Advertisement

Diffusion Magnetic Resonance Imaging and Its Applications in Movement Disorders

  • Jiun-Jie WangEmail author
  • Yau-Yau Wai
Chapter
Part of the Current Clinical Neurology book series (CCNEU, volume 44)

Abstract

This chapter reviews the basic principles of diffusion magnetic resonance (MR) imaging in a comprehensive manner, including both diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI). We introduce the effect of water diffusion on MR signal and methods used to measure the diffusion coefficient using MRI. The diffusion tensor and tensor-derived indices are presented in an effort to characterize the anisotropic nature of in vivo diffusion. Tractography using DTI is also discussed. The second part of this chapter describes the recent findings in various neurological movement disorders using diffusion imaging, including idiopathic Parkinson disease (iPD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA). The discussion includes studies based on regions located in the basal ganglia where changes of water diffusion coefficient have been reported, and impairment of white matter integrity where DTI has been most successful. The limitations of various diffusion imaging methods are discussed. The third part of this chapter presents an overview of diffusion kurtosis imaging (DKI), an advanced technique for measurement of restricted and hindered water diffusion in biological environments that significantly improves sensitivity and specificity when compared with conventional DTI.

Keywords

Apparent Diffusion Coefficient Fractional Anisotropy Diffusion Tensor Imaging Multiple System Atrophy Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stejskal D. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys. 1965;43(10):3597–603.CrossRefGoogle Scholar
  2. 2.
    Moseley ME, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.PubMedGoogle Scholar
  3. 3.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893 -906.Google Scholar
  4. 4.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906.PubMedCrossRefGoogle Scholar
  7. 7.
    Hasan KM, Alexander AL, Narayana PA. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med. 2004;51(2):413–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging. 2001;13(5):769–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Conturo TE, et al. Diffusion MRI: precision, accuracy and flow effects. NMR Biomed. 1995;8(7–8):307–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang JJ, et al. Novel diffusion anisotropy indices: an evaluation. J Magn Reson Imaging. 2006;24(1):211–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Xing D, et al. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging. 1997;15(7):771–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Song SK, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132–40.PubMedCrossRefGoogle Scholar
  13. 13.
    DeBoy CA, et al. High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain. 2007;130(Pt 8):2199–210.PubMedCrossRefGoogle Scholar
  14. 14.
    Budde MD, et al. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixel-wise analysis. J Neurosci. 2009;29(9):2805–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Klawiter EC, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage. 2011;55(4):1454–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Wheeler-Kingshott CA, Cercignani M, About “axial” and “radial” diffusivities. Magn Reson Med. 2009;61(5):1255–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Conturo TE, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96(18):10422–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Tournier D. MRtrix: MR tractography including crossing fibers. Melbourne: Brain Research Institute; 2012.Google Scholar
  19. 19.
    Jiang H, et al. Dti studio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006;81:106–16. [www.dtistudio.org]PubMedCrossRefGoogle Scholar
  20. 20.
    P. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G. J. Parker, D. C. Alexander, Camino: Open-Source Diffusion-MRI Reconstruction and Processing, 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, p. 2759, May 2006.Google Scholar
  21. 21.
    Romano A, et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol. 2009;19(12):2798–808.PubMedCrossRefGoogle Scholar
  22. 22.
    Arfanakis K, Gui M, Lazar M. Optimization of white matter tractography for pre-surgical planning and image-guided surgery. Oncol Rep. 2006;15:1061–4.PubMedGoogle Scholar
  23. 23.
    Talos IF, et al. Volumetric assessment of tumor infiltration of adjacent white matter based on anatomic MRI and diffusion tensor tractography. Acad Radiol. 2007;14(4):431–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87.PubMedGoogle Scholar
  25. 25.
    Ciccarelli O, et al. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 2008;7(8):715–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Nilsson C, et al. Tracking the neurodegeneration of parkinsonian disorders—a pilot study. Neuroradiology. 2007;49(2):111–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith SM, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S19.PubMedCrossRefGoogle Scholar
  29. 29.
    Chang CC, et al. Clinical significance of the pallidoreticular pathway in patients with carbon monoxide intoxication. Brain. 2011;134(Pt 12):3632–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Chang CC, et al. Multi-parametric neuroimaging evaluation of cerebrotendinous xanthomatosis and its correlation with neuropsychological presentations. BMC Neurol. 2010;10:59.PubMedCrossRefGoogle Scholar
  31. 31.
    Ghaemi M, et al. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry. 2002;73(5):517–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Burton EJ, et al. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127(Pt 4):791–800.PubMedCrossRefGoogle Scholar
  33. 33.
    Moffat BA, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A. 2005;102(15):5524–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Tessa C, et al. A whole-brain analysis in de novo Parkinson disease. AJNR Am J Neuroradiol. 2008;29(4):674–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Chan LL, et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(12):1383.PubMedCrossRefGoogle Scholar
  36. 36.
    Vaillancourt DE, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72(16):1378.PubMedCrossRefGoogle Scholar
  37. 37.
    Karagulle Kendi AT, et al. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol. 2008;29(3):501–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhan W, et al. Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov Disord. 2012;27(1):90–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Collins SJ, et al. Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J Neurol Neurosurg Psychiatry. 1995;58(2):167–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8(2):387–402.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang JJ, et al. Microstructural changes in patients with progressive supranuclear palsy: a diffusion tensor imaging study. J Magn Reson Imaging. 2010;32(1):69–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Seppi K, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the Parkinson variant of multiple system atrophy. Neurology. 2003;60(6):922–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Whitwell JL, et al. Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch Neurol. 2011;68(6):753–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Knake S, et al. In vivo demonstration of microstructural brain pathology in progressive supranuclear palsy: a DTI study using TBSS. Mov Disord. 2010;25(9):1232–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Tha KK, et al. Microstructural white matter abnormalities of multiple system atrophy: in vivo topographic illustration by using diffusion-tensor MR imaging. Radiology. 2010;255(2):563–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Seppi K, et al. Topography of putaminal degeneration in multiple system atrophy: a diffusion magnetic resonance study. Mov Disord. 2006;21(6):847–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Ito M, et al. Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J Neurol Neurosurg Psychiatry. 2007;78(7):722–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Schocke MF, et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology. 2002;58(4):575–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Pellecchia MT, et al. Diffusion-weighted imaging in multiple system atrophy: a comparison between clinical subtypes. Mov Disord. 2009;24(5):689–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang PS, et al. Use of diffusion tensor imaging to identify similarities and differences between cerebellar and parkinsonism forms of multiple system atrophy. Neuroradiology. 2011;53(7):471–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Makino T, Ito S, Kuwabara S. Involvement of pontine transverse and longitudinal fibers in multiple system atrophy: a tractography-based study. J Neurol Sci. 2011;303(1–2):61–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Wedeen VJ, et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Tuch DS, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Clark CA, LeBihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med. 2000;44(6):852–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang JJ, et al. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology. 2011;261(1):210–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuan CountyTaiwan
  2. 2.Medical Imaging and InterventionChang Gung Memorial Hospital, LinkouTaoyuan CountyTaiwan

Personalised recommendations