Other Gait Disorders

  • Joseph C. MasdeuEmail author
Part of the Current Clinical Neurology book series (CCNEU, volume 44)


This chapter focuses on one of the most common types of movement disorders: altered walking (Nutt et al. Movement Disorders 26:1166–1174, 2011). As walking is affected by many of the diseases discussed in other chapters of this book, from Parkinson’s disease to various causes of ataxia, those disorders will not be discussed again, but this chapter will focus on other disorders of gait and specifically on neuroimaging of gait. For this reason, it is introduced by a brief description of the neurobiological underpinning of walking, stressing on information that is critical for imaging, namely, the anatomical representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study.


White Matter Diffusion Tensor Imaging Progressive Supranuclear Palsy White Matter Change Cervical Myelopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nutt JG, Horak FB, Bloem BR. Milestones in gait, balance, and falling. Mov Disord. 2011;26:1166–74.PubMedGoogle Scholar
  2. 2.
    Mori S. Neurophysiology of locomotion: recent advances in the study of locomotion. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 55–78.Google Scholar
  3. 3.
    Nashner L. Physiology of balance, with special reference to the healthy elderly. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 37–53.Google Scholar
  4. 4.
    Liston R, Mickelborough J, Bene J, Tallis R. A new classification of higher level gait disorders in patients with cerebral multi-infarct states. Age Ageing. 2003;32:252–8.PubMedGoogle Scholar
  5. 5.
    Marsden C, Thompson P. Toward a nosology of gait disorders: descriptive classification. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 135–46.Google Scholar
  6. 6.
    Nutt J, Marsden C, Thompson P. Human walking and higher-level gait disorders, particularly in the elderly. Neurology. 1993;43:268–79.PubMedGoogle Scholar
  7. 7.
    Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 2007;6:63–74.PubMedGoogle Scholar
  8. 8.
    Verghese J, Ambrose AF, Lipton RB, Wang C. Neurological gait abnormalities and risk of falls in older adults. J Neurol. 2010;257:392–8.PubMedGoogle Scholar
  9. 9.
    Newman G, Dovenmuehle R, Busse E. Alterations in neurologic status with age. J Am Geriatr Soc. 1960;8:915–7.Google Scholar
  10. 10.
    Critchley M. On senile disorders of gait, including the so-called “senile paraplegia”. Geriatrics. 1948;3:364–70.PubMedGoogle Scholar
  11. 11.
    Rubenstein L, Josephson K. Interventions to reduce the multifactorial risks for falling. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 309–26.Google Scholar
  12. 12.
    Kwa VI, Zaal LH, Verbeeten B Jr, Stam J. Disequilibrium in patients with atherosclerosis: relevance of pontine ischemic rarefaction. Amsterdam Vascular Medicine Group. Neurology. 1998;51:570–3.PubMedGoogle Scholar
  13. 13.
    Thevathasan W, Pogosyan A, Hyam JA, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain. 2012;135:148–60.PubMedGoogle Scholar
  14. 14.
    Thevathasan W, Cole MH, Graepel CL, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135:1446–54.PubMedGoogle Scholar
  15. 15.
    Masdeu J, Alampur U, Cavaliere R, Tavoulareas G. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol. 1994;35:619–21.PubMedGoogle Scholar
  16. 16.
    Labadie E, Awerbuch G, Hamilton R, Rapcsak S. Falling and postural deficits due to acute unilateral basal ganglia lesions. Arch Neurol. 1989;261:492–6.Google Scholar
  17. 17.
    Elwischger K, Rommer P, Prayer D, Mueller C, Auff E, Wiest G. Thalamic astasia from isolated centromedian thalamic infarction. Neurology. 2012;78:146–7.PubMedGoogle Scholar
  18. 18.
    Masdeu J, Gorelick P. Thalamic astasia: inability to stand after unilateral thalamic lesions. Ann Neurol. 1988;23:596–603.PubMedGoogle Scholar
  19. 19.
    Karnath HO, Johannsen L, Broetz D, Kuker W. Posterior thalamic hemorrhage induces “pusher syndrome”. Neurology. 2005;64:1014–9.PubMedGoogle Scholar
  20. 20.
    Baloh RW, Spain S, Socotch TM, Jacobson KM, Bell T. Posturography and balance problems in older people. J Am Geriatr Soc. 1995;43:638–44.PubMedGoogle Scholar
  21. 21.
