Skip to main content

Vasoactive Factors and Blood Pressure in Children

  • Chapter
  • First Online:
Book cover Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 1604 Accesses

Abstract

Control of arterial blood pressure (BP) is accomplished by the net effect of vasodilator and vasoconstrictor substances. This chapter presents updated data on the ontogeny of the most relevant vasoactive systems in the systemic circulation and in the developing kidney and highlights how any alteration in the integrity of vasomotor control may lead to deregulation of BP and associated hypertension in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navar LG, Harrison-Bernard LM, Nishiyama A, et al. Regulation of intrarenal angiotensin II in hypertension. Hypertension. 2002;39:316–22.

    Article  PubMed  CAS  Google Scholar 

  2. Kobori H, Ozawa Y, Suzaki Y, et al. Young scholars award lecture: intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens. 2006;19:541–50.

    Article  PubMed  CAS  Google Scholar 

  3. Brasier AR, Li J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension. 1996;27:465–75.

    Article  PubMed  CAS  Google Scholar 

  4. Navar LG. The kidney in blood pressure regulation and development of hypertension. Med Clin North Am. 1997;81:1165–98.

    Article  PubMed  CAS  Google Scholar 

  5. Paul M, Mehr AP, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747–803.

    Article  PubMed  CAS  Google Scholar 

  6. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA. 1995;92:3521–5.

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen G, Delarue F, Burcklé C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.

    PubMed  CAS  Google Scholar 

  8. Donoghue M, Hsieh F, Baronas RE, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27:523–8.

    Article  PubMed  CAS  Google Scholar 

  10. Santos RA, Simoes Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100:8258–63.

    Article  PubMed  CAS  Google Scholar 

  11. Santos RA, Ferreira AJ. Angiotensin-(1-7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens. 2007;16:122–8.

    Article  PubMed  CAS  Google Scholar 

  12. Fukamizu A, Takahashi S, Seo MS, et al. Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter. J Biol Chem. 1990;265:7576–82.

    PubMed  CAS  Google Scholar 

  13. Ingelfinger JR, Zuo WM, Fon EA, et al. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990;85:417–23.

    Article  PubMed  CAS  Google Scholar 

  14. Lynch KR, Peach MJ. Molecular biology of angiotensinogen. Hypertension. 1991;17:263–9.

    Article  PubMed  CAS  Google Scholar 

  15. Yosipiv IV, el-Dahr SS. Activation of angiotensin-generating systems in the developing rat kidney. Hypertension. 1996;27:281–6.

    Article  PubMed  CAS  Google Scholar 

  16. Miyazaki M, Takai S. Local angiotensin II-generating system in vascular tissues: the roles of chymase. Hypertens Res. 2001;24:189–93.

    Article  PubMed  CAS  Google Scholar 

  17. Schunkert H, Ingelfinger JR, Jacob H, et al. Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol. 1992;263:E863–9.

    PubMed  CAS  Google Scholar 

  18. Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.

    Article  PubMed  CAS  Google Scholar 

  19. Jain S, Tang X, Chittampalli SN, et al. Angiotensinogen gene polymorphism at −217 affects basal promoter activity and is associated with hypertension in African-Americans. J Biol Chem. 2002;277:36889–96.

    Article  PubMed  CAS  Google Scholar 

  20. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71:169–80.

    Article  PubMed  CAS  Google Scholar 

  21. Gu W, Liu J, Niu Q, et al. A-6G and A-20C polymorphisms in the angiotensinogen promoter and hypertension risk in Chinese: a meta-analysis. PLoS One. 2011;6:e29489.

    Article  PubMed  CAS  Google Scholar 

  22. Hackenthal E, Paul M, Ganten D, et al. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev. 1990;70:1067–116.

    PubMed  CAS  Google Scholar 

  23. Miyazaki H, Fukamizu A, Hirose S, et al. Structure of the human renin gene. Proc Natl Acad Sci USA. 1984;81:5999–6003.

