Advertisement

Neuroimaging of Ataxias

  • Anelyssa D’ AbreuEmail author
  • Fernando Cendes
Chapter
Part of the Current Clinical Neurology book series (CCNEU, volume 44)

Abstract

Ataxia is characterized by incoordination of movement and loss of equilibrium. The role of imaging studies in the differential diagnosis of ataxias is fundamental, and it is considered by most the main first evaluation in order to exclude symptomatic ataxias. In contrast, in progressive ataxias that include both hereditary and sporadic degenerative ataxias, neuroimaging studies play a dual role: they may assist in the diagnosis at times, but more importantly, they are essential research tools in the discovery of surrogate markers of disease progression and a better understanding of disease pathophysiology.

Keywords

Single Photon Emission Compute Tomography Apparent Diffusion Coefficient Fractional Anisotropy Diffusion Tensor Imaging Multiple System Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 2010;9:94–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Abele M, Burk K, Schols L, et al. The aetiology of sporadic adult-onset ataxia. Brain. 2002;125:961–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2011;6:33.PubMedCrossRefGoogle Scholar
  4. 4.
    Degardin A, Dobbelaere D, Vuillaume I, et al. Spinocerebellar ataxia: a rational approach to aetiological diagnosis. Cerebellum. 2012;11(1):289–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Brusse E, Maat-Kievit JA, Van Swieten JC. Diagnosis and management of early- and late-onset cerebellar ataxia. Clin Genet. 2007;71:12–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Köllensperger M, Wenning GK. Assessing disease progression with MRI in atypical parkinsonian disorders. Mov Disord. 2009;24:S699–702.PubMedCrossRefGoogle Scholar
  7. 7.
    Paulson HL. The spinocerebellar ataxias. J Neuroophthalmol. 2009;29:227–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Viau M, Boulanger Y. Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat Disord. 2004;10:335–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Döhlinger S, Hauser T-K, Borkert J, Luft A, Schulz J. Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum. 2008;7:204–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Ormerod IE, Harding AE, Miller DH, et al. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry. 1994;57:51–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Nagaoka U, Suzuki Y, Kawanami T, et al. Regional differences in genetic subgroup frequency in hereditary cerebellar ataxia, and a morphometrical study of brain MR images in SCA1, MJD and SCA6. J Neurol Sci. 1999;164:187–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Murata Y, Kawakami H, Yamaguchi S, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55:1348–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Murata Y, Yamaguchi S, Kawakami H, et al. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol. 1998;55:33–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobi H, Hauser T-K, Giunti P, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum. 2012;11:1–12.CrossRefGoogle Scholar
  15. 15.
    Onodera O, Idezuka J, Igarashi S, et al. Progressive atrophy of cerebellum and brainstem as a function of age and the size of the expanded CAG repeats in the MJD1 gene in Machado-Joseph disease. Ann Neurol. 1998;43:288–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Abe Y, Tanaka F, Matsumoto M, et al. CAG repeat number correlates with the rate of brainstem and cerebellar atrophy in Machado-Joseph disease. Neurology. 1998;51:882–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Horimoto Y, Matsumoto M, Yuasa H, et al. Brainstem in Machado-Joseph disease: atrophy or small size? Eur J Neurol. 2008;15:102–5.PubMedGoogle Scholar
  18. 18.
    Yoshizawa T, Watanabe M, Frusho K, Shoji S. Magnetic resonance imaging demonstrates differential atrophy of pontine base and tegmentum in Machado-Joseph disease. J Neurol Sci. 2003;215:45–50.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Abreu A, Franca MC, Yasuda CL, Souza MSA, Lopes-Cendes I, Cendes F. Thalamic volume and dystonia in Machado-Joseph disease. J Neuroimaging. 2011;21:e91–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Giuffrida S, Saponara R, Restivo DA, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246:383–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ying SHM, Choi SIB, Perlman SLM, Baloh RWM, Zee DSM, Toga AWP. Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology. 2006;66:424–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry. 2004;75:1452–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Lukas C, Hahn H, Bellenberg B, et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6. J Neurol. 2008;255:1244–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ginestroni A, Della Nave R, Tessa C, et al. Brain structural damage in spinocerebellar ataxia type 1. J Neurol. 2008;255:1153–8.PubMedCrossRefGoogle Scholar
  25. 25.
    D’Agata F, Caroppo P, Boghi A, et al. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct. 2011;216:275–88.PubMedCrossRefGoogle Scholar
  26. 26.
    D’Abreu A, França MC Jr, Yasuda CL, Campos BAG, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2011. doi:101111/j1552-6569201100614×2011.Google Scholar
  27. 27.
    Alcauter S, Barrios FA, Diaz R, Fernandez-Ruiz J. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage. 2011;55:1–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Reetz K, Kleiman A, Klein C, et al. CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS One. 2011;6:e15125.PubMedCrossRefGoogle Scholar
  29. 29.
    Reetz K, Lencer R, Hagenah J, et al. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum. 2010;9:210–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Goel G, Pal PK, Ravishankar S, et al. Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord. 2011;17:521–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Guerrini L, Lolli F, Ginestroni A, et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127:1785–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Schulz JB, Borkert J, Wolf S, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49:158–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Lukas C, Schöls L, Bellenberg B, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408:230–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Mandelli ML, De Simone T, Minati L, et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. Am J Neuroradiol. 2007;28:1996–2000.PubMedCrossRefGoogle Scholar
  35. 35.
    Della Nave R, Ginestroni A, Tessa C, et al. Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage. 2008;43:10–19.PubMedCrossRefGoogle Scholar
  36. 36.
    Solodkin A, Peri E, Chen E, Ben-Jacob E, Gomez C. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Öz G, Hutter D, Tkác I, et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010;25:1253–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Öz G, Iltis I, Hutter D, Thomas W, Bushara K, Gomez C. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum. 2011;10:208–17.PubMedCrossRefGoogle Scholar
  39. 39.
    Boesch SM, Schocke M, Bürk K, et al. Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging. 2001;13:553–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M. Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging. 2007;25:564–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hadjivassiliou M, Wallis LI, Hoggard N, Grünewald RA, Griffiths PD, Wilkinson ID. MR spectroscopy and atrophy in Gluten, Friedreich’s and SCA6 ataxias. Acta Neurol Scand. 2011. doi:10.1111/j.1600-0404.2011.01620.x.Google Scholar
  42. 42.
    D’Abreu A, Franca M, Appenzeller S, Lopes-Cendes I, Cendes F. Axonal dysfunction in the deep white matter in Machado-Joseph disease. J Neuroimaging. 2009;19:9–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Yabe I, Tha KK, Yokota T, et al. Estimation of skeletal muscle energy metabolism in Machado-Joseph disease using P-31-MR spectroscopy. Mov Disord. 2011;26:165–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Wullner U, Reimold M, Abele M, et al. Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol. 2005;62:1280–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Honjo K, Ohshita T, Kawakami H, et al. Quantitative assessment of cerebral blood flow in genetically confirmed spinocerebellar ataxia type 6. Arch Neurol. 2004;61:933–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Etchebehere EC, Cendes F, Lopes-Cendes I, Pereira JA, Lima MC, Sansana CR, Silva CA, Camargo MF, Santos AO, Ramos CD, Camargo EE. Brain single-photon emission computed tomography and magnetic resonance imaging in Machado-Joseph disease. Arch Neurol. 2001;58:1257–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Taniwaki T ST, Kobayashi T, Kuwabara Y, Otsuka M, Ichiya Y, Masuda K, Goto I. Positron emission tomography (PET) in Machado-Joseph disease. J Neurol Sci. 1997;145:63–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang PS, Liu RS, Yang BH, Soong BW. Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6—a voxel-based FDG-positron emission tomography analysis. J Neurol. 2007;254:838–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Boesch SM, Donnemiller E, Müller J, et al. Abnormalities of dopaminergic neurotransmission in SCA2: a combined 123I-βCIT and 123I-IBZM SPECT study. Mov Disord. 2004;19:1320–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Yen TC, Tzen KY, Chen MC, et al. Dopamine transporter concentration is reduced in asymptomatic Machado-Joseph disease gene carriers. J Nucl Med. 2002;43:153–9.PubMedGoogle Scholar