    Camicioli R, Moore MM, Sexton G, Howieson DB, Kaye JA. Age-related brain changes associated with motor function in healthy older people. J Am Geriatr Soc. 1999;47:330–4.PubMedGoogle Scholar
  22. 22.
    Masdeu JC, Wolfson L, Lantos G, et al. Brain white-matter changes in the elderly prone to falling. Arch Neurol. 1989;46:1292–6.PubMedGoogle Scholar
  23. 23.
    Sudarsky L, Tideiksaar R. The cautious gait, fear of falling, and psychogenic gait disorders. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 283–95.Google Scholar
  24. 24.
    Masdeu J. Cerebrovascular disease and hydrocephalus. In: Bronstein A, Brandt T, Woollacott M, Nutt J, editors. Clinical disorders of balance, posture and gait. London: Arnold; 2004. p. 222–44.Google Scholar
  25. 25.
    Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–44.PubMedGoogle Scholar
  26. 26.
    Zweig R, Whitehouse P, Casanova M, Walker L, Jankel W, Price D. Pedunculopontine cholinergic neurons in progressive supranuclear palsy. Ann Neurol. 1987;22:18–25.PubMedGoogle Scholar
  27. 27.
    Factor SA, Higgins DS, Qian J. Primary progressive freezing gait: a syndrome with many causes. Neurology. 2006;66:411–4.PubMedGoogle Scholar
  28. 28.
    Compta Y, Valldeoriola F, Tolosa E, Rey MJ, Marti MJ, Valls-Sole J. Long lasting pure freezing of gait preceding progressive supranuclear palsy: a clinicopathological study. Mov Disord. 2007;22:1954–8.PubMedGoogle Scholar
  29. 29.
    Ferraye MU, Debu B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133:205–14.PubMedGoogle Scholar
  30. 30.
    Wilcox RA, Cole MH, Wong D, Coyne T, Silburn P, Kerr G. Pedunculopontine nucleus deep brain stimulation produces sustained improvement in primary progressive freezing of gait. J Neurol Neurosurg Psychiatry. 2011;82:1256–9.PubMedGoogle Scholar
  31. 31.
    Park HK, Kim JS, Im KC, et al. Functional brain imaging in pure akinesia with gait freezing: [18F] FDG PET and [18F] FP-CIT PET analyses. Mov Disord. 2009;24:237–45.PubMedGoogle Scholar
  32. 32.
    Snijders AH, Leunissen I, Bakker M, et al. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain. 2011;134:59–72.PubMedGoogle Scholar
  33. 33.
    Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord. 2008;23 Suppl 2:S461–7.PubMedGoogle Scholar
  34. 34.
    Youn J, Cho JW, Lee WY, Kim GM, Kim ST, Kim HT. Diffusion tensor imaging of freezing of gait in patients with white matter changes. Mov Disord. 2012;27:760–4.PubMedGoogle Scholar
  35. 35.
    Kostic VS, Agosta F, Pievani M, et al. Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology. 2012;78:409–16.PubMedGoogle Scholar
  36. 36.
    Nadeau SE. Gait apraxia: further clues to localization. Eur Neurol. 2007;58:142–5.PubMedGoogle Scholar
  37. 37.
    Thompson PD. Gait disorders accompanying diseases of the frontal lobes. In: Ruzicka E, Hallett M, Jankovic J, editors. Advances in neurology. Vol. 87. Gait disorders. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 235–41.Google Scholar
  38. 38.
    Meyer JS, Barron DW. Apraxia of gait: a clinico-physiological study. Brain. 1960;83:261–84.Google Scholar
  39. 39.
    Nutt JG. Classification of gait and balance disorders. In: Ruzicka E, Hallett M, Jankovic J, editors. Advances in neurology. Vol. 87. Gait disorders. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 135–41.Google Scholar
  40. 40.
    Zadikoff C, Lang AE. Apraxia in movement disorders. Brain. 2005;128:1480–97.PubMedGoogle Scholar
  41. 41.
    Sudarsky L. Clinical approach to gait disorders of aging: an overview. In: Masdeu J, Sudarsky L, Wolfson L, editors. Gait disorders of aging. Falls and therapeutic strategies. Philadelphia: Lippincott & Raven; 1997. p. 147–57.Google Scholar
  42. 42.