    Article  PubMed  CAS  Google Scholar 

  24. Schweda F, Friis U, Wagner C, et al. Renin release. Physiology (Bethesda). 2007;22:310–9.

    Article  CAS  Google Scholar 

  25. Danser AH, Derkx FH, Schalekamp MA, et al. Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens. 1998;16:853–62.

    Article  PubMed  CAS  Google Scholar 

  26. Lorenz JN, Greenberg SG, Briggs JP. The macula densa mechanism for control of renin secretion. Semin Nephrol. 1993;13:531–42.

    PubMed  CAS  Google Scholar 

  27. Davis JO, Freeman RH. Mechanisms regulating renin release. Physiol Rev. 1976;56:1–56.

    PubMed  CAS  Google Scholar 

  28. Burns KD, Homma T, Harris RC. The intrarenal renin-angiotensin system. Semin Nephrol. 1993;13:13–30.

    PubMed  CAS  Google Scholar 

  29. Handa RK, Johns EJ. Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function. J Physiol. 1985;369:311–21.

    PubMed  CAS  Google Scholar 

  30. Kim SM, Mizel D, Huang YG, et al. Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol. 2006;290:F1016–23.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou MS, Schulman IH, Raij L. Nitric oxide, angiotensin II, and hypertension. Semin Nephrol. 2004;24:366–78.

    Article  PubMed  CAS  Google Scholar 

  32. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    PubMed  CAS  Google Scholar 

  33. Deschepper CF. Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int. 1994;46:1561–3.

    Article  PubMed  CAS  Google Scholar 

  34. Erdös EG, Skidgel RA. Renal metabolism of angiotensin I and II. Kidney Int. 1990;30:S24–7.

    Google Scholar 

  35. Batenburg WW, Krop M, Garrelds IM, et al. Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens. 2007;25:2441–53.

    Article  PubMed  CAS  Google Scholar 

  36. Burcklé CA, Danser AHJ, Müller DN, et al. Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension. 2006;47:552–6.

    Article  PubMed  CAS  Google Scholar 

  37. Hirose T, Hashimoto M, Totsune K, et al. Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens. 2009;22(3):294–9.

    Article  PubMed  CAS  Google Scholar 

  38. Hirose T, Hirose M, Hashimoto K, et al. Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res. 2011;34:530–35.

    Google Scholar 

  39. Ott C, Schneider MP, Delles C, et al. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics. 2011;21:347–9.

    Article  PubMed  CAS  Google Scholar 

  40. Brugts JJ, Isaacs A, de Maat MP, et al. A pharmacogenetic analysis of determinants of hypertension and blood pressure response to angiotensin-converting enzyme inhibitor therapy in patients with vascular disease and healthy individuals. J Hypertens. 2011;29:509–19.

    Article  PubMed  CAS  Google Scholar 

  41. Kumar RS, Thekkumkara TJ, Sen GC. The mRNAs encoding the two angiotensin-converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initiation sites. J Biol Chem. 1991;266:3854–62.

    PubMed  CAS  Google Scholar 

  42. Ramchandran R, Sen GC, Misono K, Sen I. Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem. 1994;269:2125–30.

    PubMed  CAS  Google Scholar 

  43. Gribouval O, Gonzales M, Neuhaus T, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005;37:964–8.

    Article  PubMed  CAS  Google Scholar 

  44. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–6.

    Article  PubMed  CAS  Google Scholar 

  45. Higaki J, Baba S, Katsuya T, et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation. 2000;101:2060–5.

    Article  PubMed  CAS  Google Scholar 

  46. Iwai N, Ohmichi N, Nakamura Y, et al. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation. 1994;90:2622–8.

    Article  PubMed  CAS  Google Scholar 

  47. Ajala AR, Almeida SS, Rangel M, et al. Association of ACE gene insertion/deletion polymorphism with birth weight, blood pressure levels, and ACE activity in healthy children. Am J Hypertens. 2012;25:827–32.

    Article  PubMed  CAS  Google Scholar 

  48. Iwai N, Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992;298:257–60.

    Article  PubMed  CAS  Google Scholar 

  49. Tufro-McReddie A, Gomez RA. Ontogeny of the renin-angiotensin system. Semin Nephrol. 1993;13:519–30.

    PubMed  CAS  Google Scholar 

  50. Holland OB, Carr B, Brasier AR. Aldosterone synthase gene regulation by angiotensin. Endocr Res. 1995;21:455–62.

    Article  PubMed  CAS  Google Scholar 

  51. Morganti A, Lopez-Ovejero JA, Pickering TG, et al. Role of the sympathetic nervous system in mediating the renin response to head-up tilt. Their possible synergism in defending blood pressure against postural changes during sodium deprivation. Am J Cardiol. 1979;43:600–4.

    Article  PubMed  CAS  Google Scholar 

  52. Goodfriend TL, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. N Engl J Med. 1996;334:1649–54.

    Article  PubMed  CAS  Google Scholar 

  53. Gasparo M, et al. International union of pharmacology XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.

    PubMed  Google Scholar 

  54. Berry C, Touyz R, Dominiczak AF, et al. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol. 2001;281:H2337–65.

    CAS  Google Scholar 

  55. Wolf G, Haberstroh U, Neilson EG. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol. 1992;140:95–107.

    PubMed  CAS  Google Scholar 

  56. Inagami T, Iwai N, Sasaki K, et al. Angiotensin II receptors: cloning and regulation. Arzneimittelforschung. 1993;43:226–8.

    PubMed  CAS  Google Scholar 

  57. Miyata N, Park F, Li XF, et al. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol. 1999;277:F437–46.

    PubMed  CAS  Google Scholar 

  58. Siragy HM, Carey RM. The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest. 1997;100:264–9.

    Article  PubMed  CAS  Google Scholar 

  59. Tsutsumi Y, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest. 1999;104:925–35.

    Article  PubMed  CAS  Google Scholar 

  60. Abadir PM, et al. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension. 2003;42:600–4.

    Article  PubMed  CAS  Google Scholar 

  61. Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K. Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension. 1997;30:358–62.

    Article  PubMed  CAS  Google Scholar 

  62. Gross V, Schunck WH, Honeck H, et al. Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int. 2000;57:191–202.

    Article  PubMed  CAS  Google Scholar 

  63. Zhong JC, Huang DY, Yang YM, et al. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension. 2004;44:907–12.

    Article  PubMed  CAS  Google Scholar 

  64. Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52:967–73.

    Article  PubMed  CAS  Google Scholar 

  65. Gurley SB, Allred A, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218–25.

    Article  PubMed  CAS  Google Scholar 

  66. Wysocki J, Ye M, Rodriguez E, González-Pacheco FR, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55:90–8.

    Article  PubMed  CAS  Google Scholar 

  67. Xu P, Costa-Goncalves AC, Todiras M, et al. Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension. 2008;51:574–80.

    Article  PubMed  CAS  Google Scholar 

  68. Haulica I, Bild W, Serban DN. Angiotensin peptides and their pleiotropic actions. J Renin Angiotensin Aldosterone Syst. 2005;6:121–31.

    Article  PubMed  CAS  Google Scholar 

  69. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ. Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol. 1989;257:F850–8.

    PubMed  CAS  Google Scholar 

  70. Yosipiv IV, Dipp S, El-Dahr SS. Ontogeny of somatic angiotensin-converting enzyme. Hypertension. 1994;23:369–74.

    Article  PubMed  CAS  Google Scholar 

  71. Norwood VF, Craig MR, Harris JM, et al. Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol. 1997;272:R662–8.

    PubMed  CAS  Google Scholar 

  72. Garcia-Villalba P, Denkers ND, Wittwer CT, et al. Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol. 2003;94:e154–9.

    Article  PubMed  CAS  Google Scholar 

  73. Kakuchi J, Ichiki T, Kiyama S, et al. Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int. 1995;47:140–7.

    Article  PubMed  CAS  Google Scholar 

  74. Yosipiv IV, el-Dahr SS. Developmental regulation of ACE gene expression by endogenous kinins and angiotensin II. Am J Physiol. 1995;269:F172–9.

    PubMed  CAS  Google Scholar 

  75. Song R, Preston G, Yosypiv IV. Ontogeny of angiotensin-converting enzyme 2. Pediatr Res. 2012;71:13–9.

    Article  PubMed  CAS  Google Scholar 

  76. el-Dahr SS, Yosipiv IV, Lewis L, et al. Role of bradykinin B2 receptors in the developmental changes of renal hemodynamics in the neonatal rat. Am J Physiol. 1995;269:F786–92.

    PubMed  CAS  Google Scholar 

  77. Richer C, Hornych H, Amiel-Tison C, et al. Plasma renin activity and its postnatal development in preterm infants. Preliminary report. Biol Neonate. 1977;31:301–4.

    Article  PubMed  CAS  Google Scholar 

  78. Stalker HP, Holland NH, Kotchen JM, et al. Plasma renin activity in healthy children. J Pediatr. 1976;89:256–8.

    Article  PubMed  CAS  Google Scholar 

  79. Sánchez SI, Seltzer AM, Fuentes LB, et al. Inhibition of angiotensin II receptors during pregnancy induces malformations in developing rat kidney. Eur J Pharmacol. 2008;588:114–23.

    Article  PubMed  CAS  Google Scholar 

  80. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20:961–6.

    Article  PubMed  Google Scholar 

  81. Flynn JT. Not ready for prime time: aliskiren for treatment of hypertension or proteinuria in children. Pediatr Nephrol. 2011;26:491–2.

    Article  PubMed  Google Scholar 

  82. Vinson GP, Laird SM, Whitehouse BJ, et al. The biosynthesis of aldosterone. J Steroid Biochem Mol Biol. 1991;39:851–8.

    Article  PubMed  CAS  Google Scholar 

  83. Himathongkam T, Dluhy RG, Williams GH. Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab. 1975;41:153–9.

    Article  PubMed  CAS  Google Scholar 

  84. Chartier L, Schiffrin EL. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells. Am J Physiol. 1987;252:E485–91.

    PubMed  CAS  Google Scholar 

  85. Debonneville C, Flores SY, Kamynina E, et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J. 2001;20:7052–9.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang W, Xia X, Reisenauer MR, et al. Aldosterone-induced Sgk1 relieves Dot1a–Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117:773–83.

    Article  PubMed  CAS  Google Scholar 

  87. Tangalakis K, Lumbers ER, Moritz KM, Towstoless MK, Wintour EM. Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol. 1992;77(5):709–17.

    PubMed  CAS  Google Scholar 

  88. Fletcher AJ, McGarrigle HH, Edwards CM, Fowden AL, Giussani DA. Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol. 2002;545:649–60.

    Article  PubMed  CAS  Google Scholar 

  89. Boini KM, Nammi S, Grahammer F, et al. Role of serum- and glucocorticoid-inducible kinase SGK1 in glucocorticoid regulation of renal electrolyte excretion and blood pressure. Kidney Blood Press Res. 2008;31:280–9.

    Article  PubMed  CAS  Google Scholar 

  90. Huh SY, Andrew R, Rich-Edwards JW, Kleinman KP, Seckl JR, et al. Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med. 2008;6:25–8.

    Article  PubMed  CAS  Google Scholar 

  91. de Vries WB, Karemaker R, Mooy NF, et al. Cardiovascular follow-up at school age after perinatal glucocorticoid exposure in prematurely born children: perinatal glucocorticoid therapy and cardiovascular follow-up. Arch Pediatr Adolesc Med. 2008;162:738–44.

    Article  PubMed  Google Scholar 

  92. Pesquero JB, Bader M. Molecular biology of the kallikrein-kinin system: from structure to function. Braz J Med Biol Res. 1998;31:197–203.

    Article  Google Scholar 

  93. Erdös EG, Oshima G. The angiotensin I converting enzyme of the lung and kidney. Acta Physiol Lat Am. 1974;24:507–14.

    PubMed  Google Scholar 

  94. Marceau F, Hess JF, Bachvarov DR. The B1 receptors for kinins. Pharmacol Rev. 1998;50:357–86.

    PubMed  CAS  Google Scholar 

  95. el-Dahr SS, Dipp S, Guan S, et al. Renin, angiotensinogen, and kallikrein gene expression in two-kidney Goldblatt hypertensive rats. Am J Hypertens. 1993;6:914–9.

    PubMed  CAS  Google Scholar 

  96. Clements JA. The human kallikrein gene family: a diversity of expression and function. Mol Cell Endocrinol. 1994;99:C1–6.

    Article  PubMed  CAS  Google Scholar 

  97. El-Dahr SS, Dipp S, Yosipiv IV, et al. Activation of kininogen expression during distal nephron differentiation. Am J Physiol. 1998;275:F173–82.

    PubMed  CAS  Google Scholar 

  98. Xiong W, Chao L, Chao J. Renal kallikrein mRNA localization by in situ hybridization. Kidney Int. 1989;35:1324–9.

    Article  PubMed  CAS  Google Scholar 

  99. Siragy HM. Evidence that intrarenal bradykinin plays a role in regulation of renal function. Am J Physiol. 1993;265:E648–54.

    PubMed  CAS  Google Scholar 

  100. Beierwaltes WH, Prada J, Carretero OA. Effect of glandular kallikrein on renin release in isolated rat glomeruli. Hypertension. 1985;7:27–31.

    Article  PubMed  CAS  Google Scholar 

  101. McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A. 1991;88:7724–8.

    Article  PubMed  CAS  Google Scholar 

  102. el-Dahr SS, Figueroa CD, Gonzalez CB, et al. Ontogeny of bradykinin B2 receptors in the rat kidney: implications for segmental nephron maturation. Kidney Int. 1997;51:739–49.

    Article  PubMed  CAS  Google Scholar 

  103. Cervenka L, Harrison-Bernard LM, Dipp S, et al. Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension. 1999;34:176–80.

    Article  PubMed  CAS  Google Scholar 

  104. Duka I, Duka A, Kintsurashvili E, et al. Mechanisms mediating the vasoactive effects of the B1 receptors of bradykinin. Hypertension. 2003;42:1021–5.

    Article  PubMed  CAS  Google Scholar 

  105. Cui J, Melista E, Chazaro I, et al. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension. J Hypertens. 2005;23:55–62.

    Article  PubMed  CAS  Google Scholar 

  106. Gainer JV, Morrow JD, Loveland A, et al. Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med. 1998;339:1285–92.

    Article  PubMed  CAS  Google Scholar 

  107. Szentivanyi Jr M, Park F, Maeda CY, et al. Nitric oxide in the renal medulla protects from vasopressin-induced hypertension. Hypertension. 2000;35:740–5.

    Article  PubMed  CAS  Google Scholar 

  108. Peters J, Schlaghecke R, Thouet H, et al. Endogenous vasopressin supports blood pressure and prevents severe hypotension during epidural anesthesia in conscious dogs. Anesthesiology. 1990;73:694–702.

    Article  PubMed  CAS  Google Scholar 

  109. Ervin MG, Ross MG, Leake RD, et al. V1- and V2-receptor contributions to ovine fetal renal and cardiovascular responses to vasopressin. Am J Physiol. 1992;262:R636–43.

    PubMed  CAS  Google Scholar 

  110. Tomita H, Brace RA, Cheung CY, et al. Vasopressin dose–response effects on fetal vascular pressures, heart rate, and blood volume. Am J Physiol. 1985;249:H974–80.

    PubMed  CAS  Google Scholar 

  111. Kelly RT, Rose JC, Meis PJ, et al. Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol. 1983;146:807–12.

    PubMed  CAS  Google Scholar 

  112. Cowley Jr AW, Mori T, Mattson D, Zou AP. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol. 2003;284:R1355–69.

    Article  CAS  Google Scholar 

  113. Goldblatt H, Lynch R, Hanzai R. Studies on experimental: production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–50.

    Article  PubMed  CAS  Google Scholar 

  114. Jin XH, McGrath HE, Gildea JJ, et al. Renal interstitial guanosine cyclic 3′,5′-monophosphate mediates pressure-natriuresis via protein kinase G. Hypertension. 2004;43:1133–9.

    Article  PubMed  CAS  Google Scholar 

  115. Taddei S, Virdis A, Mattei P, et al. Defective L-arginine–nitric oxide pathway in offspring of essential hypertensive patients. Circulation. 1996;94:1298–303.

    Article  PubMed  CAS  Google Scholar 

  116. Yu ZY, Lumbers ER, Simonetta G. The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol. 2002;87:343–51.

    Article  PubMed  CAS  Google Scholar 

  117. Han KH, Lim JM, Kim WY, et al. Expression of endothelial nitric oxide synthase in developing rat kidney. Am J Physiol. 2005;288:F694–702.

    CAS  Google Scholar 

  118. Teichert AM, Scott JA, Robb GB, et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res. 2008;103:24–33.

    Article  PubMed  CAS  Google Scholar 

  119. Solhaug MJ, Ballèvre LD, Guignard JP, et al. Nitric oxide in the developing kidney. Pediatr Nephrol. 1996;10:529–33.

    Article  PubMed  CAS  Google Scholar 

  120. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.

    Article  PubMed  CAS  Google Scholar 

  121. Lu M, Liu YH, Goh HS, Wang JJ, Yong QC, Wang R, Bian JS. Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol. 2010;21:993–1002.

    Article  PubMed  CAS  Google Scholar 

  122. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis. 2005;46:186–202.

    Article  PubMed  CAS  Google Scholar 

  123. Kielstein JT, Impraim B, Simmel S, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation. 2004;109:172–7.

    Article  PubMed  CAS  Google Scholar 

  124. Maeda T, Yoshimura T, Okamura H. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, in maternal and fetal circulation. J Soc Gynecol Investig. 2003;10:2–4.

    Article  PubMed  CAS  Google Scholar 

  125. Goonasekera CD, Shah V, Rees DD, et al. Vascular endothelial cell activation associated with increased plasma asymmetric dimethyl arginine in children and young adults with hypertension: a basis for atheroma? Blood Press. 2000;9:16–21.

    Article  PubMed  CAS  Google Scholar 

  126. Päivä H, Kähönen M, Lehtimäki T, et al. Asymmetric dimethylarginine (ADMA) has a role in regulating systemic vascular tone in young healthy subjects: the cardiovascular risk in young Finns study. Am J Hypertens. 2008;21:873–8.

    Article  PubMed  CAS  Google Scholar 

  127. Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T. A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl. 1988;6:S188–91.

    PubMed  CAS  Google Scholar 

  128. Lüscher TF, Boulanger CM, Dohi Y, et al. Endothelium-derived contracting factors. Hypertension. 1992;19:117–30.

    Article  PubMed  Google Scholar 

  129. Kohan DE. Endothelin synthesis by rabbit renal tubule cells. Am J Physiol. 1991;261:F221–6.

    PubMed  CAS  Google Scholar 

  130. Ujiie K, Terada Y, Nonoguchi H, et al. Messenger RNA expression and synthesis of endothelin-1 along rat nephron segments. J Clin Invest. 1992;90:1043–8.

    Article  PubMed  CAS  Google Scholar 

  131. Yamamoto T, Hirohama T, Uemura H. Endothelin B receptor-like immunoreactivity in podocytes of the rat kidney. Arch Histol Cytol. 2002;65:245–50.

    Article  PubMed  Google Scholar 

  132. Hirata Y, Emori T, Eguchi S, et al. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest. 1993;91:1367–73.

    Article  PubMed  CAS  Google Scholar 

  133. Arai H, Hori S, Aramori I, et al. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–2.

    Article  PubMed  CAS  Google Scholar 

  134. Wong J, Vanderford PA, Winters J, et al. Endothelin b receptor agonists produce pulmonary vasodilation in intact newborn lambs with pulmonary hypertension. J Cardiovasc Pharmacol. 1995;25:207–15.

    Article  PubMed  CAS  Google Scholar 

  135. Fujimori K, Honda S, Sanpei M, Sato A. Effects of exogenous big endothelin-1 on regional blood flow in fetal lambs. Obstet Gynecol. 2005;106:818–23.

    Article  PubMed  CAS  Google Scholar 

  136. Fineman JR, Wong J, Morin FC, et al. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest. 1994;93:2675–83.

    Article  PubMed  CAS  Google Scholar 

  137. Ahn D, Ge Y, Stricklett PK, et al. Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest. 2004;114:504–11.

    PubMed  CAS  Google Scholar 

  138. Ge Y, Bagnall AJ, Stricklett PK, et al. Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol Renal Physiol. 2008;295:F1635–F1640.

    Google Scholar 

  139. Sudoh T, Minamino N, Kangawa K, et al. C-type natriuretic peptide (NP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168:863–70.

    Article  PubMed  CAS  Google Scholar 

  140. Schweitz H, Vigne P, Moinier D, et al. A new member of the natriuretic peptide family is present in the venom of the Green Mamba (Dendroaspis angusticeps). J Biol Chem. 1992;267:13928–32.

    PubMed  CAS  Google Scholar 

  141. Hirsch JR, Meyer M, Forssmann WG. ANP and urodilatin: who is who in the kidney. Eur J Med Res. 2006;11:447–54.

    PubMed  CAS  Google Scholar 

  142. de Bold AJ, Borenstein HB, Veress AT, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28:89–94.

    Article  PubMed  Google Scholar 

  143. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    Article  PubMed  CAS  Google Scholar 

  144. Brenner BM, Stein JH. Atrial natriuretic peptides. New York: Churchill Livingstone; 1989.

    Google Scholar 

  145. Roques BP, Noble F, Dauge V, et al. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993;45:87–146.

    PubMed  CAS  Google Scholar 

  146. Hunt PJ, Espiner EA, Nicholls MG, et al. Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab. 1996;81:3871–6.

    Article  PubMed  CAS  Google Scholar 

  147. Zeller R, Bloch KD, Williams BS, et al. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1987;1:693–8.

    Article  PubMed  CAS  Google Scholar 

  148. Wei Y, Rodi CP, Day ML, et al. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest. 1987;79:1325–9.

    Article  PubMed  CAS  Google Scholar 

  149. Hersey R, Nazir M, Whitney K, et al. Atrial natriuretic peptide in heart and specific binding in organs from fetal and newborn rats. Cell Biochem Funct. 1987;7:35–41.

    Article  Google Scholar 

  150. Cheung C, Gibbs D, Brace R. 1987 Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol. 1987;252:E279–82.

    PubMed  CAS  Google Scholar 

  151. Cheung C. Regulation of atrial natriuretic factor secretion and expression in the ovine fetus. Neurosci Behav Rev. 1995;19:159–64.

    Article  CAS  Google Scholar 

  152. Rosenfeld CR, Samson WK, Roy TA, et al. Vasoconstrictor-induced secretion of ANP in fetal sheep. Am J Physiol. 1992;263:E526–33.

    PubMed  CAS  Google Scholar 

  153. Bierd TM, Kattwinkel J, Chevalier RL, et al. Interrelationship of atrial natriuretic peptide, atrial volume, and renal function in premature infants. J Pediatr. 1990;116:753–9.

    Article  PubMed  CAS  Google Scholar 

  154. Weil J, Bidlingmaier F, Döhlemann C, et al. Comparison of plasma atrial natriuretic peptide levels in healthy children from birth to adolescence and in children with cardiac diseases. Pediatr Res. 1986;20:1328–31.