  51. 51.
    Soong BW, Liu RS. Positron emission tomography in asymptomatic gene carriers of Machado–Joseph disease. J Neurol Neurosurg Psychiatry. 1998;64:499–504.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim J-M, Lee J-Y, Kim HJ, et al. The wide clinical spectrum and nigrostriatal dopaminergic damage in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2010;81:529–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Soong B, Liu R, Wu L, Lu Y, Lee H. Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol. 2001;58:300–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Koeppen A, Morral J, McComb R, Feustel P. The neuropathology of late-onset Friedreich’s ataxia. Cerebellum. 2011;10:96–103.PubMedCrossRefGoogle Scholar
  56. 56.
    De Michele G, Di Salle F, Filla A, et al. Magnetic resonance imaging in “typical” and “late onset” Friedreich’s disease and early onset cerebellar ataxia with retained tendon reflexes. Ital J Neurol Sci. 1995;16:303–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62:1865–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Akhlaghi H, Corben L, Georgiou-Karistianis N, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10:81–7.PubMedCrossRefGoogle Scholar
  59. 59.
    França M, D’Abreu A, Yasuda C, et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256:1114–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Della Nave R, Ginestroni A, Giannelli M, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79:82–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Iltis I, Hutter D, Bushara KO, et al. 1H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10.PubMedCrossRefGoogle Scholar
  62. 62.
    Della Nave R, Ginestroni A, Tessa C, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage. 2008;40:19–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Rizzo G, Tonon C, Valentino ML, et al. Brain diffusion-weighted imaging in Friedreich’s ataxia. Mov Disord. 2011;26:705–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366:636–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Palau F, Espinos C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis. 2006;1:47.PubMedCrossRefGoogle Scholar
  66. 66.
    Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010;11:1–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair. 2004;3:1187–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Tavani F, Zimmerman RA, Berry GT, Sullivan K, Gatti R, Bingham P. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45:315–9.PubMedGoogle Scholar
  69. 69.
    Ciemins JJ, Horowitz AL. Abnormal white matter signal in ataxia telangiectasia. Am J Neuroradiol. 2000;21:1483–5.PubMedGoogle Scholar
  70. 70.
    Wallis LI, Griffiths PD, Ritchie SJ, Romanowski CAJ, Darwent G, Wilkinson ID. Proton spectroscopy and imaging at 3 T in ataxia-telangiectasia. Am J Neuroradiol. 2007;28:79–83.PubMedGoogle Scholar
  71. 71.
    Firat AK, Muammer KH, Firat Y, Yakinci C. Quantitative evaluation of brain involvement in ataxia telangiectasia by diffusion weighted MR imaging. Eur J Radiol. 2005;56:192–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Berry-Kravis E, Abrams L, Coffey SM, et al. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord. 2007;22:2018–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Hashimoto R, Javan AK, Tassone F, Hagerman RJ, Rivera SM. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain. 2011;134:863–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Adams JS, Adams PE, Nguyen D, et al. Volumetric brain changes in females with fragile X-associated tremor/ataxia syndrome (FXTAS). Neurology. 2007;69:851–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Hashimoto R-i, Srivastava S, Tassone F, Hagerman RJ, Rivera SM. Diffusion tensor imaging in male premutation carriers of the fragile X mental retardation gene. Mov Disord. 2011;26:1329–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Hashimoto R, Backer KC, Tassone F, Hagerman RJ, Rivera SM. An fMRI study of the prefrontal activity during the performance of a working memory task in premutation carriers of the fragile X mental retardation 1 gene with and without fragile X-associated tremor/ataxia syndrome (FXTAS). J Psychiatr Res. 2011;45:36–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Martin M-H, Bouchard J-P, Sylvain M, St-Onge O, Truchon S. Autosomal recessive spastic ataxia of Charlevoix-Saguenay: a report of MR imaging in 5 Patients. Am J Neuroradiol. 2007;28:1606–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Gazulla J, Vela AC, Marín MA, et al. Is the ataxia of Charlevoix-Saguenay a developmental disease? Med Hypotheses. 2011;77:347–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Shimazaki H, Takiyama Y, Honda J, et al. Middle cerebellar peduncles and pontine T2 hypointensities in ARSACS. J Neuroimaging. 2013;23(1):82–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Anheim M, Monga B, Fleury M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.PubMedCrossRefGoogle Scholar
  81. 81.
    Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary Parkinsonisms. Mov Disord. 2011;26:1083–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Juh R, Pae C-U, Lee C-U, et al. Voxel based comparison of glucose metabolism in the differential diagnosis of the multiple system atrophy using statistical parametric mapping. Neurosci Res. 2005;52:211–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Paviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC. Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations. Mov Disord. 2006;21:989–96.PubMedCrossRefGoogle Scholar
  84. 84.
    Nicoletti G, Fera F, Condino F, et al. MR Imaging of middle cerebellar peduncle width: differentiation of multiple system atrophy from Parkinson disease 1. Radiology. 2006;239:825–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee J-Y, Yun J, Shin C-W, Kim H-J, Jeon B. Putaminal abnormality on 3-T magnetic resonance imaging in early parkinsonism-predominant multiple system atrophy. J Neurol. 2010;257:2065–70.PubMedCrossRefGoogle Scholar
  86. 86.
    Kwon K-Y, Choi CG, Kim JS, Lee MC, Chung SJ. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord. 2007;22:2352–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ. Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of parkinsonian type multiple system atrophy from Parkinson’s disease. Eur J Neurol. 2008;15:1043–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Blain CRVM, Barker GJP, Jarosz JMM, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67:2199–205.PubMedCrossRefGoogle Scholar
  89. 89.
    Watanabe H, Saito Y, Terao S, et al. Progression and prognosis in multiple system atrophy. Brain. 2002;125:1070–83.PubMedCrossRefGoogle Scholar
  90. 90.
    Marrannes J, Mulleners E. Hot cross bun sign in a patient with SCA-2. JBR-BTR 2009;92:263.PubMedGoogle Scholar
  91. 91.
    Lee YC, Liu CS, Wu HM, Wang PS, Chang MH, Soong BW. The ‘hot cross bun’ sign in the patients with spinocerebellar ataxia. Eur J Neurol. 2009;16:513–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Minnerop M, Specht K, Ruhlmann J, et al. Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy—a comparison between clinical subtypes and correlations with clinical parameters. Neuroimage. 2007;36:1086–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Pellecchia MT, Barone P, Mollica C, et al. Diffusion-weighted imaging in multiple system atrophy: a comparison between clinical subtypes. Mov Disord. 2009;24:689–96.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang P-S, Wu H-M, Lin C-P, Soong B-W. Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology. 2011;53:471–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Bhattacharya K, Saadia D, Eisenkraft B, et al. Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease: a diagnostic algorithm. Arch Neurol. 2002;59:835–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Kanazawa M, Shimohata T, Terajima K, et al. Quantitative evaluation of brainstem involvement in multiple system atrophy by diffusion-weighted MR imaging. J Neurol. 2004;251:1121–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Brenneis C, Boesch SM, Egger KE, et al. Cortical atrophy in the cerebellar variant of multiple system atrophy: a voxel-based morphometry study. Mov Disord. 2006;21:159–65.PubMedCrossRefGoogle Scholar
  98. 98.
    Hauser T-K, Luft A, Skalej M, et al. Visualization and quantification of disease progression in multiple system atrophy. Mov Disord. 2006;21:1674–81.PubMedCrossRefGoogle Scholar
  99. 99.
    Specht K, Minnerop M, Abele M, Reul J, Wullner U, Klockgether T. In vivo voxel-based morphometry in multiple system atrophy of the cerebellar type. Arch Neurol. 2003;60:1431–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Tha KK, Terae S, Yabe I, et al. Microstructural white matter abnormalities of multiple system atrophy: in vivo topographic illustration by using diffusion-tensor MR imaging. Radiology. 2010;255:563–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M. Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol. 2005;252:589–96.PubMedCrossRefGoogle Scholar
  102. 102.
    Takado Y, Igarashi H, Terajima K, et al. Brainstem metabolites in multiple system atrophy of cerebellar type: 3.0-T magnetic resonance spectroscopy study. Mov Disord. 2011;26:1297–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurologyState University of Campinas-UNICAMPCampinasBrazil

Personalised recommendations