Advertisement

Morphometric Analyses in Movement Disorders

  • Bogdan Draganski
  • Ettore A. AccollaEmail author
Chapter
Part of the Current Clinical Neurology book series (CCNEU, volume 44)

Abstract

Computational neuroanatomy based on magnetic resonance imaging (MRI) provides a framework for in vivo assessment of brain structure in movement disorders, demonstrating diagnostic potential in early clinical stages next to ability to monitor therapy effects, and/or disease progression. Recent methodological developments in MR physics and data analysis have brought further insight into the pathophysiology of neurological disorders. Volume-, shape-, and surface-based computational neuroanatomy techniques allow for sensitive and reliable differentiation of phenotype–genotype-related traits and their interaction even at presymptomatic stages of disease. Analysis of multiparameter MR data sheds light on specific brain tissue property changes linking noninvasive imaging with the pathophysiology of a particular movement disorder. Given the steadily growing number of MRI-based computational neuroanatomy studies in movement disorders, this chapter can only focus on major themes within the published literature. The first section of this chapter outlines recent advances in MR data acquisition, processing, and analysis touching on general principles of computational neuroanatomy followed by a section on morphometry in specific movement disorders.

Keywords

Apparent Diffusion Coefficient Fractional Anisotropy Multiple System Atrophy Dementia With Lewy Body Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol. 2003;2(2):79–88.PubMedGoogle Scholar
  2. 2.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.PubMedGoogle Scholar
  3. 3.
    Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med. 2008;60(6):1396–407.PubMedGoogle Scholar
  4. 4.
    Helms G, Finsterbusch J, Weiskopf N, Dechent P. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI. Magn Reson Med. 2008;60(3):739–43.PubMedGoogle Scholar
  5. 5.
    Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N. Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage. 2009;47(1):194–8.PubMedGoogle Scholar
  6. 6.
    Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging. 2009;27(8):1163–74.PubMedGoogle Scholar
  7. 7.
    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–94.PubMedGoogle Scholar
  8. 8.
    Klöppel S, Draganski B, Golding CV, et al. White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain. 2008;131(Pt 1):196–204.PubMedGoogle Scholar
  9. 9.
    Klöppel S, Chu C, Tan GC, et al. Automatic detection of preclinical neurodegeneration: presymptomatic Huntington’s disease. Neurology. 2009;72(5):426–31.PubMedGoogle Scholar
  10. 10.
    Kherif F, Josse G, Seghier ML, Price CJ. The main sources of intersubject variability in neuronal activation for reading aloud. J Cogn Neurosci. 2009;21(4):654–68.PubMedGoogle Scholar
  11. 11.
    Kawasaki Y, Suzuki M, Kherif F, et al. Multivariate voxel-based morphometry succesfully differentiates schizophrenia patients from healthy controls. Neuroimage. 2007;34(1):235–42.PubMedGoogle Scholar
  12. 12.
    Huber SJ, Shuttleworth EC, Christy JA, Chakeres DW, Curtin A, Paulson GW. Magnetic resonance imaging in dementia of Parkinson’s disease. J Neurol Neurosurg Psychiatr. 1989;52(11):1221–7.PubMedGoogle Scholar
  13. 13.
    Laakso MP, Partanen K, Riekkinen P, et al. Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology. 1996;46(3):678–81.PubMedGoogle Scholar
  14. 14.
    Hu MT, White SJ, Chaudhuri KR, Morris RG, Bydder GM, Brooks DJ. Correlating rates of cerebral atrophy in Parkinson’s disease with measures of cognitive decline. J Neural Transm. 2001;108(5):571–80.PubMedGoogle Scholar
  15. 15.
    Pereira JB, Ibarretxe-Bilbao N, Marti M-J, et al. Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp. 2012;33(11):2521–34.PubMedGoogle Scholar
  16. 16.
    Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP. T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease. Mov Disord. 2011;26(9):1633–8.PubMedGoogle Scholar
  17. 17.
    Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199–205.PubMedGoogle Scholar
  18. 18.
    Dexter DT, Wells FR, Agid F, et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet. 1987;2(8569):1219–20.PubMedGoogle Scholar
  19. 19.
    Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991;114(Pt 4):1953–75.PubMedGoogle Scholar
  20. 20.
    Graham JM, Paley MN, Grünewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain. 2000;123(Pt 12):2423–31.PubMedGoogle Scholar
  21. 21.
    Martin WRW, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70(16 Pt 2):1411–7.PubMedGoogle Scholar
  22. 22.
    Sasaki M, Shibata E, Tohyama K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport. 2006;17(11):1215–8.PubMedGoogle Scholar
  23. 23.
    Menke RA, Scholz J, Miller KL, et al. MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study. Neuroimage. 2009;47(2):435–41.PubMedGoogle Scholar
  24. 24.
    Vaillancourt DE, Spraker MB, Prodoehl J, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72(16):1378–84.PubMedGoogle Scholar
  25. 25.
    Du G, Lewis MM, Styner M, et al. Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Mov Disord. 2011;26(9):1627–32.PubMedGoogle Scholar
  26. 26.
    Lyoo CH, Ryu YH, Lee MS. Cerebral cortical areas in which thickness correlates with severity of motor deficits of Parkinson’s disease. J Neurol. 2011;258(10):1871–6.PubMedGoogle Scholar
  27. 27.
    Kassubek J, Juengling FD, Hellwig B, Spreer J, Lücking CH. Thalamic grey matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci Lett. 2002;323(1):29–32.PubMedGoogle Scholar
  28. 28.
    Amboni M, Cozzolino A, Longo K, Picillo M, Barone P. Freezing of gait and executive functions in patients with Parkinson’s disease. Mov Disord. 2008;23(3):395–400.PubMedGoogle Scholar
  29. 29.
    Kostic VS, Agosta F, Pievani M, et al. Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology. 2012;78(6):409–16.PubMedGoogle Scholar
  30. 30.
    Kostić VS, Agosta F, Petrović I, et al. Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology. 2010;75(10):857–63.PubMedGoogle Scholar
  31. 31.
    Blood AJ, Iosifescu DV, Makris N, et al. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder. PLoS ONE. 2010;5(11):e13945.PubMedGoogle Scholar
  32. 32.
    Kim JW, Lee DY, Choo IH, et al. Microstructural alteration of the anterior cingulum is associated with apathy in Alzheimer disease. Am J Geriatr Psychiatry. 2011;19(7):644–53.PubMedGoogle Scholar
  33. 33.
    Reijnders JSAM, Ehrt U, Weber WEJ, Aarsland D, Leentjens AFG. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23(2):183–9; quiz 313.PubMedGoogle Scholar
  34. 34.
    Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127(Pt 4):791–800.PubMedGoogle Scholar
  35. 35.
    Weintraub D, Doshi J, Koka D, et al. Neurodegeneration across stages of cognitive decline in Parkinson disease. Arch Neurol. 2011;68(12):1562–8.PubMedGoogle Scholar
  36. 36.
    Apostolova LG, Beyer M, Green AE, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord. 2010;25(6):687–95.PubMedGoogle Scholar
  37. 37.
    Dalaker TO, Larsen JP, Bergsland N, et al. Brain atrophy and white matter hyperintensities in early Parkinson’s disease(a). Mov Disord. 2009;24(15):2233–41.PubMedGoogle Scholar
  38. 38.
    Dalaker TO, Larsen JP, Dwyer MG, et al. White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson’s disease. Neuroimage. 2009;47(4):2083–9.PubMedGoogle Scholar
  39. 39.
    Beyer MK, Janvin CC, Larsen JP, Aarsland D. A magnetic resonance imaging study of patients with Parkinson’s disease with mild cognitive impairment and dementia using voxel-based morphometry. J Neurol Neurosurg Psychiatr. 2007;78(3):254–9.PubMedGoogle Scholar
  40. 40.
    Bouchard TP, Malykhin N, Martin WRW, et al. Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease. Neurobiol Aging. 2008;29(7):1027–39.PubMedGoogle Scholar
  41. 41.
    Martin WRW, Wieler M, Gee M, Camicioli R. Temporal lobe changes in early, untreated Parkinson’s disease. Mov Disord. 2009;24(13):1949–54.PubMedGoogle Scholar
  42. 42.
    Camicioli R, Gee M, Bouchard TP, et al. Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism Relat Disord. 2009;15(3):187–95.PubMedGoogle Scholar
  43. 43.
    Lyoo CH, Ryu YH, Lee MS. Topographical distribution of cerebral cortical thinning in patients with mild Parkinson’s disease without dementia. Mov Disord. 2010;25(4):496–9.PubMedGoogle Scholar
  44. 44.
    Sanchez-Castaneda C, Rene R, Ramirez-Ruiz B, et al. Correlations between gray matter reductions and cognitive deficits in dementia with Lewy bodies and Parkinson’s disease with dementia. Mov Disord. 2009;24(12):1740–6.PubMedGoogle Scholar
  45. 45.
    Lee JE, Park H-J, Park B, et al. A comparative analysis of cognitive profiles and white-matter alterations using voxel-based diffusion tensor imaging between patients with Parkinson’s disease dementia and dementia with Lewy bodies. J Neurol Neurosurg Psychiatr. 2010;81(3):320–6.PubMedGoogle Scholar
  46. 46.
    Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.PubMedGoogle Scholar
  47. 47.
    Wattendorf E, Welge-Lüssen A, Fiedler K, et al. Olfactory impairment predicts brain atrophy in Parkinson’s disease. J Neurosci. 2009;29(49):15410–3.PubMedGoogle Scholar
  48. 48.
    Rolheiser TM, Fulton HG, Good KP, et al. Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol. 2011;258(7):1254–60.PubMedGoogle Scholar
  49. 49.
    Gattellaro G, Minati L, Grisoli M, et al. White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2009;30(6):1222–6.PubMedGoogle Scholar
  50. 50.
    Karagulle Kendi AT, Lehericy S, Luciana M, Ugurbil K, Tuite P. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol. 2008;29(3):501–5.PubMedGoogle Scholar
  51. 51.
    Jubault T, Brambati SM, Degroot C, et al. Regional brain stem atrophy in idiopathic Parkinson’s disease detected by anatomical MRI. PLoS ONE. 2009;4(12):e8247.PubMedGoogle Scholar
  52. 52.
    Colosimo C, Riley DE, Wenning GK. Handbook of atypical Parkinsonism. Cambridge: Cambridge University Press; 2011.Google Scholar
  53. 53.
    Stamelou M, Knake S, Oertel WH, Höglinger GU. Magnetic resonance imaging in progressive supranuclear palsy. J Neurol. 2011;258(4):549–58.PubMedGoogle Scholar
  54. 54.
    Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol. 2007;17(1):74–82.PubMedGoogle Scholar
  55. 55.
    Brenneis C, Seppi K, Schocke M, Benke T, Wenning GK, Poewe W. Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatr. 2004;75(2):246–9.PubMedGoogle Scholar
  56. 56.
    Price S, Paviour D, Scahill R, et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson’s disease. Neuroimage. 2004;23(2):663–9.PubMedGoogle Scholar
  57. 57.
    Ling H, O’Sullivan SS, Holton JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain. 2010;133(Pt 7):2045–57.PubMedGoogle Scholar
  58. 58.
    Boxer AL, Geschwind MD, Belfor N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63(1):81–6.PubMedGoogle Scholar
  59. 59.
    Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging. 2008;29(2):280–9.PubMedGoogle Scholar
  60. 60.
    Rizzo G, Martinelli P, Manners D, et al. Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain. 2008;131(Pt 10):2690–700.PubMedGoogle Scholar
  61. 61.
    Minnerop M, Specht K, Ruhlmann J, et al. Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy-a comparison between clinical subtypes and correlations with clinical parameters. Neuroimage. 2007;36(4):1086–95.PubMedGoogle Scholar
  62. 62.
    Brenneis C, Egger K, Scherfler C, et al. Progression of brain atrophy in multiple system atrophy. A longitudinal VBM study. J Neurol. 2007;254(2):191–6.PubMedGoogle Scholar
  63. 63.
    Tsukamoto K, Matsusue E, Kanasaki Y, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson’s disease: evaluation by 3.0-T MR imaging. Neuroradiology. 2012;54(9):947–55.PubMedGoogle Scholar
  64. 64.
    Quattrone A, Nicoletti G, Messina D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008;246(1):214–21.PubMedGoogle Scholar
  65. 65.
    Schulz JB, Skalej M, Wedekind D, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol. 1999;45(1):65–74.PubMedGoogle Scholar
  66. 66.
    Warmuth-Metz M, Naumann M, Csoti I, Solymosi L. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol. 2001;58(7):1076–9.PubMedGoogle Scholar
  67. 67.
    Focke NK, Helms G, Pantel PM, et al. Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. AJNR Am J Neuroradiol. 2011;32(11):2087–92.PubMedGoogle Scholar
  68. 68.
    Marsden CD, Obeso JA, Zarranz JJ, Lang AE. The anatomical basis of symptomatic hemidystonia. Brain. 1985;108(Pt 2):463–83.PubMedGoogle Scholar
  69. 69.
    Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117(Pt 4):859–76.PubMedGoogle Scholar
  70. 70.
    Guehl D, Cuny E, Ghorayeb I, Michelet T, Bioulac B, Burbaud P. Primate models of dystonia. Progress in Neurobiology. 2009;87(2):118–31.PubMedGoogle Scholar
  71. 71.
    Black KJ, Ongür D, Perlmutter JS. Putamen volume in idiopathic focal dystonia. Neurology. 1998;51(3):819–24.PubMedGoogle Scholar
  72. 72.
    Etgen T, Mühlau M, Gaser C, Sander D. Bilateral grey-matter increase in the putamen in primary blepharospasm. J Neurol Neurosurg Psychiatr. 2006;77(9):1017–20.PubMedGoogle Scholar
  73. 73.
    Bradley D, Whelan R, Walsh R, et al. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain. 2009;132(Pt 9):2327–35.PubMedGoogle Scholar
  74. 74.
    Obermann M, Yaldizli O, De Greiff A, et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord. 2007;22(8):1117–23.PubMedGoogle Scholar
  75. 75.
    Pantano P, Totaro P, Fabbrini G, et al. A transverse and longitudinal MR imaging voxel-based morphometry study in patients with primary cervical dystonia. AJNR Am J Neuroradiol. 2011;32(1):81–4.PubMedGoogle Scholar
  76. 76.
    Egger K, Mueller J, Schocke M, et al. Voxel based morphometry reveals specific gray matter changes in primary dystonia. Mov Disord. 2007;22(11):1538–42.PubMedGoogle Scholar
  77. 77.
    Granert O, Peller M, Jabusch H-C, Altenmüller E, Siebner HR. Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psychiatr. 2011;82(11):1225–31.PubMedGoogle Scholar
  78. 78.
    Neychev VK, Gross RE, Lehéricy S, et al. The functional neuroanatomy of dystonia. Neurobiol Dis. 2011;42(2):185–201.PubMedGoogle Scholar
  79. 79.
    Draganski B, Thun-Hohenstein C, Bogdahn U, Winkler J, May A. “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61(9):1228–31.PubMedGoogle Scholar
  80. 80.
    Draganski B, Schneider SA, Fiorio M, et al. Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. Neuroimage. 2009;47(4):1141–7.PubMedGoogle Scholar
  81. 81.
    Garraux G, Bauer A, Hanakawa T, Wu T, Kansaku K, Hallett M. Changes in brain anatomy in focal hand dystonia. Ann Neurol. 2004;55(5):736–9.PubMedGoogle Scholar
  82. 82.
    Delmaire C, Vidailhet M, Elbaz A, et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer’s cramp. Neurology. 2007;69(4):376–80.PubMedGoogle Scholar
  83. 83.
    Delmaire C, Vidailhet M, Wassermann D, et al. Diffusion abnormalities in the primary sensorimotor pathways in writer’s cramp. Arch Neurol. 2009;66(4):502–8.PubMedGoogle Scholar
  84. 84.
    Colosimo C, Pantano P, Calistri V, Totaro P, Fabbrini G, Berardelli A. Diffusion tensor imaging in primary cervical dystonia. J Neurol Neurosurg Psychiatr 2005;76(11):1591–3.PubMedGoogle Scholar
  85. 85.
    Fabbrini G, Pantano P, Totaro P, et al. Diffusion tensor imaging in patients with primary cervical dystonia and in patients with blepharospasm. Eur J Neurol. 2008;15(2):185–9.PubMedGoogle Scholar
  86. 86.
    Sadnicka A, Hoffland BS, Bhatia KP, van de Warrenburg BP, Edwards MJ. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.PubMedGoogle Scholar
  87. 87.
    Ozelius LJ, Bressman SB. Genetic and clinical features of primary torsion dystonia. Neurobiol Dis. 2011;42(2):127–35.PubMedGoogle Scholar
  88. 88.
    Meunier S, Lehéricy S, Garnero L, Vidailhet M. Dystonia: lessons from brain mapping. Neuroscientist. 2003;9(1):76–81.PubMedGoogle Scholar
  89. 89.
    Argyelan M, Carbon M, Niethammer M, et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7.PubMedGoogle Scholar
  90. 90.
    Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.PubMedGoogle Scholar
  91. 91.
    Aylward E, Mills J, Liu D, et al. Association between age and striatal volume stratified by CAG repeat length in prodromal Huntington’s disease. PLoS Curr. 2011;3:RRN1235.PubMedGoogle Scholar
  92. 92.
    Klöppel S, Henley SM, Hobbs NZ, et al. Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience. 2009;164(1):205–19.PubMedGoogle Scholar
  93. 93.
    Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F. Longitudinal analysis of regional grey matter loss in Huntington’s disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry. 2008;79(2):130–5.PubMedGoogle Scholar
  94. 94.
    Rosas HD, Reuter M, Doros G, et al. A tale of two factors: what determines the rate of progression in Huntington’s disease? A longitudinal MRI study. Movement Disorders. 2011;26(9):1691–7.PubMedGoogle Scholar
  95. 95.
    Rosas HD, Salat DH, Lee SY, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain. 2008;131(Pt 4):1057–68.PubMedGoogle Scholar
  96. 96.
    Douaud G, Behrens TE, Poupon C, et al. In vivo evidence for the selective subcortical degeneration in Huntington’s disease. NeuroImage. 2009;46(4):958–66.PubMedGoogle Scholar
  97. 97.
    Rosas HD, Lee SY, Bender AC, et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection.” Neuroimage. 2010;49(4):2995–3004.PubMedGoogle Scholar
  98. 98.
    Majid DSA, Stoffers D, Sheldon S, et al. Automated structural imaging analysis detects premanifest Huntington’s disease neurodegeneration within 1 year. Movement Disorders. 2011;26(8):1481–8.PubMedGoogle Scholar
  99. 99.