    Fuh JL, Lin KN, Wang SJ, Ju TH, Chang R, Liu HC. Neurologic diseases presenting with gait impairment in the elderly. J Geriatr Psychiatry Neurol. 1994;7:89–92.PubMedGoogle Scholar
  43. 43.
    Holly LT, Moftakhar P, Khoo LT, Shamie AN, Wang JC. Surgical outcomes of elderly patients with cervical spondylotic myelopathy. Surg Neurol. 2008;69:233–40.PubMedGoogle Scholar
  44. 44.
    Sadasivan KK, Reddy RP, Albright JA. The natural history of cervical spondylotic myelopathy. Yale J Biol Med. 1993;66:235–42.PubMedGoogle Scholar
  45. 45.
    Healy JF, Healy BB, Wong WH, Olson EM. Cervical and lumbar MRI in asymptomatic older male lifelong athletes: frequency of degenerative findings. J Comput Assist Tomogr. 1996;20:107–12.PubMedGoogle Scholar
  46. 46.
    Reul J, Gievers B, Weis J, Thron A. Assessment of the narrow cervical spinal canal: a prospective comparison of MRI, myelography and CT-myelography. Neuroradiology. 1995;37:187–91.PubMedGoogle Scholar
  47. 47.
    Weis E Jr. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. J Bone Joint Surg Am. 1991;73:1113.PubMedGoogle Scholar
  48. 48.
    Yone K, Sakou T, Yanase M, Ijiri K. Preoperative and postoperative magnetic resonance image evaluations of the spinal cord in cervical myelopathy. Spine. 1992;17:S388–92.PubMedGoogle Scholar
  49. 49.
    Matsuda Y, Miyazaki K, Tada K, et al. Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. J Neurosurg. 1991;74:887–92.PubMedGoogle Scholar
  50. 50.
    Matsunaga S, Nakamura K, Seichi A, et al. Radiographic predictors for the development of myelopathy in patients with ossification of the posterior longitudinal ligament: a multicenter cohort study. Spine. 2008;33:2648–50.PubMedGoogle Scholar
  51. 51.
    Rao RD, Currier BL, Albert TJ, et al. Degenerative cervical spondylosis: clinical syndromes, pathogenesis, and management. J Bone Joint Surg Am. 2007;89:1360–78.PubMedGoogle Scholar
  52. 52.
    Houten JK, Cooper PR. Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome. Neurosurgery. 2003;52:1081–7; discussion 1087–8.Google Scholar
  53. 53.
    Franch O, Calandre L, Alvarez-Linera J, Louis ED, Bermejo-Pareja F, Benito-Leon J. Gait disorders of unknown cause in the elderly: clinical and MRI findings. J Neurol Sci. 2009;280:84–6.PubMedGoogle Scholar
  54. 54.
    Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.PubMedGoogle Scholar
  55. 55.
    Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11:805–21.PubMedGoogle Scholar
  56. 56.
    Brant-Zawadzki M, Atkinson D, Detrick M, Bradley WG, Scidmore G. Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction. Initial clinical experience in 50 patients. Stroke. 1996;27:1187–91.PubMedGoogle Scholar
  57. 57.
    Masdeu JC. Dysequilibrium syndromes. In: Ruzicka E, Hallett M, Jankovic J, editors. Advances in neurology. Vol. 87. Gait disorders. Philadelphia: Lippincott Williams and Wilkins; 2001.Google Scholar
  58. 58.
    Srikanth V, Beare R, Blizzard L, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study. Stroke. 2009;40:175–80.PubMedGoogle Scholar
  59. 59.
    de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70:9–14.PubMedGoogle Scholar
  60. 60.
    Qiu C, Cotch MF, Sigurdsson S, et al. Microvascular lesions in the brain and retina: the age, gene/environment susceptibility-Reykjavik study. Ann Neurol. 2009;65:569–76.PubMedGoogle Scholar
  61. 61.
    Kirkpatrick J, Hayman L. White-matter lesions on MR imaging of clinically healthy brains of elderly subjects: possible pathologic basis. Radiology. 1987;162:509–11.PubMedGoogle Scholar
  62. 62.
    Comi G, Rovaris M, Leocani L, Martinelli V, Filippi M. Assessment of the damage of the cerebral hemispheres in MS using neuroimaging techniques. J Neurol Sci. 2000;172:S63–6.PubMedGoogle Scholar
  63. 63.
    Gouw AA, Seewann A, Vrenken H, et al. Heterogeneity of white matter hyperintensities in Alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain. 2008;131:3286–98.PubMedGoogle Scholar
  64. 64.
    Vrenken H, Geurts JJ, Knol DL, et al. Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am J Neuradiol. 2006;27:2005–11.Google Scholar
  65. 65.
    Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–6.PubMedGoogle Scholar
  66. 66.
    Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.PubMedGoogle Scholar
  67. 67.
    Scheltens P, Barkhof F, Leys D, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114:7–12.PubMedGoogle Scholar
  68. 68.
    Prins ND, van Straaten EC, van Dijk EJ, et al. Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology. 2004;62:1533–9.PubMedGoogle Scholar
  69. 69.
    Gouw AA, van der Flier WM, van Straaten EC, et al. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc Dis. 2008;25:247–53.PubMedGoogle Scholar
  70. 70.
    Tiehuis AM, Vincken KL, Mali WP, et al. Automated and visual scoring methods of cerebral white matter hyperintensities: relation with age and cognitive function. Cerebrovasc Dis. 2008;25:59–66.PubMedGoogle Scholar
  71. 71.
    de Boer R, Vrooman HA, van der Lijn F, et al. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage. 2009;45:1151–61.PubMedGoogle Scholar
  72. 72.
    van der Lijn F, Verhaaren BF, Ikram MA, et al. Automated measurement of local white matter lesion volume. Neuroimage. 2012;59:3901–08.Google Scholar
  73. 73.
    Jones DK, Lythgoe D, Horsfield MA, Simmons A, Williams SC, Markus HS. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke. 1999;30:393–7.PubMedGoogle Scholar
  74. 74.
    Fu JL, Zhang T, Chang C, Zhang YZ, Li WB. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer’s disease in patients with only mild white matter alterations on T2-weighted images. Acta Radiol. 2012;53:312–7.PubMedGoogle Scholar
  75. 75.
    Kim SH, Park JS, Ahn HJ, et al. Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits. J Neuroimaging. 2011;21:317–24.PubMedGoogle Scholar
  76. 76.
    Burzynska AZ, Preuschhof C, Backman L, et al. Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage. 2010;49:2104–12.PubMedGoogle Scholar
  77. 77.
    Barrick TR, Charlton RA, Clark CA, Markus HS. White matter structural decline in normal ageing: a prospective longitudinal study using tract-based spatial statistics. Neuroimage. 2010;51:565–77.PubMedGoogle Scholar
  78. 78.
    Vernooij MW, de Groot M, van der Lugt A, et al. White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage. 2008;43:470–7.PubMedGoogle Scholar
  79. 79.
    Back SA, Kroenke CD, Sherman LS, et al. White matter lesions defined by diffusion tensor imaging in older adults. Ann Neurol. 2011;70:465–76.PubMedGoogle Scholar
  80. 80.
    Zhan W, Zhang Y, Mueller SG, et al. Characterization of white matter degeneration in elderly subjects by magnetic resonance diffusion and FLAIR imaging correlation. Neuroimage. 2009;47 Suppl 2:T58–65.PubMedGoogle Scholar
  81. 81.
    Bhadelia RA, Price LL, Tedesco KL, et al. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly. Stroke. 2009;40:3816–20.PubMedGoogle Scholar
  82. 82.
    Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fiber areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage. 2011;55:880–90.PubMedGoogle Scholar
  83. 83.
    Rudrapatna US, van der Toorn A, van Meer MP, Dijkhuizen RM. Impact of hemodynamic effects on diffusion-weighted fMRI signals. Neuroimage. 2012;61:106–14.PubMedGoogle Scholar
  84. 84.
    Hachinski V, Potter P, Merskey H. Leuko-araiosis. Arch Neurol. 1987;44:21–3.PubMedGoogle Scholar
  85. 85.
    Yamanouchi H. Loss of white matter oligodendrocytes and astrocytes in progressive subcortical vascular encephalopathy of Binswanger type. Acta Neurol Scand. 1991;83:301–5.PubMedGoogle Scholar
  86. 86.
    Gold G. Defining the neuropathological background of vascular and mixed dementia and comparison with magnetic resonance imaging findings. Front Neurol Neurosci. 2009;24:86–94.PubMedGoogle Scholar
  87. 87.
    Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke. 2006;37:1391–8.PubMedGoogle Scholar
  88. 88.
    Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol. 2007;33:410–9.PubMedGoogle Scholar
  89. 89.
    van Swieten JC, Geyskes GG, Derix MM, et al. Hypertension in the elderly is associated with white matter lesions and cognitive decline. Ann Neurol. 1991;30:825–30.PubMedGoogle Scholar
  90. 90.
    de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125:765–72.PubMedGoogle Scholar
  91. 91.
    Gray F, Dubas F, Roullet E, Escourolle R. Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann Neurol. 1985;18:54–9.PubMedGoogle Scholar
  92. 92.
    Mead S, James-Galton M, Revesz T, et al. Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain. 2000;123(Pt 5):975–91.PubMedGoogle Scholar
  93. 93.
    Krauss JK, Halve B. Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien). 2004;146:379–88.Google Scholar
  94. 94.
    Graff-Radford NR. Normal pressure hydrocephalus. Neurol Clin. 2007;25:809–32, vii-viii.PubMedGoogle Scholar
  95. 95.
    Marmarou A, Young HF, Aygok GA, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102:987–97.PubMedGoogle Scholar
  96. 96.
    Blomsterwall E, Bilting M, Stephensen H, Wikkelso C. Gait abnormality is not the only motor disturbance in normal pressure hydrocephalus. Scand J Rehabil Med. 1995;27:205–9.PubMedGoogle Scholar
  97. 97.
    Krauss JK, Faist M, Schubert M, Borremans JJ, Lucking CH, Berger W. Evaluation of gait in normal pressure hydrocephalus before and after shunting. In: Ruzicka E, Hallett M, Jankovic J, editors. Advances in neurology. Vol. 87. Gait disorders. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 301–10.Google Scholar
  98. 98.
    Stolze H, Kuhtz-Buschbeck JP, Drucke H, et al. Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test? Clin Neurophysiol. 2000;111:1678–86.PubMedGoogle Scholar
  99. 99.
    Bugalho P, Guimaraes J. Gait disturbance in normal pressure hydrocephalus: a clinical study. Parkinsonism Relat Disord. 2007;13:434–7.PubMedGoogle Scholar
  100. 100.
    Klassen BT, Ahlskog JE. Normal pressure hydrocephalus: how often does the diagnosis hold water? Neurology. 2011;77:1119–25.PubMedGoogle Scholar
  101. 101.
    Blomsterwall E, Svantesson U, Carlsson U, Tullberg M, Wikkelso C. Postural disturbance in patients with normal pressure hydrocephalus. Acta Neurol Scand. 2000;102:284–91.PubMedGoogle Scholar
  102. 102.
    Gupta A, Lang AE. Potential placebo effect in assessing idiopathic normal pressure hydrocephalus. J Neurosurg. 2011;114:1428–31.PubMedGoogle Scholar
  103. 103.
    Fisher C. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982;32:1358–63.PubMedGoogle Scholar
  104. 104.
    Palm WM, Saczynski JS, van der Grond J, et al. Ventricular dilation: association with gait and cognition. Ann Neurol. 2009;66:485–93.PubMedGoogle Scholar
  105. 105.
    Graff-Radford N, Godersky J, Jones M. Variables predicting outcome in symptomatic hydrocephalus in the elderly. Neurology. 1989;39:1601–4.PubMedGoogle Scholar
  106. 106.
    Palm WM, Walchenbach R, Bruinsma B, et al. Intracranial compartment volumes in normal pressure hydrocephalus: volumetric assessment versus outcome. AJNR Am J Neuroradiol. 2006;27:76–9.PubMedGoogle Scholar
  107. 107.
    Holodny AI, George AE, de Leon MJ, Golomb J, Kalnin AJ, Cooper PR. Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. J Neurosurg. 1998;89:742–7.PubMedGoogle Scholar
  108. 108.
    Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19:1277–84.PubMedGoogle Scholar
  109. 109.
    Bradley WG. Normal pressure hydrocephalus: new concepts on etiology and diagnosis. Am J Neuroradiol. 2000;21:1586–90.PubMedGoogle Scholar
  110. 110.
    Bradley W Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198:523–9.PubMedGoogle Scholar
  111. 111.
    Algin O, Hakyemez B, Taskapilioglu O, Ocakoglu G, Bekar A, Parlak M. Morphologic features and flow void phenomenon in normal pressure hydrocephalus and other dementias: are they really significant? Acad Radiol. 2009;16:1373–80.PubMedGoogle Scholar
  112. 112.
    Krauss JK, Regel JP, Vach W, Jungling FD, Droste DW, Wakhloo AK. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery. 1997;40:67–73; discussion 73–4.PubMedGoogle Scholar
  113. 113.
    Kanno S, Abe N, Saito M, et al. White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. J Neurol. 2011;258:1949–57.PubMedGoogle Scholar
  114. 114.
    Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127:965–72.PubMedGoogle Scholar
  115. 115.
    Bradley WG. Idiopathic normal pressure hydrocephalus: new findings and thoughts on etiology. AJNR Am J Neuroradiol. 2008;29:1–3.PubMedGoogle Scholar
  116. 116.
    Bradley WG, Safar FG, Hurtado C, Ord J, Alksne JF. Increased intracranial volume: a clue to the etiology of idiopathic normal-pressure hydrocephalus? AJNR Am J Neuroradiol. 2004;25:1479–84.PubMedGoogle Scholar
  117. 117.
    Masdeu JC, Pascual B, Bressi F, et al. Ventricular wall granulations and draining of cerebrospinal fluid in chronic giant hydrocephalus. Arch Neurol. 2009;66:262–7.PubMedGoogle Scholar
  118. 118.
    Bradley WG, Bahl G, Alksne JF. Idiopathic normal pressure hydrocephalus may be a “Two hit” disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. J Magn Reson Imaging. 2006;24:747–55.PubMedGoogle Scholar
  119. 119.
    Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol. 2008;29:198–203.PubMedGoogle Scholar
  120. 120.
    Ohno N, Miyati T, Mase M, et al. Idiopathic normal-pressure hydrocephalus: temporal changes in ADC during cardiac cycle. Radiology. 2011;261:560–5.PubMedGoogle Scholar
  121. 121.
    Chang CC, Kuwana N, Ito S, Ikegami T. Impairment of cerebrovascular reactivity to acetazolamide in patients with normal pressure hydrocephalus. Nucl Med Commun. 2000;21:139–41.PubMedGoogle Scholar
  122. 122.
    Klinge PM, Brooks DJ, Samii A, et al. Correlates of local cerebral blood flow (CBF) in normal pressure hydrocephalus patients before and after shunting—a retrospective analysis of [(15)O]H(2)O PET-CBF studies in 65 patients. Clin Neurol Neurosurg. 2008;110:369–75.PubMedGoogle Scholar
  123. 123.
    Mocco J, Tomey MI, Komotar RJ, et al. Ventriculoperitoneal shunting of idiopathic normal pressure hydrocephalus increases midbrain size: a potential mechanism for gait improvement. Neurosurgery. 2006;59:847–50.PubMedGoogle Scholar
  124. 124.
    Hiraoka K, Yamasaki H, Takagi M, et al. Is the midbrain involved in the manifestation of gait disturbance in idiopathic normal-pressure hydrocephalus? J Neurol. 2011;258:820–5.PubMedGoogle Scholar
  125. 125.
    Krauss JK, Regel JP, Vach W, et al. White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery. 1997;40:491–5; discussion 495–6.PubMedGoogle Scholar
  126. 126.
    Caplan LR. White-matter hyperintensities and subcortical infarcts as predictors of shunt surgery outcome. AJNR Am J Neuroradiol. 2002;23:894; author reply 894–5.PubMedGoogle Scholar
  127. 127.
    Boon AJ, Tans JT, Delwel EJ, et al. Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. J Neurosurg. 1999;90:221–6.PubMedGoogle Scholar
  128. 128.
    Tullberg M, Jensen C, Ekholm S, Wikkelso C. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol. 2001;22:1665–73.PubMedGoogle Scholar
  129. 129.
    Kirton A, Chen R, Friefeld S, Gunraj C, Pontigon AM, Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomized trial. Lancet Neurol. 2008;7:507–13.PubMedGoogle Scholar
  130. 130.
    Conforto AB, Anjos SM, Saposnik G, et al. Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. J Neurol. 2012;259:1399–405.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Section on Integrative NeuroimagingNational Institutes of Health(NIH/NIMH-CBDB), Intramural Research ProgramBethesdaUSA
  2. 2.New York Medical CollegeValhallaUSA
  3. 3.WashingtonUSA

Personalised recommendations