    Article  PubMed  CAS  Google Scholar 

  155. Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA. 2000;97:4239–44.

    Article  PubMed  CAS  Google Scholar 

  156. John SWM, Krege JH, Oliver PM, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.

    Article  PubMed  CAS  Google Scholar 

  157. Knowles J, Esposito G, Mao L, et al. Pressure independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A deficient mice. J Clin Invest. 2001;107:975–84.

    Article  PubMed  CAS  Google Scholar 

  158. Barker DJ, Bagby SP. Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol. 2005;16:2537–44.

    Article  PubMed  Google Scholar 

  159. Pladys P, Lahaie I, Cambonie G, et al. Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res. 2004;55:1042–9.

    Article  PubMed  CAS  Google Scholar 

  160. Edwards LJ, Simonetta G, Owens JA, et al. Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. J Physiol. 1999;515:897–904.

    Article  PubMed  CAS  Google Scholar 

  161. Bogdarina I, Welham S, King PJ, et al. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520–6.

    Article  PubMed  CAS  Google Scholar 

  162. Yosipiv IV, Dipp S, el-Dahr SS. Role of bradykinin B2 receptors in neonatal kidney growth. J Am Soc Nephrol. 1997;8:920–8.

    PubMed  CAS  Google Scholar 

  163. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54:83–90.

    Article  PubMed  CAS  Google Scholar 

  164. Franco Mdo C, Dantas AP, Akamine EH, et al. Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol. 2002;40:501–19.

    Article  PubMed  Google Scholar 

  165. Longo M, Jain V, Vedernikov YP, et al. Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase. Am J Physiol. 2005;288:R1114–21.

    CAS  Google Scholar 

  166. Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell RA, Pestana M, Giordano F, Desir GV. Renalase deficiency aggravates ischemic myocardial damage. Kidney Int. 2011;79:853–60.

    Article  PubMed  CAS  Google Scholar 

  167. Desir G. Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol. 2012;27:719–25.

    Article  PubMed  Google Scholar 

  168. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995;96:2947–54.

    Article  PubMed  CAS  Google Scholar 

  169. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T. Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest. 1996;75:745–53.

    PubMed  CAS  Google Scholar 

  170. Tanimoto K, Sugiyama F, Goto Y, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994;269:31334–7.

    PubMed  CAS  Google Scholar 

  171. Takahashi N, Lopez ML, Cowhig Jr JE, et al. Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol. 2005;16:125–32.

    Article  PubMed  Google Scholar 

  172. Esther Jr CR, Howard TE, Marino EM, et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996;7:953–65.

    Google Scholar 

  173. Oliverio MI, Kim HS, Ito M, et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA. 1998;95:15496–501.

    Article  PubMed  CAS  Google Scholar 

  174. Tsuchida S, Matsusaka T, Chen X, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest. 1998;101:755–60.

    Article  PubMed  CAS  Google Scholar 

  175. Chen X, Li W, Yoshida H, et al. Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol. 1997;272:F299–304.

    PubMed  CAS  Google Scholar 

  176. Oshima K, Miyazaki Y, Brock JW, et al. Angiotensin type II receptor expression and ureteral budding. J Urol. 2001;166:1848–52.

    Article  PubMed  CAS  Google Scholar 

  177. Hein L, Barsh GS, Pratt RE, et al. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995;377:744–7.

    Article  PubMed  CAS  Google Scholar 

  178. Iosipiv IV, Schroeder M. A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol. 2003;285:F199–207.

    CAS  Google Scholar 

  179. Prieto M, Dipp S, Meleg-Smith S, et al. Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics. 2001;6:29–37.

    PubMed  CAS  Google Scholar 

  180. Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA. Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol. 2001;281:F345–56.

    CAS  Google Scholar 

  181. Jung FF, Bouyounes B, Barrio R, et al. Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol. 1993;7:834–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yosypiv, I.V. (2013). Vasoactive Factors and Blood Pressure in Children. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics