed  Google Scholar 

  13. Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol. 1972;34:13–46.

    Article  CAS  PubMed  Google Scholar 

  14. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321(9):580–5.

    Article  CAS  PubMed  Google Scholar 

  15. Widimsky J, Fejfarova MH, Fejfar Z. Changes of cardiac output in hypertensive disease. Cardiologia. 1957;31(5):381–9.

    Article  CAS  PubMed  Google Scholar 

  16. Frohlich ED, Kozul VJ, Tarazi RC, Dustan HP. Physiological comparison of labile and essential hypertension. Circ Res. 1970;27(1 Suppl 1):55–69.

    CAS  PubMed  Google Scholar 

  17. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation. 1971;44(3):413–8.

    Article  CAS  PubMed  Google Scholar 

  18. Julius S, Pascual AV, Sannerstedt R, Mitchell C. Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation. 1971;43(3):382–90.

    Article  CAS  PubMed  Google Scholar 

  19. Messerli FH, Frohlich ED, Suarez DH, Reisin E, Dreslinski GR, Dunn FG, et al. Borderline hypertension: relationship between age, hemodynamics and circulating catecholamines. Circulation. 1981;64(4):760–4.

    Article  CAS  PubMed  Google Scholar 

  20. Julius S. Transition from high cardiac output to elevated vascular resistance in hypertension. Am Heart J. 1988;116(2 Pt 2):600–6.

    Article  CAS  PubMed  Google Scholar 

  21. Julius S, Gudbrandsson T, Jamerson K, Tariq Shahab S, Andersson O. The hemodynamic link between insulin resistance and hypertension. J Hypertens. 1991;9(11):983–6.

    Article  CAS  PubMed  Google Scholar 

  22. Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9(1):77–84.

    CAS  PubMed  Google Scholar 

  23. Stern MP, Morales PA, Haffner SM, Valdez RA. Hyperdynamic circulation and the insulin resistance syndrome (“syndrome X”). Hypertension. 1992;20(6):802–8.

    Article  CAS  PubMed  Google Scholar 

  24. Strauer BE, Beer K, Heitlinger K, Hofling B. Left ventricular systolic wall stress as a primary determinant of myocardial oxygen consumption: comparative studies in patients with normal left ventricular function, with pressure and volume overload and with coronary heart disease. Basic Res Cardiol. 1977;72(2–3):306–13.

    Article  CAS  PubMed  Google Scholar 

  25. Laine H, Katoh C, Luotolahti M, Yki-Jarvinen H, Kantola I, Jula A, et al. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100(24):2425–30.

    Article  CAS  PubMed  Google Scholar 

  26. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46(9):1753–60.

    Google Scholar 

  27. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45.

    Article  CAS  PubMed  Google Scholar 

  28. Franklin SS, Pio JR, Wong ND, Larson MG, Leip EP, Vasan RS, et al. Predictors of new-onset diastolic and systolic hypertension: the Framingham Heart Study. Circulation. 2005;111(9):1121–7.

    Article  PubMed  Google Scholar 

  29. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011;13(5):332–42.

    Article  Google Scholar 

  30. Stergiou GS, Kollias A, Rarra VC, Roussias LG. Ambulatory arterial stiffness index: reproducibility of different definitions. Am J Hypertens. 2010;23(2):129–34.

    Article  PubMed  Google Scholar 

  31. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  32. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  33. Storkebaum E, Carmeliet P. Paracrine control of vascular innervation in health and disease. Acta Physiol (Oxf). 2011;203(1):61–86.

    Article  CAS  Google Scholar 

  34. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82(1):131–85.

    CAS  PubMed  Google Scholar 

  35. Braam B, Mitchell KD, Koomans HA, Navar LG. Relevance of the tubuloglomerular feedback mechanism in pathophysiology. J Am Soc Nephrol. 1993;4(6):1257–74.

    CAS  PubMed  Google Scholar 

  36. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996;76(2):425–536.

    CAS  PubMed  Google Scholar 

  37. Carmines PK, Inscho EW, Gensure RC. Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am J Physiol. 1990;258(1 Pt 2):F94–102.

