Skip to main content

Neuroimaging of Basal Ganglia Calcifications

  • Chapter
  • First Online:
Neuroimaging of Movement Disorders

Part of the book series: Current Clinical Neurology ((CCNEU,volume 44))

  • 1986 Accesses

Abstract

Basal ganglia calcifications are a frequent neuroimaging finding upon cerebral computerized tomography (CT) and may incidentally be identified in about 1 % of otherwise normal elderly subjects. The clinical picture of symptomatic basal ganglia calcifications includes neuropsychiatric abnormalities and movement disorders. Idiopathic cases, often referred to as Fahr’s disease, idiopathic basal ganglia calcification (IBGC) or bilateral striato-pallido-dentate calcinosis (BSPDC), are either familial, mostly with an autosomal dominant mode of inheritance, or, less commonly, sporadic. Secondary causes such as disorders of calcium metabolism, vascular malformations, phacomatoses, tumors, or parasitical infections of the central nervous system may also lead to intracranial mineralization deposits. Apart from the basal ganglia (striatum and pallidum), a variety of anatomical structures can be affected by calcification, including the dentate nucleus, thalamus, and subcortical white matter. Calcifications typically show a symmetric distribution and differ in intensity and localization among affected subjects. Cerebral CT is the diagnostic gold standard to verify intracerebral calcifications. In contrast, magnetic resonance imaging (MRI) appears to have a rather low sensitivity and specificity and often MRI results remain inconclusive. Recently, transcranial sonography was consistently shown to reveal symmetric hyperechogenic areas of the basal ganglia corresponding to mineralization in patients with BSPDC. However, systemic investigations on the diagnostic value are lacking. Functional radioligand imaging methods provide an opportunity to demonstrate changes in the nigrostriatal function, local brain perfusion, and glucose metabolism. This chapter aims to clarify the heterogeneous terminology of basal ganglia calcifications and addresses the etiology and diagnostic approaches. Assets and drawbacks of different diagnostic tools are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiroglu Y, Calli C, Karabulut N, Oncel C. Intracranial calcifications on CT. Diagn Interv Radiol. 2010;16(4):263–9.

    PubMed  Google Scholar 

  2. Murphy MJ. Clinical correlations of CT scan-detected calcifications of the basal ganglia. Ann Neurol. 1979;6(6):507–11.

    Article  PubMed  CAS  Google Scholar 

  3. Vles JS, Lodder J, van der Lugt PJ. Clinical significance of basal ganglia calcifications detected by CT (a retrospective study of 33 cases). Clin Neurol Neurosurg. 1981;83(4):253–6.

    Article  PubMed  CAS  Google Scholar 

  4. Harrington MG, Macpherson P, McIntosh WB, Allam BF, Bone I. The significance of the incidental finding of basal ganglia calcification on computed tomography. J Neurol Neurosurg Psychiatry. 1981;44(12):1168–70.

    Article  PubMed  CAS  Google Scholar 

  5. Kazis AD. Contribution of CT scan to the diagnosis of Fahr’s syndrome. Acta Neurol Scand. 1985;71(3):206–11.

    Article  PubMed  CAS  Google Scholar 

  6. Stellamor K, Stellamor V. Roentgen diagnosis of Fahr’s disease. Rontgenblatter. 1983;36(6):194–6.

    PubMed  CAS  Google Scholar 

  7. Konig P. Psychopathological alterations in cases of symmetrical basal ganglia sclerosis. Biol Psychiatry. 1989;25(4):459–68.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen CR, Duchesneau PM, Weinstein MA. Calcification of the basal ganglia as visualized by computed tomography. Radiology. 1980;134(1):97–9.

    PubMed  CAS  Google Scholar 

  9. Tedrus GM, Fonseca LC, Nogueira E Jr. Basal ganglia calcification on computed tomography: clinical characteristics in 25 patients. Arq Neuropsiquiatr. 2006;64(1):104–7.

    Article  PubMed  Google Scholar 

  10. Forstl H, Krumm B, Eden S, Kohlmeyer K. Neurological disorders in 166 patients with basal ganglia calcification: a statistical evaluation. J Neurol. 1992;239(1):36–8.

    Article  PubMed  CAS  Google Scholar 

  11. Fahr T. Idiopathische Verkalkung der Hirngefäße. Zentralbl Allg Pathol. 1930;50:129–33.

    Google Scholar 

  12. Klein C, Vieregge P. Fahr’s disease—far from a disease. Mov Disord. 1998;13(3):620–1.

    Article  PubMed  CAS  Google Scholar 

  13. Delacour A. Ossification des capilaires du cerveau. Ann Med Psychol. 1850;2:458–61.

    Google Scholar 

  14. Manyam BV. What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord. 2005;11(2):73–80.

    Article  PubMed  Google Scholar 

  15. Geschwind DH, Loginov M, Stern JM. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999;65(3):764–72.

    Article  PubMed  CAS  Google Scholar 

  16. Volpato CB, De Grandi A, Buffone E, et al. 2q37 as a susceptibility locus for idiopathic basal ganglia calcification (IBGC) in a large South Tyrolean family. J Mol Neurosci. 2009;39(3):346–53.

    Article  PubMed  CAS  Google Scholar 

  17. Dai X, Gao Y, Xu Z, et al. Identification of a novel genetic locus on chromosome 8p21.1-q11.23 for idiopathic basal ganglia calcification. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(7):1305–10.

    Article  PubMed  Google Scholar 

  18. Wang C, Li Y, Shi L, et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012;44(3):254–6.

    Article  PubMed  CAS  Google Scholar 

  19. Brodaty H, Mitchell P, Luscombe G, et al. Familial idiopathic basal ganglia calcification (Fahr’s disease) without neurological, cognitive and psychiatric symptoms is not linked to the IBGC1 locus on chromosome 14q. Hum Genet. 2002;110(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  20. Oliveira JR, Spiteri E, Sobrido MJ, et al. Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease). Neurology. 2004;63(11):2165–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kostic VS, Lukic-Jecmenica M, Novakovic I, et al. Exclusion of linkage to chromosomes 14q, 2q37 and 8p21.1-q11.23 in a Serbian family with idiopathic basal ganglia calcification. J Neurol. 2011;258(9):1637–42.

    Article  PubMed  Google Scholar 

  22. Kobari M, Nogawa S, Sugimoto Y, Fukuuchi Y. Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology. 1997;48(3):645–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ellie E, Julien J, Ferrer X. Familial idiopathic striopallidodentate calcifications. Neurology. 1989;39(3):381–5.

    Article  PubMed  CAS  Google Scholar 

  24. Miklossy J, Mackenzie IR, Dorovini-Zis K, et al. Severe vascular disturbance in a case of familial brain calcinosis. Acta Neuropathol. 2005;109(6):643–53.

    Article  PubMed  Google Scholar 

  25. Wszolek ZK, Baba Y, Mackenzie IR, et al. Autosomal dominant dystonia-plus with cerebral calcifications. Neurology. 2006;67(4):620–5.

    Article  PubMed  CAS  Google Scholar 

  26. Sobrido MJ, Hopfer S, Geschwind DH. Familial idiopathic basal ganglia calcification. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle (WA); 1993.

    Google Scholar 

  27. Bonazza S, La Morgia C, Martinelli P, Capellari S. Strio-pallido-dentate calcinosis: a diagnostic approach in adult patients. Neurol Sci. 2011;32(4):537–45.

    Article  PubMed  Google Scholar 

  28. Manyam BV, Bhatt MH, Moore WD, Devleschoward AB, Anderson DR, Calne DB. Bilateral striopallidodentate calcinosis: cerebrospinal fluid, imaging, and electrophysiological studies. Ann Neurol. 1992;31(4):379–84.

    Article  PubMed  CAS  Google Scholar 

  29. Manyam BV, Walters AS, Narla KR. Bilateral striopallidodentate calcinosis: clinical characteristics of patients seen in a registry. Mov Disord. 2001;16(2):258–64.

    Article  PubMed  CAS  Google Scholar 

  30. Manyam BV, Walters AS, Keller IA, Ghobrial M. Parkinsonism associated with autosomal dominant bilateral striopallidodentate calcinosis. Parkinsonism Relat Disord. 2001;7(4):289–95.

    Article  PubMed  Google Scholar 

  31. Bruggemann N, Schneider SA, Sander T, Klein C, Hagenah J. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord. 2010;25(15):2661–4.

    Article  PubMed  Google Scholar 

  32. Hui JS, Lew MF. Calcification of the basal ganglia. Handb Clin Neurol. 2007;84:479–86.

    Article  PubMed  Google Scholar 

  33. Diaz GE, Wirrell EC, Matsumoto JY, Krecke KN. Bilateral striopallidodentate calcinosis with paroxysmal kinesigenic dyskinesia. Pediatr Neurol. 2010;43(1):46–8.

    Article  PubMed  Google Scholar 

  34. Saiki M, Saiki S, Sakai K, et al. Neurological deficits are associated with increased brain calcinosis, hypoperfusion, and hypometabolism in idiopathic basal ganglia calcification. Mov Disord. 2007;22(7):1027–30.

    Article  PubMed  Google Scholar 

  35. Klein C, Vieregge P, Kompf D. Paroxysmal choreoathetosis in a patient with idiopathic basal ganglia calcification, chorea, and dystonia. Mov Disord. 1997;12(2):254–5.

    Article  PubMed  CAS  Google Scholar 

  36. Micheli F, Fernandez Pardal MM, Casas Parera I, Giannaula R. Sporadic paroxysmal dystonic choreoathetosis associated with basal ganglia calcifications. Ann Neurol. 1986;20(6):750.

    Article  PubMed  CAS  Google Scholar 

  37. Cummings JL, Gosenfeld LF, Houlihan JP, McCaffrey T. Neuropsychiatric disturbances associated with idiopathic calcification of the basal ganglia. Biol Psychiatry. 1983;18(5):591–601.

    PubMed  CAS  Google Scholar 

  38. Koller WC, Cochran JW, Klawans HL. Calcification of the basal ganglia: computerized tomography and clinical correlation. Neurology. 1979;29(3):328–33.

    Article  PubMed  CAS  Google Scholar 

  39. Sachs C, Ericson K, Erasmie U, Bergstrom M. Incidence of basal ganglia calcifications on computed tomography. J Comput Assist Tomogr. 1979;3(3):339–44.

    Article  PubMed  CAS  Google Scholar 

  40. Koller WC, Klawans HL. Cerebellar calcification on computerized tomography. Ann Neurol. 1980;7(2):193–4.

    Article  PubMed  CAS  Google Scholar 

  41. Taxer F, Haller R, Konig P. Clinical early symptoms and CT findings in Fahr syndrome. Nervenarzt. 1986;57(10):583–8.

    PubMed  CAS  Google Scholar 

  42. Vermersch P, Leys D, Pruvo JP, Clarisse J, Petit H. Parkinson’s disease and basal ganglia calcifications: prevalence and clinico-radiological correlations. Clin Neurol Neurosurg. 1992;94(3):213–7.

    Article  PubMed  CAS  Google Scholar 

  43. Shibayama H, Kobayashi H, Nakagawa M, et al. Non-Alzheimer non-Pick dementia with Fahr’s syndrome. Clin Neuropathol. 1992;11(5):237–50.

    PubMed  CAS  Google Scholar 

  44. Manyam BV, Bhatt MH, Moore WD, Devleschoward AB, Anderson DR, Calne DB. Bilateral striopallidodentate calcinosis: cerebrospinal fluid, imaging, and electrophysiological studies. Ann Neurol. 1992;31(4):379–84.

    Article  PubMed  CAS  Google Scholar 

  45. Avrahami E, Cohn DF, Feibel M, Tadmor R. MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral calcification. J Neurol. 1994;241(6):381–4.

    Article  PubMed  CAS  Google Scholar 

  46. Holland BA, Kucharczyk W, Brant-Zawadzki M, Norman D, Haas DK, Harper PS. MR imaging of calcified intracranial lesions. Radiology. 1985;157(2):353–6.

    PubMed  CAS  Google Scholar 

  47. Oot RF, New PF, Pile-Spellman J, Rosen BR, Shoukimas GM, Davis KR. The detection of intracranial calcifications by MR. AJNR Am J Neuroradiol. 1986;7(5):801–9.

    PubMed  CAS  Google Scholar 

  48. Kozic D, Todorovic-Djilas L, Semnic R, Miucin-Vukadinovic I, Lucic M. MR imaging—an unreliable and potentially misleading diagnostic modality in patients with intracerebral calcium depositions. Case report. Neuro Endocrinol Lett. 2009;30(5):553–7.

    PubMed  Google Scholar 

  49. Henkelman RM, Watts JF, Kucharczyk W. High signal intensity in MR images of calcified brain tissue. Radiology. 1991;179(1):199–206.

    PubMed  CAS  Google Scholar 

  50. Bottcher J, Sauner D, Jentsch A, et al. Visualization of symmetric striopallidodentate calcinosis by using high-resolution susceptibility-weighted MR imaging. An account of the impact of different diagnostic methods of M. Fahr. Nervenarzt. 2004;75(4):355–61.

    Article  PubMed  CAS  Google Scholar 

  51. Smith FW, Gemmell HG, Sharp PF, Besson JA. Technetium-99m HMPAO imaging in patients with basal ganglia disease. Br J Radiol. 1988;61(730):914–20.

    Article  PubMed  CAS  Google Scholar 

  52. Scotti G, Scialfa G, Tampieri D, Landoni L. MR imaging in Fahr disease. J Comput Assist Tomogr. 1985;9(4):790–2.

    Article  PubMed  CAS  Google Scholar 

  53. Yoshikawa H, Abe T. Transient parkinsonism in bilateral striopallidodentate calcinosis. Pediatr Neurol. 2003;29(1):75–7.

    Article  PubMed  Google Scholar 

  54. Vlaar AM, Bouwmans A, Mess WH, Tromp SC, Weber WE. Transcranial duplex in the differential diagnosis of parkinsonian syndromes: a systematic review. J Neurol. 2009;256(4):530–8.

    Article  PubMed  Google Scholar 

  55. Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol. 2008;7(11):1044–55.

    Article  PubMed  Google Scholar 

  56. Walter U, Dressler D, Probst T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64(11):1635–40.

    Article  PubMed  Google Scholar 

  57. Postert T, Lack B, Kuhn W, et al. Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry. 1999;67(4):457–62.

    Article  PubMed  CAS  Google Scholar 

  58. Walter U, Wagner S, Horowski S, Benecke R, Zettl UK. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology. 2009;73(13):1010–7.

    Article  PubMed  CAS  Google Scholar 

  59. Naumann M, Becker G, Toyka KV, Supprian T, Reiners K. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology. 1996;47(5):1284–90.

    Article  PubMed  CAS  Google Scholar 

  60. Walter U, Buttkus F, Benecke R, Grossmann A, Dressler D, Altenmuller E. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians. Neurodegener Dis. 2012;9(2):99–103.

    Article  PubMed  Google Scholar 

  61. Postert T, Eyding J, Berg D, et al. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl. 2004;68:123–33.

    Article  PubMed  Google Scholar 

  62. Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D. Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology. 2005;64(10):1726–32.

    Article  PubMed  CAS  Google Scholar 

  63. Svetel M, Mijajlovic M, Tomic A, Kresojevic N, Pekmezovic T, Kostic VS. Transcranial sonography in Wilson’s disease. Parkinsonism Relat Disord. 2012;18(3):234–8.

    Article  PubMed  Google Scholar 

  64. Zecca L, Berg D, Arzberger T, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20(10):1278–85.

    Article  PubMed  Google Scholar 

  65. van Wezel-Meijler G, Leijser LM, Wiggers-de Bruine FT, Steggerda SJ, van der Grond J, Walther FJ. Diffuse hyperechogenicity of basal ganglia and thalami in preterm neonates: a physiologic finding? Radiology. 2011;258(3):944–50.

    Article  PubMed  Google Scholar 

  66. Toscano M, Canevelli M, Giacomelli E, et al. Transcranial sonography of basal ganglia calcifications in Fahr disease. J Ultrasound Med. 2011;30(7):1032–33.

    PubMed  Google Scholar 

  67. Uygur GA, Liu Y, Hellman RS, Tikofsky RS, Collier BD. Evaluation of regional cerebral blood flow in massive intracerebral calcifications. J Nucl Med. 1995;36(4):610–2.

    PubMed  CAS  Google Scholar 

  68. Paschali A, Lakiotis V, Messinis L, et al. Dopamine transporter SPECT/CT and perfusion brain SPECT imaging in idiopathic basal ganglia calcinosis. Clin Nucl Med. 2009;34(7):421–3.

    Article  PubMed  Google Scholar 

  69. Ones T, Dede F, Gunal D, et al. The clinical utility of 99mTc-HMPAO SPECT in Fahr’s disease. Ann Nucl Med. 2008;22(5):425–8.

    Article  PubMed  Google Scholar 

  70. Ogi S, Fukumitsu N, Tsuchida D, Uchiyama M, Mori Y, Matsui K. Imaging of bilateral striopallidodentate calcinosis. Clin Nucl Med. 2002;27(10):721–4.

    Article  PubMed  Google Scholar 

  71. Hempel A, Henze M, Berghoff C, Garcia N, Ody R, Schroder J. PET findings and neuropsychological deficits in a case of Fahr’s disease. Psychiatry Res. 2001;108(2):133–40.

    Article  PubMed  CAS  Google Scholar 

  72. Benke T, Karner E, Seppi K, Delazer M, Marksteiner J, Donnemiller E. Subacute dementia and imaging correlates in a case of Fahr’s disease. J Neurol Neurosurg Psychiatry. 2004;75(8):1163–5.

    Article  PubMed  CAS  Google Scholar 

  73. Le Ber I, Marie RM, Lalevee C, Chabot B, Allouche S, Defer GL. Familial idiopathic striato-pallido-dentate calcifications: clinical and brain imaging study in a family. Rev Neurol (Paris). 2003;159(1):43–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Brüggemann MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brüggemann, N., Hagenah, J. (2013). Neuroimaging of Basal Ganglia Calcifications. In: Nahab, F., Hattori, N. (eds) Neuroimaging of Movement Disorders. Current Clinical Neurology, vol 44. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-471-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-471-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-470-8

  • Online ISBN: 978-1-62703-471-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics