Advertisement

Neuroimaging of Basal Ganglia Calcifications

  • Norbert BrüggemannEmail author
  • Johann Hagenah
Chapter
Part of the Current Clinical Neurology book series (CCNEU, volume 44)

Abstract

Basal ganglia calcifications are a frequent neuroimaging finding upon cerebral computerized tomography (CT) and may incidentally be identified in about 1 % of otherwise normal elderly subjects. The clinical picture of symptomatic basal ganglia calcifications includes neuropsychiatric abnormalities and movement disorders. Idiopathic cases, often referred to as Fahr’s disease, idiopathic basal ganglia calcification (IBGC) or bilateral striato-pallido-dentate calcinosis (BSPDC), are either familial, mostly with an autosomal dominant mode of inheritance, or, less commonly, sporadic. Secondary causes such as disorders of calcium metabolism, vascular malformations, phacomatoses, tumors, or parasitical infections of the central nervous system may also lead to intracranial mineralization deposits. Apart from the basal ganglia (striatum and pallidum), a variety of anatomical structures can be affected by calcification, including the dentate nucleus, thalamus, and subcortical white matter. Calcifications typically show a symmetric distribution and differ in intensity and localization among affected subjects. Cerebral CT is the diagnostic gold standard to verify intracerebral calcifications. In contrast, magnetic resonance imaging (MRI) appears to have a rather low sensitivity and specificity and often MRI results remain inconclusive. Recently, transcranial sonography was consistently shown to reveal symmetric hyperechogenic areas of the basal ganglia corresponding to mineralization in patients with BSPDC. However, systemic investigations on the diagnostic value are lacking. Functional radioligand imaging methods provide an opportunity to demonstrate changes in the nigrostriatal function, local brain perfusion, and glucose metabolism. This chapter aims to clarify the heterogeneous terminology of basal ganglia calcifications and addresses the etiology and diagnostic approaches. Assets and drawbacks of different diagnostic tools are discussed.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Basal Ganglion Spinocerebellar Ataxia Transcranial Sonography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kiroglu Y, Calli C, Karabulut N, Oncel C. Intracranial calcifications on CT. Diagn Interv Radiol. 2010;16(4):263–9.PubMedGoogle Scholar
  2. 2.
    Murphy MJ. Clinical correlations of CT scan-detected calcifications of the basal ganglia. Ann Neurol. 1979;6(6):507–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Vles JS, Lodder J, van der Lugt PJ. Clinical significance of basal ganglia calcifications detected by CT (a retrospective study of 33 cases). Clin Neurol Neurosurg. 1981;83(4):253–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Harrington MG, Macpherson P, McIntosh WB, Allam BF, Bone I. The significance of the incidental finding of basal ganglia calcification on computed tomography. J Neurol Neurosurg Psychiatry. 1981;44(12):1168–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Kazis AD. Contribution of CT scan to the diagnosis of Fahr’s syndrome. Acta Neurol Scand. 1985;71(3):206–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Stellamor K, Stellamor V. Roentgen diagnosis of Fahr’s disease. Rontgenblatter. 1983;36(6):194–6.PubMedGoogle Scholar
  7. 7.
    Konig P. Psychopathological alterations in cases of symmetrical basal ganglia sclerosis. Biol Psychiatry. 1989;25(4):459–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen CR, Duchesneau PM, Weinstein MA. Calcification of the basal ganglia as visualized by computed tomography. Radiology. 1980;134(1):97–9.PubMedGoogle Scholar
  9. 9.
    Tedrus GM, Fonseca LC, Nogueira E Jr. Basal ganglia calcification on computed tomography: clinical characteristics in 25 patients. Arq Neuropsiquiatr. 2006;64(1):104–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Forstl H, Krumm B, Eden S, Kohlmeyer K. Neurological disorders in 166 patients with basal ganglia calcification: a statistical evaluation. J Neurol. 1992;239(1):36–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Fahr T. Idiopathische Verkalkung der Hirngefäße. Zentralbl Allg Pathol. 1930;50:129–33.Google Scholar
  12. 12.
    Klein C, Vieregge P. Fahr’s disease—far from a disease. Mov Disord. 1998;13(3):620–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Delacour A. Ossification des capilaires du cerveau. Ann Med Psychol. 1850;2:458–61.Google Scholar
  14. 14.
    Manyam BV. What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord. 2005;11(2):73–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Geschwind DH, Loginov M, Stern JM. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999;65(3):764–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Volpato CB, De Grandi A, Buffone E, et al. 2q37 as a susceptibility locus for idiopathic basal ganglia calcification (IBGC) in a large South Tyrolean family. J Mol Neurosci. 2009;39(3):346–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Dai X, Gao Y, Xu Z, et al. Identification of a novel genetic locus on chromosome 8p21.1-q11.23 for idiopathic basal ganglia calcification. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(7):1305–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang C, Li Y, Shi L, et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012;44(3):254–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Brodaty H, Mitchell P, Luscombe G, et al. Familial idiopathic basal ganglia calcification (Fahr’s disease) without neurological, cognitive and psychiatric symptoms is not linked to the IBGC1 locus on chromosome 14q. Hum Genet. 2002;110(1):8–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Oliveira JR, Spiteri E, Sobrido MJ, et al. Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease). Neurology. 2004;63(11):2165–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Kostic VS, Lukic-Jecmenica M, Novakovic I, et al. Exclusion of linkage to chromosomes 14q, 2q37 and 8p21.1-q11.23 in a Serbian family with idiopathic basal ganglia calcification. J Neurol. 2011;258(9):1637–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Kobari M, Nogawa S, Sugimoto Y, Fukuuchi Y. Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology. 1997;48(3):645–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellie E, Julien J, Ferrer X. Familial idiopathic striopallidodentate calcifications. Neurology. 1989;39(3):381–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Miklossy J, Mackenzie IR, Dorovini-Zis K, et al. Severe vascular disturbance in a case of familial brain calcinosis. Acta Neuropathol. 2005;109(6):643–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Wszolek ZK, Baba Y, Mackenzie IR, et al. Autosomal dominant dystonia-plus with cerebral calcifications. Neurology. 2006;67(4):620–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Sobrido MJ, Hopfer S, Geschwind DH. Familial idiopathic basal ganglia calcification. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle (WA); 1993.Google Scholar
  27. 27.
    Bonazza S, La Morgia C, Martinelli P, Capellari S. Strio-pallido-dentate calcinosis: a diagnostic approach in adult patients. Neurol Sci. 2011;32(4):537–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Manyam BV, Bhatt MH, Moore WD, Devleschoward AB, Anderson DR, Calne DB. Bilateral striopallidodentate calcinosis: cerebrospinal fluid, imaging, and electrophysiological studies. Ann Neurol. 1992;31(4):379–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Manyam BV, Walters AS, Narla KR. Bilateral striopallidodentate calcinosis: clinical characteristics of patients seen in a registry. Mov Disord. 2001;16(2):258–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Manyam BV, Walters AS, Keller IA, Ghobrial M. Parkinsonism associated with autosomal dominant bilateral striopallidodentate calcinosis. Parkinsonism Relat Disord. 2001;7(4):289–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Bruggemann N, Schneider SA, Sander T, Klein C, Hagenah J. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord. 2010;25(15):2661–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Hui JS, Lew MF. Calcification of the basal ganglia. Handb Clin Neurol. 2007;84:479–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Diaz GE, Wirrell EC, Matsumoto JY, Krecke KN. Bilateral striopallidodentate calcinosis with paroxysmal kinesigenic dyskinesia. Pediatr Neurol. 2010;43(1):46–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Saiki M, Saiki S, Sakai K, et al. Neurological deficits are associated with increased brain calcinosis, hypoperfusion, and hypometabolism in idiopathic basal ganglia calcification. Mov Disord. 2007;22(7):1027–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Klein C, Vieregge P, Kompf D. Paroxysmal choreoathetosis in a patient with idiopathic basal ganglia calcification, chorea, and dystonia. Mov Disord. 1997;12(2):254–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Micheli F, Fernandez Pardal MM, Casas Parera I, Giannaula R. Sporadic paroxysmal dystonic choreoathetosis associated with basal ganglia calcifications. Ann Neurol. 1986;20(6):750.PubMedCrossRefGoogle Scholar
  37. 37.
    Cummings JL, Gosenfeld LF, Houlihan JP, McCaffrey T. Neuropsychiatric disturbances associated with idiopathic calcification of the basal ganglia. Biol Psychiatry. 1983;18(5):591–601.PubMedGoogle Scholar
  38. 38.
    Koller WC, Cochran JW, Klawans HL. Calcification of the basal ganglia: computerized tomography and clinical correlation. Neurology. 1979;29(3):328–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Sachs C, Ericson K, Erasmie U, Bergstrom M. Incidence of basal ganglia calcifications on computed tomography. J Comput Assist Tomogr. 1979;3(3):339–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Koller WC, Klawans HL. Cerebellar calcification on computerized tomography. Ann Neurol. 1980;7(2):193–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Taxer F, Haller R, Konig P. Clinical early symptoms and CT findings in Fahr syndrome. Nervenarzt. 1986;57(10):583–8.PubMedGoogle Scholar
  42. 42.
    Vermersch P, Leys D, Pruvo JP, Clarisse J, Petit H. Parkinson’s disease and basal ganglia calcifications: prevalence and clinico-radiological correlations. Clin Neurol Neurosurg. 1992;94(3):213–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Shibayama H, Kobayashi H, Nakagawa M, et al. Non-Alzheimer non-Pick dementia with Fahr’s syndrome. Clin Neuropathol. 1992;11(5):237–50.PubMedGoogle Scholar
  44. 44.
    Manyam BV, Bhatt MH, Moore WD, Devleschoward AB, Anderson DR, Calne DB. Bilateral striopallidodentate calcinosis: cerebrospinal fluid, imaging, and electrophysiological studies. Ann Neurol. 1992;31(4):379–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Avrahami E, Cohn DF, Feibel M, Tadmor R. MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral calcification. J Neurol. 1994;241(6):381–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Holland BA, Kucharczyk W, Brant-Zawadzki M, Norman D, Haas DK, Harper PS. MR imaging of calcified intracranial lesions. Radiology. 1985;157(2):353–6.PubMedGoogle Scholar
  47. 47.
    Oot RF, New PF, Pile-Spellman J, Rosen BR, Shoukimas GM, Davis KR. The detection of intracranial calcifications by MR. AJNR Am J Neuroradiol. 1986;7(5):801–9.PubMedGoogle Scholar
  48. 48.
    Kozic D, Todorovic-Djilas L, Semnic R, Miucin-Vukadinovic I, Lucic M. MR imaging—an unreliable and potentially misleading diagnostic modality in patients with intracerebral calcium depositions. Case report. Neuro Endocrinol Lett. 2009;30(5):553–7.PubMedGoogle Scholar
  49. 49.
    Henkelman RM, Watts JF, Kucharczyk W. High signal intensity in MR images of calcified brain tissue. Radiology. 1991;179(1):199–206.PubMedGoogle Scholar
  50. 50.
    Bottcher J, Sauner D, Jentsch A, et al. Visualization of symmetric striopallidodentate calcinosis by using high-resolution susceptibility-weighted MR imaging. An account of the impact of different diagnostic methods of M. Fahr. Nervenarzt. 2004;75(4):355–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith FW, Gemmell HG, Sharp PF, Besson JA. Technetium-99m HMPAO imaging in patients with basal ganglia disease. Br J Radiol. 1988;61(730):914–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Scotti G, Scialfa G, Tampieri D, Landoni L. MR imaging in Fahr disease. J Comput Assist Tomogr. 1985;9(4):790–2.PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshikawa H, Abe T. Transient parkinsonism in bilateral striopallidodentate calcinosis. Pediatr Neurol. 2003;29(1):75–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Vlaar AM, Bouwmans A, Mess WH, Tromp SC, Weber WE. Transcranial duplex in the differential diagnosis of parkinsonian syndromes: a systematic review. J Neurol. 2009;256(4):530–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol. 2008;7(11):1044–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Walter U, Dressler D, Probst T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64(11):1635–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Postert T, Lack B, Kuhn W, et al. Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry. 1999;67(4):457–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Walter U, Wagner S, Horowski S, Benecke R, Zettl UK. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology. 2009;73(13):1010–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Naumann M, Becker G, Toyka KV, Supprian T, Reiners K. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology. 1996;47(5):1284–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Walter U, Buttkus F, Benecke R, Grossmann A, Dressler D, Altenmuller E. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians. Neurodegener Dis. 2012;9(2):99–103.PubMedCrossRefGoogle Scholar
  61. 61.
    Postert T, Eyding J, Berg D, et al. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl. 2004;68:123–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D. Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology. 2005;64(10):1726–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Svetel M, Mijajlovic M, Tomic A, Kresojevic N, Pekmezovic T, Kostic VS. Transcranial sonography in Wilson’s disease. Parkinsonism Relat Disord. 2012;18(3):234–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Zecca L, Berg D, Arzberger T, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20(10):1278–85.PubMedCrossRefGoogle Scholar
  65. 65.
    van Wezel-Meijler G, Leijser LM, Wiggers-de Bruine FT, Steggerda SJ, van der Grond J, Walther FJ. Diffuse hyperechogenicity of basal ganglia and thalami in preterm neonates: a physiologic finding? Radiology. 2011;258(3):944–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Toscano M, Canevelli M, Giacomelli E, et al. Transcranial sonography of basal ganglia calcifications in Fahr disease. J Ultrasound Med. 2011;30(7):1032–33.PubMedGoogle Scholar
  67. 67.
    Uygur GA, Liu Y, Hellman RS, Tikofsky RS, Collier BD. Evaluation of regional cerebral blood flow in massive intracerebral calcifications. J Nucl Med. 1995;36(4):610–2.PubMedGoogle Scholar
  68. 68.
    Paschali A, Lakiotis V, Messinis L, et al. Dopamine transporter SPECT/CT and perfusion brain SPECT imaging in idiopathic basal ganglia calcinosis. Clin Nucl Med. 2009;34(7):421–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Ones T, Dede F, Gunal D, et al. The clinical utility of 99mTc-HMPAO SPECT in Fahr’s disease. Ann Nucl Med. 2008;22(5):425–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Ogi S, Fukumitsu N, Tsuchida D, Uchiyama M, Mori Y, Matsui K. Imaging of bilateral striopallidodentate calcinosis. Clin Nucl Med. 2002;27(10):721–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Hempel A, Henze M, Berghoff C, Garcia N, Ody R, Schroder J. PET findings and neuropsychological deficits in a case of Fahr’s disease. Psychiatry Res. 2001;108(2):133–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Benke T, Karner E, Seppi K, Delazer M, Marksteiner J, Donnemiller E. Subacute dementia and imaging correlates in a case of Fahr’s disease. J Neurol Neurosurg Psychiatry. 2004;75(8):1163–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Le Ber I, Marie RM, Lalevee C, Chabot B, Allouche S, Defer GL. Familial idiopathic striato-pallido-dentate calcifications: clinical and brain imaging study in a family. Rev Neurol (Paris). 2003;159(1):43–9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of LübeckLübeckGermany
  2. 2.Department of NeurologyWestküstenklinikum HeideHeideGermany

Personalised recommendations