    CAS  PubMed  Google Scholar 

  38. Falcone JC, Granger HJ, Meininger GA. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats. Am J Physiol. 1993;265(6 Pt 2):H1847–55.

    CAS  PubMed  Google Scholar 

  39. Koller A, Huang A. Shear stress-induced dilation is attenuated in skeletal muscle arterioles of hypertensive rats. Hypertension. 1995;25(4 Pt 2):758–63.

    Article  CAS  PubMed  Google Scholar 

  40. Stoos BA, Garcia NH, Garvin JL. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol. 1995;6(1):89–94.

    CAS  PubMed  Google Scholar 

  41. Sladek CD, Song Z. Regulation of vasopressin release by co-released neurotransmitters: mechanisms of purinergic and adrenergic synergism. Prog Brain Res. 2008;170:93–107.

    Article  CAS  PubMed  Google Scholar 

  42. Gabrielsen A, Videbaek R, Johansen LB, Warberg J, Christensen NJ, Norsk P. Immediate baroreflex-neuroendocrine interactions in humans during graded water immersion. J Gravit Physiol. 1996;3(2):22–3.

    CAS  PubMed  Google Scholar 

  43. Ottesen JT, Olufsen MS. Functionality of the baroreceptor nerves in heart rate regulation. Comput Methods Programs Biomed. 2011;101(2):208–19.

    Article  CAS  PubMed  Google Scholar 

  44. Thrasher TN. Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R819–27.

    Article  CAS  PubMed  Google Scholar 

  45. Thrasher TN. Effects of chronic baroreceptor unloading on blood pressure in the dog. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R863–71.

    Article  CAS  PubMed  Google Scholar 

  46. Lohmeier TE, Warren S, Cunningham JT. Sustained activation of the central baroreceptor pathway in obesity hypertension. Hypertension. 2003;42(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  47. Navaneethan SD, Lohmeier TE, Bisognano JD. Baroreflex stimulation: a novel treatment option for resistant hypertension. J Am Soc Hypertens. 2009;3(1):69–74.

    Article  PubMed  Google Scholar 

  48. Lohmeier TE, Iliescu R. Chronic lowering of blood pressure by carotid baroreflex activation: mechanisms and potential for hypertension therapy. Hypertension. 2011;57(5):880–6.

    Article  CAS  PubMed  Google Scholar 

  49. Lohmeier TE, Iliescu R, Liu B, Henegar JR, Maric-Bilkan C, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension. 2012;59(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  50. Baertschi AJ, Massy Y, Kwon S. Vasopressin responses to peripheral and central osmotic pulse stimulation. Peptides. 1985;6(6):1131–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bunag R, Eferakeya A. Immediate hypotensive after-effects of posterior hypothalamic lesions in awake rats with spontaneous or DOCA hypertension. Cardiovasc Res. 1976;10(6):663–71.

    Article  CAS  PubMed  Google Scholar 

  52. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4.

    Article  CAS  PubMed  Google Scholar 

  53. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S78–82.

    Article  CAS  PubMed  Google Scholar 

  54. Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE. Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension. 2005;46(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  55. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  56. Sayk F, Heutling D, Dodt C, Iwen KA, Wellhoner JP, Scherag S, et al. Sympathetic function in human carriers of melanocortin-4 receptor gene mutations. J Clin Endocrinol Metab. 2010;95(4):1998–2002.

    Article  CAS  PubMed  Google Scholar 

  57. Johren O, Dendorfer A, Dominiak P. Cardiovascular and renal function of angiotensin II type-2 receptors. Cardiovasc Res. 2004;62(3):460–7.

    Article  CAS  PubMed  Google Scholar 

  58. Schiffrin EL. Vascular endothelin in hypertension. Vascul Pharmacol. 2005;43(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  59. Bakris G, Bursztyn M, Gavras I, Bresnahan M, Gavras H. Role of vasopressin in essential hypertension: racial differences. J Hypertens. 1997;15(5):545–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert P. Rocchini M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rocchini, A.P. (2013). Cardiovascular Influences on Blood Pressure. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics