Transcranial Ultrasonography in Movement Disorders

  • Stefanie BehnkeEmail author
  • Daniela Berg
Part of the Current Clinical Neurology book series (CCNEU, volume 44)


Since the first description of changes in the B-mode ultrasound signal of the brain in patients with Parkinson disease in 1995, the use of transcranial sonography (TCS) to assess brainstem and subcortical brain structures has become an important tool for the diagnosis and differential diagnosis of various movement disorders. Today it is applied in the clinical routine and for research purposes all over the world. Because of the underlying physical principles, TCS displays alterations associated with movement disorders differently compared to other neuroimaging methods. Thus information obtained by TCS may be regarded as supplementary. The most widely recognized finding for movement disorders has been an increase in echogenicity of the substantia nigra (SN) in idiopathic Parkinson disease (iPD). This finding enables the reliable diagnosis of iPD with high predictive values. Other sonographic features, such as hypoechogenicity of the brainstem midline and hyperechogenicity of the lentiform nucleus, may help in the differential diagnosis of iPD and other movement disorders. Here we review the method, advantages, and limitations of this neuroimaging tool, and include guidelines for the scanning procedure. Examples for application are illustrated. This review substantiates that TCS is a reliable, noninvasive, commonly available, easily applicable, and inexpensive method, which provides new information about the morphology of the brain to support the diagnosis of various movement disorders.


Single Photon Emission Compute Tomography Substantia Nigra Parkinson Disease Multiple System Atrophy Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Becker G, Bogdahn U. Transcranial color-coded real-time sonography. In: Babikian VL, Wechsler LR, editors. Transcranial doppler ultrasonography. St. Louis, MO: Mosby Yearbook; 1993. p. 51–60.Google Scholar
  3. 3.
    Becker G, Perez J, Krone A, Demuth K, Lindner A, Hofmann E, Winkler J, Bogdahn U. Transcranial color-coded real-time sonography in the evaluation of intracranial neoplasms and arteriovenous malformations. Neurosurgery. 1992;31(3):420–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke. 1993;24:1519–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology. 1999;52(1):45–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Becker G, Bogdahn U, Strassburg HM, Lindner A, Hassel W, Meixensberger J, Hofmann E. Identification of ventricular enlargement and estimation of intracranial pressure by transcranial color-coded real-time sonography. J Neuroimaging. 1994;4:17–22.PubMedGoogle Scholar
  7. 7.
    Seidel G, Kaps M, Gerriets T, Hutzelmann A. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging. 1995;5:105–8.PubMedGoogle Scholar
  8. 8.
    Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology. 1995;45:182–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Skoloudík D, Walter U. Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol. 2010;90:7–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Godau J, Berg D. Role of transcranial ultrasound in the diagnosis of movement disorders. Neuroimaging Clin N Am. 2010;20:87–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Walter U, Behnke S, Eyding J, Niehaus L, Postert T, Seidel G, Berg D. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol. 2007;33(1):15–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Berg D. Hyperechogenicity of the substantia nigra: pitfalls in assessment and specificity for Parkinson’s disease. J Neural Transm. 2010;118:453–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Walter U, Kanowski M, Kaufmann J, Grossmann A, Benecke R, Niehaus L. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep structures similarly as MRI: a phantom study. Neuroimage 2008;40(2):551–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Puls I, Berg D, Mäurer M, Schliesser M, Hetzel G, Becker G. Transcranial sonography of the brain parenchyma: comparison of B-mode imaging and tissue harmonic imaging. Ultrasound Med Biol. 2000;26:189–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Berg D, Behnke S, Walter U. Application of transcranial sonography in extrapyramidal disorders: updated recommendations. Ultraschall Med. 2006;27:12–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Postert T, Eyding J, Berg D, Przuntek H, Becker G, Finger M, Schöls L. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl. 2004;68:123–33.PubMedCrossRefGoogle Scholar
  17. 17.
    MijajloviĠ M, DragaseviĠ N, Stefanova E, PetroviĠ I, Svetel M, KostiĠ VS. Transcranial sonography in spinocerebellar ataxia type 2. J Neurol. 2008;255:1164–7.CrossRefGoogle Scholar
  18. 18.
    Krogias C, Postert T, Eyding J. Transcranial sonography in ataxia. Int Rev Neurobiol. 2010;90:217–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Synofzik M, Godau J, Lindig T, Schöls L, Berg D. Transcranial sonography reveals cerebellar, nigral, and forebrain abnormalities in Friedreich’s ataxia. Neurodegener Dis. 2011;8:470–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Nedelmann M, Stolz E, Gerriets T, Baumgartner RW, Malferrari G, Seidel G, Kaps M, TCCS Consensus Group. Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke. 2009;40(10):3238–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Okawa M, Miwa H, Kajimoto Y, Hama K, Morita S, Nakanishi I, Kondo T. Transcranial sonography of the substantia nigra in Japanese patients with Parkinson’s disease or atypical parkinsonism: clinical potential and limitations. Intern Med. 2007;46(18):1527–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Kajimoto Y, Miwa H, Okawa-Izawa M, Hironishi M, Kondo T. Transcranial sonography of the substantia nigra and MIBG myocardial scintigraphy: complementary role in the diagnosis of Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:270–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Prestel J, Schweitzer KJ, Hofer A, Gasser T, Berg D. Predictive value of transcranial sonography in the diagnosis of Parkinson’s disease. Mov Disord. 2006;21:1763–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Behnke S, Double KL, Duma S, Broe GA, Guenther V, Becker G, et al. Substantia nigra echomorphology in the healthy very old: correlation with motor slowing. Neuroimage. 2007;34:1054–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Van de Loo S, Walter U, Behnke S, Hagenah J, Lorenz MW, Sitzer M, Hilker R, Berg D. Reproducibility and diagnosis accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(10):1087–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Berg D, Siefker C, Becker G. Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol. 2001;8:684–9.CrossRefGoogle Scholar
  27. 27.
    Walter U, Wittstock M, Benecke R, Dressler D. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm. 2002;109:191–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang YW, Jeng JS, Tsai CF, Chen LL, Wu RM. Transcranial imaging of substantia nigra hyperechogenicity in a Taiwanese cohort of Parkinson’s disease. Mov Disord. 2007;22:550–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JY, Kim ST, Jeon SH, Lee WY. Midbrain transcranial sonography in Korean patients with Parkinson’s disease. Mov Disord. 2007;22:1922–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Ressner P, Skoloudik D, Hlustik P, Kanovsky P. Hyperechogenicity of the substantia nigra in Parkinson’s disease. J Neuroimaging. 2007;17(2):164–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsai CF, Wu RM, Huang YW, Chen LL, Yip PK, Jeng JS. Transcranial color-coded sonography helps differentiation between idiopathic Parkinson’s disease and vascular parkinsonism. J Neurol. 2007;254:501–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Vlaar AM, Bouwmans A, Mess WH, Tromp SC, Weber WE. Transcranial duplex in the differential diagnosis of parkinsonian syndromes: a systematic review. J Neurol. 2009;256:530–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Mehnert S, Reuter I, Schepp K, Maaser P, Stolz E, Kaps M. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol. 2010;21:10–9.Google Scholar
  34. 34.
    Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology. 2003;60:74–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Doepp F, Plotkin M, Siegel L, Kivi A, Gruber D, Lobsien E, Kupsch A, Schreiber SJ. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord. 2008;23(3):405–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Gaenslen A, Unmuth B, Godau J, Liepelt I, Di Santo A, Schweitzer KJ, Gasser T, Machulla HJ, Reimold M, Marek K, Berg D. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol. 2008;7:417–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Behnke S, Berg D, Naumann M, Becker G. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry. 2005;76:423–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Walter U, Dressler D, Wolters A, Wittstock M, Benecke R. Transcranial brain sonography findings in clinical subgroups of idiopathic Parkinson’s disease. Mov Disord. 2007;22:48–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Schweitzer KJ, Hilker R, Walter U, Burghaus L, Berg D. Substantia nigra hyperechogenicity as a marker of predisposition and slower progression in Parkinson’s disease. Mov Disord. 2006;21(1):94–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Berg D, Merz B, Reiners K, Naumann M, Becker G. Five year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord. 2005;20:383–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Behnke S, Runkel A, Al-Sibai Kassar H, Ortmann M, Guidez D, Dillmann U, Fassbender K, Spiegel J. Long-term course of substantia nigra hyperechogenicity in Parkinson’s disease. Mov Disord. 2012. doi:10.1002/mds.25193.Google Scholar
  42. 42.
    Behnke S, Schröder U, Dillmann U, Fuß G, Buchholz HG, Schreckenberger M, et al. Hyperechogenicity of the substantia nigra in healthy controls is related to MRI changes and to neuronal loss as determined by F-Dopa PET. Neuroimage. 2009;47:1237–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Spiegel J, Hellwig D, Möllers MO, Behnke S, Jost W, Fassbender K, Samnick S, Dillmann U, Becker G, Kirsch CM. Transcranial sonography and [123I]FP-CIT SPECT disclose complementary aspects of Parkinson’s disease. Brain. 2006;129:1188–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Lobsien E, Schreiner S, Plotkin M, Kupsch A, Schreiber SJ, Doepp F. No correlation of substantia nigra echogenicity and nigrostriatal degradation in Parkinson’s disease. Mov Disord. 2012;27:450–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Behnke S, Hellwig D, Bürmann J, Runkel A, Farmakis G, Kirsch CM, Fassbender K, Becker G, Dillmann U, Spiegel J. Evaluation of transcranial ultrasound findings and MIBG cardiac scintigraphy in the diagnosis of idiopathic Parkinson’s disease. (Submitted).Google Scholar
  46. 46.
    Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76:249–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Berg D, Grote C, Rausch WD, Maurer M, Wesemann W, Riederer P, Becker G. Iron accumulation of the substantia nigra in rats visualized in ultrasound. Ultrasound Med Biol. 1999;25:901–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Berg D, Becker G, Zeiler B, et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology. 1999;53:1026–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, Tampellini D, Riederer P, Gerlach M, Becker G. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20(10):1278–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P, Tucha O, Preier M, Lange KW, Reiners K, Gerlach M, Becker G. Echogenicity of the substantia nigra: association with increased iron content and marker of susceptibility to nigrostriatal injury. Arch Neuro. 2002;59:999–1005.CrossRefGoogle Scholar
  51. 51.
    Berg D, Becker G. Perspectives of B-mode transcranial ultrasound. Neuroimage. 2002;15(3):463–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Berg D, Godau J, Riederer P, Gerlach M, Arzberger T. Microglia activation is related to substantia nigra echogenicity. J Neural Transm. 2010;117:1287–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Hagenah JM, Becker B, Brüggemann N, Djarmati A, Lohmann K, Sprenger A, Klein C, Seidel G. Transcranial sonography findings in a large family with homozygous and heterozygous PINK1 mutations. J Neurol Neurosurg Psychiatry. 2008;79:1071–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Schweitzer KJ, Brüssel T, Leitner P, Krüger R, Bauer P, Woitalla D, Tomiuk J, Gasser T, Berg D. Transcranial ultrasound in different monogenetic subtypes of Parkinson’s disease. J Neurol. 2007;254(5):613–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Brueggemann N, Odin P, Gruenewald A, Tadic V, Hagenah J, Seidel G, Lohmann K, Klein C, Djarmati A. Re: Alpha-synuclein gene duplication is present in sporadic Parkinson disease. Neurology. 2008;71:1294.PubMedCrossRefGoogle Scholar
  56. 56.
    Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brüssel T, Schulte C, Maass S, Nägele T, Wszolek ZK, Gasser T. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease. Brain. 2005;128:3000–11.PubMedGoogle Scholar
  57. 57.
    Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T, Berg D. GBA-associated PD presents with nonmotor characteristics. Neurology. 2011;77(3):276–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Walter U, Klein C, Hilker R, Benecke R, Pramstaller PP, Dressler D. Brain parenchyma sonography detects preclinical parkinsonism. Mov Disord. 2004;19(12):1445–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hagenah JM, König IR, Becker B, Hilker R, Kasten M, Hedrich K, Pramstaller PP, Klein C, Seidel G. Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles. J Neurol. 2007;254:1407–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Brockmann K, Hagenah J. TCS in monogenic forms of Parkinson’s disease. Int Rev Neurobiol. 2010;90:157–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Berg D, Jabs B, Merschdorf U, Beckmann H, Becker G. Echogenicity of substantia nigra determined by transcranial ultrasound correlates with severity of Parkinsonian symptoms induced by neuroleptic therapy. Biol Psychiatry. 2001;50:463–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Berg D, Siefker C, Ruprecht-Dörfler P, Becker G. Relationship of substantia nigra echogenicity and motor function in elderly subjects. Neurology. 2001;56:13–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Ruprecht-Doerfler P, Klotz P, Becker G, Berg D. Substantia nigra hyperechogenicity correlates with subtle motor dysfunction in tap dancers. Parkinsonism Relat Disord. 2007;6:363–4.Google Scholar
  64. 64.
    Ruprecht-Dörfler P, Berg D, Tucha O, Benz P, Meier-Meitinger M, Alders GL, Lange KW, Becker G. Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. Neuroimage. 2003;18(2):416–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Schweitzer KJ, Behnke S, Liepelt I, Wolf B, Grosser C, Godau J, et al. Cross-sectional study discloses a positive family history for Parkinson’s disease and male gender as epidemiological risk factors for substantia nigra hyperechogenicity. J Neural Transm. 2007;114:1167–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Liepelt I, Wendt A, Schweitzer KJ, Wolf B, Godau J, Gaenslen A, Bruessel T, Berg D. Substantia nigra hyperechogenicity assessed by transcranial sonography is related to neuropsychological impairment in the elderly population. J Neural Transm. 2008;115:993–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Liepelt I, Behnke S, Schweitzer K, Wolf B, Godau J, Wollenweber F, Dillmann U, Gaenslen A, Di Santo A, Maetzler W, Berg D. Pre-motor signs of PD are related to SN hyperechogenicity assessed by TCS in an elderly population. Neurobiol Aging. 2011;32:1599–606.PubMedCrossRefGoogle Scholar
  68. 68.
    Liepelt-Scarfone I, Behnke S, Godau J, Schweitzer KJ, Wolf B, Gaenslen A, Berg D. Relation of risk factors and putative premotor markers for Parkinson’s disease. J Neural Transm. 2011;118:579–85.PubMedCrossRefGoogle Scholar
  69. 69.
    Sommer U, Hummel T, Corman K, Mueller A, Frasnelli J, Krop J, Reichmann H. Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov Disord. 2004;19:1196–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord. 2007;22:839–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Walter U, Hoeppner J, Prudente-Morrissey L, et al. Parkinson’s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain. 2007;130:1799–807.PubMedCrossRefGoogle Scholar
  72. 72.
    Stockner H, Iranzo A, Seppi K, Serradell M, Gschliesser V, Sojer M, Valldeoriola F, Molinuevo JL, Frauscher B, Schmidauer C, Santamaria J, Högl B, Tolosa E, Poewe W. Midbrain hyperechogenicity in idiopathic REM sleep behavior disorder. Mov Disord. 2009;24:1906–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Berg D, Seppi K, Behnke S, Liepelt I, Schweitzer K, Stockner H, Wollenweber F, Gaenslen A, Mahlknecht P, Spiegel J, Godau J, Huber H, Srulijes K, Kiechl S, Bentele M, Schubert T, Hiry T, Probst M, Schneider V, Klenk J, Sawires M, Willeit J, Maetzler W, Fassbender K, Gasser T, Poewe W. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease. 37 months three-centre study of 1847 elderly. Arch Neurol. 2011;68:932–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Walter U, Dressler D, Wolters A, Probst T, Grossmann A, Benecke R. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology. 2004;63(3):504–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Walter U, Dressler D, Probst T, Wolters A, Abu-Mugheisib M, Wittstock M, Benecke R. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64:1635–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Walter U, Dressler D, Wolters A, Wittstock M, Greim B, Benecke R. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol. 2006;253(4):448–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Stockner H, Sojer M, Sepi K, Mueller J, Wenning GK, Schmidauer C, Poewe W. Midbrain sonography in patients with essential tremor. Mov Disord. 2007;22(3):414–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Budisic M, Trkanjec Z, Bosnjak J, Lovrencic-Huzjan A, Vukovic V, Demarin V. Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand. 2009;119(1):17–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim JS, Oh YS, Kim YI, Koo JS, Yang DW, Lee KS. Transcranial sonography (TCS) in Parkinson’s disease (PD) and essential tremor (ET) in relation with putative premotor symptoms of PD. Arch Gerontol Geriatr. 2012;54(3):436–9.CrossRefGoogle Scholar
  80. 80.
    Koller WC, Busenbark K, Miner K. The relationship of essential tremor to other movement disorders: report on 678 patients. Essential Tremor Study Group. Ann Neurol. 1994;35:717–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Becker G, Becker T, Struck M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: a transcranial color-coded real-time sonography study. Biol Psychiatry. 1995;38:180–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Berg D, Supprian T, Hofmann E, et al. Depression in Parkinson’s disease: brainstem midline alteration on transcranial sonography and magnetic resonance imaging. J Neurol. 1999;246:1186–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D. Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology. 2005;64(10):1726–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Godau J, Schweitzer KJ, Liepelt I, et al. Substantia nigra hypoechogenicity: definition and findings in restless legs syndrome. Mov Disord. 2007;22:187–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Godau J, Wevers AK, Gaenslen A, et al. Sonographic abnormalities of brainstem structures in restless legs syndrome. Sleep Med. 2008;9:782–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Becker G, Naumann M, Scheubeck M, Hofmann E, Deimling M, Lindner A, Gahn G, Reiners C, Toyka KV, Reiners K. Comparison of transcranial sonography, magnetic resonance imaging, and single photon emission computed tomography findings in idiopathic spasmodic torticollis. Mov Disord. 1997;12(1):79–88.PubMedCrossRefGoogle Scholar
  87. 87.
    Naumann M, Becker G, Toyka KV, Supprian T, Reiners K. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology. 1996;47:1284–90.PubMedCrossRefGoogle Scholar
  88. 88.
    Walter U, Buttkus F, Benecke R, Grossmann A, Dressler D, Altenmüller E. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians. Neurodegener Dis. 2012;9(2):99–103.PubMedCrossRefGoogle Scholar
  89. 89.
    Becker G, Berg D, Rausch WD, Lange HK, Riederer P, Reiners K. Increased tissue copper and manganese content in the lentiform nucleus in primary adult-onset dystonia. Ann Neurol. 1999;46(2):260–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Becker G, Berg D, Francis M, Naumann M. Evidence for disturbances of copper metabolism in dystonia: from the image towards a new concept. Neurology. 2001;57(12):2290–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Berg D, Weishaupt A, Francis MJ, Naoyuki M, Yang X-L, Goodyer ID, Naumann M, Koltzenburg M, Reiners K, Becker G. Changes of copper transporting proteins and ceruloplasmin in the lentiform nuclei in primary adult-onset dystonia. Ann Neurol. 2000;47:827–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Kruse N, Berg D, Francis MJ, Naumann M, Rausch WD, Reiners K, Rieckmann P, Weishaupt A, Becker G. Reduction of Menkes mRNA and copper in leukocytes of patients with primary adult-onset dystonia. Ann Neurol. 2001;49:405–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurologySaarland University HospitalHomburg SaarGermany
  2. 2.Department of NeurodegenerationHertie Institute for Clinical Brain ResearchTübingenGermany

Personalised recommendations