    Mandelli ML, Savoiardo M, Minati L, et al. Decreased diffusivity in the caudate nucleus of presymptomatic Huntington’s’s disease gene carriers: which explanation? AJNR Am J Neuroradiol. 2010;31(4):706–10.PubMedGoogle Scholar
  100. 100.
    Soneson C, Fontes M, Zhou Y, et al. Early changes in the hypothalamic region in prodromal Huntington’s disease revealed by MRI analysis. Neurobiol Dis. 2010;40(3):531–43.PubMedGoogle Scholar
  101. 101.
    Nopoulos PC, Aylward EH, Ross CA, et al. Cerebral cortex structure in prodromal Huntington’s disease. Neurobiol Dis. 2010;40(3):544–54.PubMedGoogle Scholar
  102. 102.
    Nopoulos PC, Aylward EH, Ross CA, et al. Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment. Brain. 2011;134(Pt 1):137–42.PubMedGoogle Scholar
  103. 103.
    Jurgens CK, Bos R, Luyendijk J, et al. Magnetization transfer imaging in “premanifest” Huntington’s disease. J Neurol. 2010;257(3):426–32.PubMedGoogle Scholar
  104. 104.
    Rosas HD, Chen YI, Doros G, et al. Alterations in brain transition metals in Huntington’s disease: an evolving and intricate story. Arch Neurol. 2012;69(7):887–93.PubMedGoogle Scholar
  105. 105.
    Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain. 2000;123(Pt 8):1568–80.PubMedGoogle Scholar
  106. 106.
    Louis ED, Vonsattel JPG. The emerging neuropathology of essential tremor. Mov Disord. 2008;23(2):174–82.PubMedGoogle Scholar
  107. 107.
    Quattrone A, Cerasa A, Messina D, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol. 2008;29(9):1692–7.PubMedGoogle Scholar
  108. 108.
    A Cerasa, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol. 2009;30(6):1240–3.Google Scholar
  109. 109.
    Klein JC, Lorenz B, Kang J-S, et al. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp. 2011;32(6):896–904.PubMedGoogle Scholar
  110. 110.
    Saini J, Bagepally BS, Bhatt MD, et al. Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord. 2012;18(5):477–82.PubMedGoogle Scholar
  111. 111.
    Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.PubMedGoogle Scholar
  112. 112.
    Louis ED. Essential tremors: a family of neurodegenerative disorders? Arch Neurol. 2009;66(10):1202–8.PubMedGoogle Scholar
  113. 113.
    Benito-León J, Alvarez-Linera J, Hernández-Tamames JA, Alonso-Navarro H, Jiménez-Jiménez FJ, Louis ED. Brain structural changes in essential tremor: voxel-based morphometry at 3-T. J Neurol Sci. 2009;287(1-2):138–142.PubMedGoogle Scholar
  114. 114.
    Bagepally BS, Bhatt MD, Chandran V, et al. Decrease in cerebral and cerebellar gray matter in essential tremor: a voxel-based morphometric analysis under 3T MRI. J Neuroimaging. 2012;22(3):275–8.PubMedGoogle Scholar
  115. 115.
    Peterson BS, Staib L, Scahill L, et al. Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry. 2001;58(5):427–40.PubMedGoogle Scholar
  116. 116.
    Draganski B, Martino D, Cavanna AE, et al. Multispectral brain morphometry in Tourette syndrome persisting into adulthood. Brain. 2010;133(Pt 12):3661–75.PubMedGoogle Scholar
  117. 117.
    Ludolph AG, Juengling FD, Libal G, Ludolph AC, Fegert JM, Kassubek J. Grey-matter abnormalities in boys with Tourette syndrome: magnetic resonance imaging study using optimised voxel-based morphometry. Br J Psychiatry. 2006;188(5):484–5.PubMedGoogle Scholar
  118. 118.
    Müller-Vahl KR, Kaufmann J, Grosskreutz J, Dengler R, Emrich HM, Peschel T. Prefrontal and anterior cingulate cortex abnormalities in Tourette syndrome: evidence from voxel-based morphometry and magnetization transfer imaging. BMC Neuroscience. 2009;10(1):47.PubMedGoogle Scholar
  119. 119.
    Worbe Y, Gerardin E, Hartmann A, et al. Distinct structural changes underpin clinical phenotypes in patients with Gilles de La Tourette syndrome. Brain. 2010;133(12):3649–60.PubMedGoogle Scholar
  120. 120.
    O’Doherty JP, Hampton A, Kim H. Model-based fMRI and its application to reward learning and decision making. Ann N Y Acad Sci. 2007;1104(1):35–53.Google Scholar
  121. 121.
    Wittfoth M, Bornmann S, Peschel T, et al. Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM. BMC Neurosci. 2012;13:17.PubMedGoogle Scholar
  122. 122.
    van den Heuvel OA, Remijnse PL, Mataix-Cols D, et al. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain. 2009;132(Pt 4):853–68.PubMedGoogle Scholar
  123. 123.
    Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26.PubMedGoogle Scholar
  124. 124.
    Ramus SJ, Davis JB, Donahue RJ, Diszenca CB, Waite AA. Interactions between the orbitofrontal cortex and the hippocampal memory system during the storage of long-term memory. Ann N Y Acad Sci. 2007;1121(1):216–31.PubMedGoogle Scholar
  125. 125.
    Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev Neurosci. 2001;2(6):417–24.Google Scholar
  126. 126.
    Bloch MH, Leckman JF, Zhu H, Peterson BS. Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology. 2005;65(8):1253–8.PubMedGoogle Scholar
  127. 127.
    Peterson BS, Thomas P, Kane MJ, et al. Basal ganglia volumes in patients with Gilles de la Tourette syndrome. Arch General Psychiatry. 2003;60(4):415.Google Scholar
  128. 128.
    Peterson B, Riddle MA, Cohen DJ, et al. Reduced basal ganglia volumes in Tourette’s syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology. 1993;43(5):941–9.PubMedGoogle Scholar
  129. 129.
    Makki MI, Govindan RM, Wilson BJ, Behen ME, Chugani HT. Altered fronto-striato-thalamic connectivity in children with Tourette syndrome assessed with diffusion tensor MRI and probabilistic fiber tracking. J Child Neurol. 2009;24(6):669–78.PubMedGoogle Scholar
  130. 130.
    Wheeler-Kingshott CAM, Cercignani M. About “axial” and “radial” diffusivities. Magnet Reson Med. 2009;61(5):1255–60.Google Scholar
  131. 131.
    Ferretti A, Babiloni C, Gratta CD, et al. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage. 2003;20(3):1625–38.PubMedGoogle Scholar
  132. 132.
    Fahim C, Yoon U, Das S, et al. Somatosensory-motor bodily representation cortical thinning in Tourette: effects of tic severity, age and gender. Cortex. 2010;46(6):750–60.PubMedGoogle Scholar
  133. 133.
    Sowell ER, Kan E, Yoshii J, et al. Thinning of sensorimotor cortices in children with Tourette syndrome. Nat Neurosci. 2008;11(6):637–9.PubMedGoogle Scholar
  134. 134.
    Deng H, Gao K, Jankovic J. The genetics of Tourette syndrome. Nat Rev Neurol. 2012;8(4):203–13.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Human Cognitive and Brain SciencesCentre Hospitalier Universitaire Vaudois (CHUV)LeipzigGermany
  2. 2.Mind Brain InstituteCharité and Humboldt UniversityBerlinGermany
  3. 3.LREN, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV)Université de LausanneLausanneSwitzerland
  4. 4.Campus Virchow KlinikumCharité University Medicine BerlinBerlinGermany
  5. 5.Department of Neurology, Campus Virchow KlinikumCharité – University Medicine BerlinBerlinGermany

Personalised recommendations