Skip to main content

Oncofetal Molecules as Biomarkers and Drug Targets for Hepatic Cancer

  • Chapter
  • First Online:
New Advances on Disease Biomarkers and Molecular Targets in Biomedicine

Abstract

Hepatocellular carcinoma (HCC) is a major type of liver cancer prevalent in Asia and Africa, with a global increase in numbers in western countries. Despite decades of efforts in improving management of this malignancy, prognosis of patients still remains suboptimal. Frontline surgical treatments and traditional diagnostic methods suffer from own limitations. To alleviate this clinical dismal, research for alternated and supplemental methods are imperative. Different studies have discovered a panel of molecules related to tumorigenesis. Among them, a class of oncofetal molecules, characterized by their abundance in fetal livers and HCC but not in adult healthy livers, seems to serve as biomarkers and therapeutic targets for HCC. Tumorigenesis and embryogenesis share common characteristics and undergo similar processes in terms of proliferation, division, plasticity, motility, and convergence of mechanistic pathways. This chapter reviews several oncofetal molecules of livers including alpha-fetoprotein (AFP), glypican-3 (GPC3), insulin-like growth factor II mRNA binding protein 3 (IMP3), survivin, Golgi protein 73 (GP73), cadherin-17 (CDH17), and granulin-epithelin precursor (GEP) for their diagnostic and prognostic values. In addition, how these molecules can be used for developing therapies for HCC is also discussed. Most of the mentioned oncofetal molecules are found associating with poor disease conditions, while some of them have been studied for their potential capability in treating tumors in preclinical animal models. In summary, oncofetal molecules belong to an emerging class of candidates with potential application in improving current methods of diagnosis, prognosis, and treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    PubMed  Google Scholar 

  2. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5 Suppl 1):S35–S50

    PubMed  Google Scholar 

  3. de Lope CR, Tremosini S, Forner A, Reig M, Bruix J (2012) Management of HCC. J Hepatol 56(Suppl 1):S75–S87

    PubMed  Google Scholar 

  4. Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso Mdel C, Sala M, Bru C, Rodes J, Bruix J (1999) Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 29(1):62–67

    PubMed  CAS  Google Scholar 

  5. Burrel M, Llovet JM, Ayuso C, Iglesias C, Sala M, Miquel R, Caralt T, Ayuso JR, Sole M, Sanchez M, Bru C, Bruix J (2003) MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 38(4):1034–1042

    PubMed  Google Scholar 

  6. Postovit LM, Costa FF, Bischof JM, Seftor EA, Wen B, Seftor RE, Feinberg AP, Soares MB, Hendrix MJ (2007) The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J Cell Biochem 101(4):908–917

    PubMed  CAS  Google Scholar 

  7. Lee NP, Leung KW, Cheung N, Lam BY, Xu MZ, Sham PC, Lau GK, Poon RT, Fan ST, Luk JM (2008) Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics 8(10): 2136–2149

    PubMed  CAS  Google Scholar 

  8. Bergstrand CG, Czar B (1956) Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest 8(2):174

    PubMed  CAS  Google Scholar 

  9. Stefaniuk P, Cianciara J, Wiercinska-Drapalo A (2010) Present and future possibilities for early diagnosis of hepatocellular carcinoma. World J Gastroenterol 16(4):418–424

    PubMed  CAS  Google Scholar 

  10. Abelev GI (1968) Production of embryonal serum alpha-globulin by hepatomas: review of experimental and clinical data. Cancer Res 28(7):1344–1350

    PubMed  CAS  Google Scholar 

  11. Alpert E, Pinn VW, Isselbacher KJ (1971) Alpha-fetoprotein in a patient with gastric carcinoma metastatic to the liver. N Engl J Med 285(19):1058–1059

    PubMed  CAS  Google Scholar 

  12. McIntire KR, Waldmann TA, Moertel CG, Go VL (1975) Serum alpha-fetoprotein in patients with neoplasms of the gastrointestinal tract. Cancer Res 35(4):991–996

    PubMed  CAS  Google Scholar 

  13. Daniele B, Bencivenga A, Megna AS, Tinessa V (2004) Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S108–S112

    PubMed  Google Scholar 

  14. Gomaa AI, Khan SA, Leen EL, Waked I, Taylor-Robinson SD (2009) Diagnosis of hepatocellular carcinoma. World J Gastroenterol 15(11):1301–1314

    PubMed  Google Scholar 

  15. Malaguarnera G, Giordano M, Paladina I, Berretta M, Cappellani A, Malaguarnera M (2010) Serum markers of hepatocellular carcinoma. Dig Dis Sci 55(10):2744–2755

    PubMed  CAS  Google Scholar 

  16. Trevisani F, D’Intino PE, Morselli-Labate AM, Mazzella G, Accogli E, Caraceni P, Domenicali M, De Notariis S, Roda E, Bernardi M (2001) Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 34(4):570–575

    PubMed  CAS  Google Scholar 

  17. Gambarin-Gelwan M, Wolf DC, Shapiro R, Schwartz ME, Min AD (2000) Sensitivity of commonly available screening tests in detecting hepatocellular carcinoma in cirrhotic patients undergoing liver transplantation. Am J Gastroenterol 95(6):1535–1538

    PubMed  CAS  Google Scholar 

  18. Hu KQ, Kyulo NL, Lim N, Elhazin B, Hillebrand DJ, Bock T (2004) Clinical significance of elevated alpha-fetoprotein (AFP) in patients with chronic hepatitis C, but not hepatocellular carcinoma. Am J Gastroenterol 99(5):860–865

    PubMed  CAS  Google Scholar 

  19. Breborowicz J, Mackiewicz A, Breborowicz D (1981) Microheterogeneity of alpha-fetoprotein in patient serum as demonstrated by lectin affino-electrophoresis. Scand J Immunol 14(1):15–20

    PubMed  CAS  Google Scholar 

  20. Aoyagi Y, Isemura M, Yosizawa Z, Suzuki Y, Sekine C, Ono T, Ichida F (1985) Fucosylation of serum alpha-fetoprotein in patients with primary hepatocellular carcinoma. Biochim Biophys Acta 830(3):217–223

    PubMed  CAS  Google Scholar 

  21. Taketa K, Sekiya C, Namiki M, Akamatsu K, Ohta Y, Endo Y, Kosaka K (1990) Lectin-reactive profiles of alpha-fetoprotein characterizing hepatocellular carcinoma and related conditions. Gastroenterology 99(2):508–518

    PubMed  CAS  Google Scholar 

  22. Taketa K, Endo Y, Sekiya C, Tanikawa K, Koji T, Taga H, Satomura S, Matsuura S, Kawai T, Hirai H (1993) A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res 53(22):5419–5423

    PubMed  CAS  Google Scholar 

  23. Toyoda H, Kumada T, Tada T (2011) Highly sensitive lens culinaris agglutinin-reactive alpha-fetoprotein: a new tool for the management of hepatocellular carcinoma. Oncology 81(Suppl 1):61–65

    PubMed  CAS  Google Scholar 

  24. Oka H, Saito A, Ito K, Kumada T, Satomura S, Kasugai H, Osaki Y, Seki T, Kudo M, Tanaka M (2001) Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of lens culinaris agglutinin-reactive alpha-fetoprotein. J Gastroenterol Hepatol 16(12):1378–1383

    PubMed  CAS  Google Scholar 

  25. Tada T, Kumada T, Toyoda H, Kiriyama S, Sone Y, Tanikawa M, Hisanaga Y, Kitabatake S, Kuzuya T, Nonogaki K, Shimizu J, Yamaguchi A, Isogai M, Kaneoka Y, Washizu J, Satomura S (2005) Relationship between lens culinaris agglutinin-reactive alpha-fetoprotein and pathologic features of hepatocellular carcinoma. Liver Int 25(4):848–853

    PubMed  CAS  Google Scholar 

  26. Vollmer CM Jr, Eilber FC, Butterfield LH, Ribas A, Dissette VB, Koh A, Montejo LD, Lee MC, Andrews KJ, McBride WH, Glaspy JA, Economou JS (1999) Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res 59(13):3064–3067

    PubMed  CAS  Google Scholar 

  27. Grimm CF, Ortmann D, Mohr L, Michalak S, Krohne TU, Meckel S, Eisele S, Encke J, Blum HE, Geissler M (2000) Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 119(4): 1104–1112

    PubMed  CAS  Google Scholar 

  28. Behboudi S, Boswell S, Williams R (2010) Cell-mediated immune responses to alpha-fetoprotein and other antigens in hepatocellular carcinoma. Liver Int 30(4):521–526

    PubMed  CAS  Google Scholar 

  29. Song HH, Shi W, Filmus J (1997) OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. J Biol Chem 272(12):7574–7577

    PubMed  CAS  Google Scholar 

  30. Filmus J, Capurro M, Rast J (2008) Glypicans. Genome Biol 9(5):224

    PubMed  Google Scholar 

  31. Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14(5):700–711

    PubMed  CAS  Google Scholar 

  32. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12(3):241–247

    PubMed  CAS  Google Scholar 

  33. Neri G, Gurrieri F, Zanni G, Lin A (1998) Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet 79(4):279–283

    PubMed  CAS  Google Scholar 

  34. Filmus J, Capurro M (2008) The role of glypican-3 in the regulation of body size and cancer. Cell Cycle 7(18):2787–2790

    PubMed  CAS  Google Scholar 

  35. Hsu HC, Cheng W, Lai PL (1997) Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 57(22):5179–5184

    PubMed  CAS  Google Scholar 

  36. Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, Korc M, Kleeff J, Buchler MW (2001) Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut 48(4):558–564

    PubMed  CAS  Google Scholar 

  37. Sung YK, Hwang SY, Park MK, Farooq M, Han IS, Bae HI, Kim JC, Kim M (2003) Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci 94(3):259–262

    PubMed  CAS  Google Scholar 

  38. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97

    PubMed  CAS  Google Scholar 

  39. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, Nakagohri T, Konishi M, Kobayashi N, Kinoshita T, Nakatsura T (2009) Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci 100(8):1403–1407

    PubMed  CAS  Google Scholar 

  40. Ligato S, Mandich D, Cartun RW (2008) Utility of glypican-3 in differentiating hepatocellular carcinoma from other primary and metastatic lesions in FNA of the liver: an immunocytochemical study. Mod Pathol 21(5):626–631

    PubMed  CAS  Google Scholar 

  41. Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H, Ashihara H, Katagiri T, Furukawa Y, Fujiyama S, Ogawa M, Nakamura Y, Nishimura Y (2003) Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306(1):16–25

    PubMed  CAS  Google Scholar 

  42. Hippo Y, Watanabe K, Watanabe A, Midorikawa Y, Yamamoto S, Ihara S, Tokita S, Iwanari H, Ito Y, Nakano K, Nezu J, Tsunoda H, Yoshino T, Ohizumi I, Tsuchiya M, Ohnishi S, Makuuchi M, Hamakubo T, Kodama T, Aburatani H (2004) Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 64(7):2418–2423

    PubMed  CAS  Google Scholar 

  43. Filmus J, Capurro M (2004) Glypican-3 and alphafetoprotein as diagnostic tests for hepatocellular carcinoma. Mol Diagn 8(4):207–212

    PubMed  Google Scholar 

  44. Cheng W, Tseng CJ, Lin TT, Cheng I, Pan HW, Hsu HC, Lee YM (2008) Glypican-3-mediated oncogenesis involves the insulin-like growth factor-signaling pathway. Carcinogenesis 29(7):1319–1326

    PubMed  CAS  Google Scholar 

  45. Midorikawa Y, Ishikawa S, Iwanari H, Imamura T, Sakamoto H, Miyazono K, Kodama T, Makuuchi M, Aburatani H (2003) Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 103(4):455–465

    PubMed  CAS  Google Scholar 

  46. Zittermann SI, Capurro MI, Shi W, Filmus J (2010) Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J Cancer 126(6):1291–1301

    PubMed  CAS  Google Scholar 

  47. Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, Fukuma D, Yokomine K, Harao M, Beppu T, Matsui M, Torigoe T, Sato N, Baba H, Nishimura Y (2006) Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2689–2697

    PubMed  CAS  Google Scholar 

  48. Ishiguro T, Sugimoto M, Kinoshita Y, Miyazaki Y, Nakano K, Tsunoda H, Sugo I, Ohizumi I, Aburatani H, Hamakubo T, Kodama T, Tsuchiya M, Yamada-Okabe H (2008) Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res 68(23):9832–9838

    PubMed  CAS  Google Scholar 

  49. Nakano K, Ishiguro T, Konishi H, Tanaka M, Sugimoto M, Sugo I, Igawa T, Tsunoda H, Kinoshita Y, Habu K, Orita T, Tsuchiya M, Hattori K, Yamada-Okabe H (2010) Generation of a humanized anti-glypican 3 antibody by CDR grafting and stability optimization. Anticancer Drugs 21(10):907–916

    PubMed  CAS  Google Scholar 

  50. Ho M, Kim H (2011) Glypican-3: a new target for cancer immunotherapy. Eur J Cancer 47(3):333–338

    PubMed  CAS  Google Scholar 

  51. Mueller-Pillasch F, Lacher U, Wallrapp C, Micha A, Zimmerhackl F, Hameister H, Varga G, Friess H, Buchler M, Beger HG, Vila MR, Adler G, Gress TM (1997) Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein. Oncogene 14(22):2729–2733

    PubMed  CAS  Google Scholar 

  52. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19(2):1262–1270

    PubMed  CAS  Google Scholar 

  53. Schaeffer DF, Owen DR, Lim HJ, Buczkowski AK, Chung SW, Scudamore CH, Huntsman DG, Ng SS, Owen DA (2010) Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer 10:59

    PubMed  Google Scholar 

  54. Yantiss RK, Cosar E, Fischer AH (2008) Use of IMP3 in identification of carcinoma in fine needle aspiration biopsies of pancreas. Acta Cytol 52(2):133–138

    PubMed  Google Scholar 

  55. Li D, Yan D, Tang H, Zhou C, Fan J, Li S, Wang X, Xia J, Huang F, Qiu G, Peng Z (2009) IMP3 is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Ann Surg Oncol 16(12):3499–3506

    PubMed  Google Scholar 

  56. Jeng YM, Wang TH, Lu SH, Yuan RH, Hsu HC (2009) Prognostic significance of insulin-like growth factor II mRNA-binding protein 3 expression in gastric adenocarcinoma. Br J Surg 96(1):66–73

    PubMed  CAS  Google Scholar 

  57. Jeng YM, Chang CC, Hu FC, Chou HY, Kao HL, Wang TH, Hsu HC (2008) RNA-binding protein insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor invasion and predicts early recurrence and poor prognosis in hepatocellular carcinoma. Hepatology 48(4):1118–1127

    PubMed  CAS  Google Scholar 

  58. Wachter DL, Kristiansen G, Soll C, Hellerbrand C, Breuhahn K, Fritzsche F, Agaimy A, Hartmann A, Riener MO (2012) Insulin-like growth factor II mRNA-binding protein 3 (IMP3) expression in hepatocellular carcinoma. A clinicopathological analysis with emphasis on diagnostic value. Histopathology 60(2):278–286

    PubMed  Google Scholar 

  59. Tomita Y, Harao M, Senju S, Imai K, Hirata S, Irie A, Inoue M, Hayashida Y, Yoshimoto K, Shiraishi K, Mori T, Nomori H, Kohrogi H, Nishimura Y (2011) Peptides derived from human insulin-like growth factor-II mRNA binding protein 3 can induce human leukocyte antigen-A2-restricted cytotoxic T lymphocytes reactive to cancer cells. Cancer Sci 102(1):71–78

    PubMed  CAS  Google Scholar 

  60. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410

    PubMed  CAS  Google Scholar 

  61. Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58(22):5071–5074

    PubMed  CAS  Google Scholar 

  62. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259

    PubMed  Google Scholar 

  63. Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tokuda M (2002) Survivin expression and its correlation with cell proliferation and prognosis in epithelial ovarian tumors. Int J Oncol 21(2):315–320

    PubMed  CAS  Google Scholar 

  64. Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I (2002) Expression of survivin is associated with malignant potential in epithelial ovarian carcinoma. Int J Mol Med 10(2):211–216

    PubMed  CAS  Google Scholar 

  65. Satoh K, Kaneko K, Hirota M, Masamune A, Satoh A, Shimosegawa T (2001) Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 92(2):271–278

    PubMed  CAS  Google Scholar 

  66. Sarela AI, Verbeke CS, Ramsdale J, Davies CL, Markham AF, Guillou PJ (2002) Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br J Cancer 86(6):886–892

    PubMed  CAS  Google Scholar 

  67. Kami K, Doi R, Koizumi M, Toyoda E, Mori T, Ito D, Fujimoto K, Wada M, Miyatake S, Imamura M (2004) Survivin expression is a prognostic marker in pancreatic cancer patients. Surgery 136(2):443–448

    PubMed  Google Scholar 

  68. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    PubMed  CAS  Google Scholar 

  69. Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC (1998) Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152(1):43–49

    PubMed  CAS  Google Scholar 

  70. Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A (2000) Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology 31(5):1080–1085

    PubMed  CAS  Google Scholar 

  71. Ikeguchi M, Ueda T, Sakatani T, Hirooka Y, Kaibara N (2002) Expression of survivin messenger RNA correlates with poor prognosis in patients with hepatocellular carcinoma. Diagn Mol Pathol 11(1):33–40

    PubMed  Google Scholar 

  72. Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara N (2002) Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma. Clin Cancer Res 8(10):3131–3136

    PubMed  CAS  Google Scholar 

  73. Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C (2004) Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol 17(11):1378–1385

    PubMed  CAS  Google Scholar 

  74. Kannangai R, Wang J, Liu QZ, Sahin F, Torbenson M (2005) Survivin overexpression in hepatocellular carcinoma is associated with p53 dysregulation. Int J Gastrointest Cancer 35(1):53–60

    PubMed  CAS  Google Scholar 

  75. Zhu H, Chen XP, Zhang WG, Luo SF, Zhang BX (2005) Expression and significance of new inhibitor of apoptosis protein survivin in hepatocellular carcinoma. World J Gastroenterol 11(25):3855–3859

    PubMed  CAS  Google Scholar 

  76. Ye CP, Qiu CZ, Huang ZX, Su QC, Zhuang W, Wu RL, Li XF (2007) Relationship between survivin expression and recurrence, and prognosis in hepatocellular carcinoma. World J Gastroenterol 13(46):6264–6268

    PubMed  Google Scholar 

  77. Hsieh YS, Tsai CM, Yeh CB, Yang SF, Hsieh YH, Weng CJ (2012) Survivin T9809C, an SNP located in 3′-UTR, displays a correlation with the risk and clinicopathological development of hepatocellular carcinoma. Ann Surg Oncol 19(Suppl 3):625–633

    Google Scholar 

  78. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58(23):5315–5320

    PubMed  CAS  Google Scholar 

  79. Zhang R, Ma L, Zheng M, Ren J, Wang T, Meng Y, Zhao J, Jia L, Yao L, Han H, Li K, Yang A (2010) Survivin knockdown by short hairpin RNA abrogates the growth of human hepatocellular carcinoma xenografts in nude mice. Cancer Gene Ther 17(4):275–288

    PubMed  CAS  Google Scholar 

  80. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711):580–584

    PubMed  CAS  Google Scholar 

  81. Zhang X, Dong N, Yin L, Cai N, Ma H, You J, Zhang H, Wang H, He R, Ye L (2005) Hepatitis B virus X protein upregulates survivin expression in hepatoma tissues. J Med Virol 77(3):374–381

    PubMed  CAS  Google Scholar 

  82. Kladney RD, Bulla GA, Guo L, Mason AL, Tollefson AE, Simon DJ, Koutoubi Z, Fimmel CJ (2000) GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 249(1–2):53–65

    PubMed  CAS  Google Scholar 

  83. Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ (2002) Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 35(6):1431–1440

    PubMed  CAS  Google Scholar 

  84. Marrero JA, Lok AS (2004) Newer markers for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S113–S119

    PubMed  CAS  Google Scholar 

  85. Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, Comunale MA, D’Amelio A, Lok AS, Block TM (2005) GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 43(6):1007–1012

    PubMed  CAS  Google Scholar 

  86. Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, Zhao H, Chen W, Xu Y, Chi T, Yang Z, Cai J, Li H, Chen J, Zhong S, Mohanti SR, Lopez-Soler R, Millis JM, Huang J, Zhang H (2010) Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut 59(12):1687–1693

    PubMed  CAS  Google Scholar 

  87. Sun Y, Yang H, Mao Y, Xu H, Zhang J, Li G, Lu X, Sang X, Zhao H, Zhong S, Huang J, Zhang H (2011) Increased Golgi protein 73 expression in hepatocellular carcinoma tissue correlates with tumor aggression but not survival. J Gastroenterol Hepatol 26(7): 1207–1212

    PubMed  CAS  Google Scholar 

  88. Hann HW, Wang M, Hafner J, Long RE, Kim SH, Ahn M, Park S, Comunale MA, Block TM, Mehta A (2010) Analysis of GP73 in patients with HCC as a function of anti-cancer treatment. Cancer Biomark 7(6):269–273

    PubMed  CAS  Google Scholar 

  89. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299(3):551–572

    PubMed  CAS  Google Scholar 

  90. Berndorff D, Gessner R, Kreft B, Schnoy N, Lajous-Petter AM, Loch N, Reutter W, Hortsch M, Tauber R (1994) Liver-intestine cadherin: molecular cloning and characterization of a novel Ca(2+)-dependent cell adhesion molecule expressed in liver and intestine. J Cell Biol 125(6):1353–1369

    PubMed  CAS  Google Scholar 

  91. Dantzig AH, Hoskins JA, Tabas LB, Bright S, Shepard RL, Jenkins IL, Duckworth DC, Sportsman JR, Mackensen D, Rosteck PR Jr, Skatrud PL (1994) Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264(5157): 430–433

    PubMed  CAS  Google Scholar 

  92. Lee NP, Poon RT, Shek FH, Ng IO, Luk JM (2010) Role of cadherin-17 in oncogenesis and potential therapeutic implications in hepatocellular carcinoma. Biochim Biophys Acta 1806(2):138–145

    PubMed  CAS  Google Scholar 

  93. Wong BW, Luk JM, Ng IO, Hu MY, Liu KD, Fan ST (2003) Identification of liver-intestine cadherin in hepatocellular carcinoma—a potential disease marker. Biochem Biophys Res Commun 311(3):618–624

    PubMed  CAS  Google Scholar 

  94. Liu LX, Lee NP, Chan VW, Xue W, Zender L, Zhang C, Mao M, Dai H, Wang XL, Xu MZ, Lee TK, Ng IO, Chen Y, Kung HF, Lowe SW, Poon RT, Wang JH, Luk JM (2009) Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology 50(5):1453–1463

    PubMed  CAS  Google Scholar 

  95. Ding ZB, Shi YH, Zhou J, Shi GM, Ke AW, Qiu SJ, Wang XY, Dai Z, Xu Y, Fan J (2009) Liver-intestine cadherin predicts microvascular invasion and poor prognosis of hepatitis B virus-positive hepatocellular carcinoma. Cancer 115(20):4753–4765

    PubMed  CAS  Google Scholar 

  96. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST (2005) Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 11(2 Pt 1): 483–489

    PubMed  CAS  Google Scholar 

  97. Xu SQ, Tang D, Chamberlain S, Pronk G, Masiarz FR, Kaur S, Prisco M, Zanocco-Marani T, Baserga R (1998) The granulin/epithelin precursor abrogates the requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem 273(32):20078–20083

    PubMed  CAS  Google Scholar 

  98. Bateman A, Bennett HP (1998) Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158(2):145–151

    PubMed  CAS  Google Scholar 

  99. Ong CH, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18(4):1275–1288

    PubMed  CAS  Google Scholar 

  100. Plowman GD, Green JM, Neubauer MG, Buckley SD, McDonald VL, Todaro GJ, Shoyab M (1992) The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267(18):13073–13078

    PubMed  CAS  Google Scholar 

  101. Zhou J, Gao G, Crabb JW, Serrero G (1993) Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem 268(15):10863–10869

    PubMed  CAS  Google Scholar 

  102. Jones MB, Spooner M, Kohn EC (2003) The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol Oncol 88(1 Pt 2):S136–S139

    PubMed  CAS  Google Scholar 

  103. Lu R, Serrero G (2000) Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci USA 97(8): 3993–3998

    PubMed  CAS  Google Scholar 

  104. Chen J, Guo L, Peiffer DA, Zhou L, Chan OT, Bibikova M, Wickham-Garcia E, Lu SH, Zhan Q, Wang-Rodriguez J, Jiang W, Fan JB (2008) Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int J Cancer 122(10):2249–2254

    PubMed  CAS  Google Scholar 

  105. Cheung ST, Wong SY, Leung KL, Chen X, So S, Ng IO, Fan ST (2004) Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin Cancer Res 10(22):7629–7636

    PubMed  CAS  Google Scholar 

  106. Cheung ST, Cheung PF, Cheng CK, Wong NC, Fan ST (2011) Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140(1):344–355

    PubMed  CAS  Google Scholar 

  107. Cheung PF, Cheng CK, Wong NC, Ho JC, Yip CW, Lui VC, Cheung AN, Fan ST, Cheung ST (2011) Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 6(12):e28246

    PubMed  CAS  Google Scholar 

  108. Cheung ST, Wong SY, Lee YT, Fan ST (2006) GEP associates with wild-type p53 in hepatocellular carcinoma. Oncol Rep 15(6):1507–1511

    PubMed  CAS  Google Scholar 

  109. Ho JC, Ip YC, Cheung ST, Lee YT, Chan KF, Wong SY, Fan ST (2008) Granulin-epithelin precursor as a therapeutic target for hepatocellular carcinoma. Hepatology 47(5):1524–1532

    PubMed  CAS  Google Scholar 

  110. Park MY, Park YS, Nam JH (2011) RNA interference against granulin-epithelin precursor prevents hepatocellular carcinoma growth: its application as a therapeutic agent. Int J Oncol 39(4):853–861

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki P. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shek, F.H., Lai, T.C.W., Fatima, S., Lee, N.P. (2013). Oncofetal Molecules as Biomarkers and Drug Targets for Hepatic Cancer. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_4

Download citation

Publish with us

Policies and ethics