Skip to main content

Functional Proteomics Screening for Novel Anti-viral Drug Targets

  • Chapter
  • First Online:
  • 995 Accesses

Abstract

Viruses reside in the living cells and interact with a variety of host factors. Traditionally, scientists are focused on targeting virus-specific processes or enzymes with specific drugs to eliminate the pathogens, and therefore a series of novel viral structural proteins have been identified and orchestrated for anti-viral drug design. However, due to the development of drug resistance and viral genome mutation, therapeutic efficacy of these drugs designed based upon viral proteins sharply decreases. Hence, new drug discovery approaches that aim to identify novel host cell factors capable of interacting with viral proteins and critical for viral life cycle become increasingly prevalent. These functional proteomics screening platforms have globally characterized host–virus interactions and host functions important for viral infection and thus facilitated discovery of either novel or existing licensed drugs with anti-viral activity. A combination of conventional viral pathogenic factor-targeting therapy with host-directed drug treatment might be effective in treating diseases caused by the contagious viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maxwell KL, Frappier L (2007) Viral proteomics. Microbiol Mol Biol Rev 71:398–411

    Article  PubMed  CAS  Google Scholar 

  2. Schwegmann A, Brombacher F (2008) Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 1:re8

    Article  PubMed  Google Scholar 

  3. Brass AL et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen DG, Yin H, Zhou YY, Wolff KC, Kuhen KL, Caldwell JS (2007) Identification of novel therapeutic targets for HIV infection through functional genomic cDNA screening. Virology 362:16–25

    Article  PubMed  CAS  Google Scholar 

  5. Fink JH et al (2007) Host gene expression profiling of Dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1:e86

    Article  PubMed  Google Scholar 

  6. Supekova L et al (2008) Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening. J Biol Chem 283:29–36

    Article  PubMed  CAS  Google Scholar 

  7. Ding XR, Yang J, Sun DC, Lou SK, Wang SQ (2008) Whole genome expression profiling of hepatitis B virus-transfected cell line reveals the potential targets of anti-HBV drugs. Pharmacogenomics J 8:61–70

    Article  PubMed  CAS  Google Scholar 

  8. Oliver KB, Russell JD, Anthony LC (2005) New insights into viral structure and virus-cell interactions through proteomics. Expert Rev Proteomics 2:577–588

    Article  Google Scholar 

  9. Mendez-Rios J, Uetz P (2010) Global approaches to study protein–protein interactions among viruses and hosts. Future Microbiol 5:289–301

    Article  PubMed  CAS  Google Scholar 

  10. Viswanathan K, Fruh K (2007) Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Rev Proteomics 4:815–829

    Article  PubMed  CAS  Google Scholar 

  11. Feng XS, Zhang JH, Chen WN, Ching CB (2011) Proteome profiling of Epstein-Barr virus infected nasopharyngeal carcinoma cell line: identification of potential biomarkers by comparative iTRAQ-coupled 2D LC/MS-MS analysis. J Proteomics 74:567–576

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Q et al (2008) Proteome analysis of the transformation potential of the Epstein-Barr virus-encoded latent membrane protein 1 in nasopharyngeal epithelial cells NP69. Mol Cell Biochem 314:73–83

    Article  PubMed  CAS  Google Scholar 

  13. Molina-Jiménez F et al (2010) Expression of pituitary tumor-transforming gene 1 (PTTG1)/securin in hepatitis B virus (HBV)-associated liver diseases: evidence for an HBV X protein-mediated inhibition of PTTG1 ubiquitination and degradation. Hepatology 51:777–787

    Article  PubMed  Google Scholar 

  14. Kattenhorn LM et al (2004) Identification of proteins associated with murine cytomegalovirus virions. J Virol 78:11187–11197

    Article  PubMed  CAS  Google Scholar 

  15. Zhu FX, Chong JM, Wu LJ, Yuan Y (2005) Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:800–811

    Article  PubMed  CAS  Google Scholar 

  16. Gao S et al (2011) Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35:514–525

    Article  PubMed  CAS  Google Scholar 

  17. Nam HJ et al (2011) Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking. J Virol 85:11791–11799

    Article  PubMed  CAS  Google Scholar 

  18. Zhang NZ et al (2011) Crystal structure of swine major histocompatibility complex class I SLA-1*0401 and identification of 2009 pandemic swine-origin influenza a H1N1 virus cytotoxic T lymphocyte epitope peptides. J Virol 85:11709–11724

    Article  PubMed  CAS  Google Scholar 

  19. Lu K et al (2011) NMR detection of structures in the HIV-1 5’-leader RNA that regulate genome packaging. Science 334:242–245

    Article  PubMed  CAS  Google Scholar 

  20. Vogel EP, Curtis-Fisk JY, Kaitlin MW, David P (2011) Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated fgp41. Biochemistry 50:10013–10026

    Article  PubMed  CAS  Google Scholar 

  21. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  22. Zhou ST, Liu R, Zhao X, Huang CH (2011) Viral proteomics: the emerging cutting-edge of virus research. Sci China Life Sci 54:502–512

    Article  PubMed  CAS  Google Scholar 

  23. Calderwood MA et al (2007) Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA 104:7606–7611

    Article  PubMed  CAS  Google Scholar 

  24. de Chassey B et al (2008) Hepatitis C virus infection protein network. Mol Syst Biol 4:230

    Article  PubMed  Google Scholar 

  25. Kang SM, Shin MJ, Kim JH, Oh JW (2005) Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein. Proteomics 5:2227–2237

    Article  PubMed  CAS  Google Scholar 

  26. Visintin M, Melchionna T, Cannistraci I, Cattaneo A (2008) In vivo selection of intrabodies specifically targeting protein-protein interactions: a general platform for an “undruggable” class of disease targets. J Biotechnol 135:1–15

    Article  PubMed  CAS  Google Scholar 

  27. Visintin M, Meli GA, Cannistraci I, Cattaneo A (2004) Intracellular antibodies for proteomics. J Immunol Methods 290:135–153

    Article  PubMed  CAS  Google Scholar 

  28. Bushell KM, Sollner C, Schuster-Boeckler B, Bateman A, Wright GJ (2008) Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res 18:622–630

    Article  PubMed  CAS  Google Scholar 

  29. Ravichandran V, Major EO (2006) Viral proteomics: a promising approach for understanding JC virus tropism. Proteomics 6:5628–5636

    Article  PubMed  CAS  Google Scholar 

  30. Chen WG, Dittmer DP (2011) Ribosomal protein S6 interacts with the latency-associated nuclear antigen of kaposi’s sarcoma-associated herpesvirus. J Virol 85:9495–9505

    Article  PubMed  CAS  Google Scholar 

  31. Wang FW et al (2011) Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter. Virology 421:184–191

    Article  PubMed  CAS  Google Scholar 

  32. Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102

    Article  PubMed  Google Scholar 

  33. Neamati N, Murthy M, Wang YX (2003) Preparation of DNA-protein complexes suitable for spectroscopic analysis. Methods Mol Med 85:185–202

    PubMed  CAS  Google Scholar 

  34. Shapira SD et al (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139:1255–1267

    Article  PubMed  Google Scholar 

  35. Zhao B et al (2011) Epstein-Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines. Proc Natl Acad Sci USA 108:337–342

    Article  PubMed  CAS  Google Scholar 

  36. Doukas T, Sarnow P (2011) Escape from transcriptional shutoff during poliovirus infection: NF-kappa B-responsive genes I kappa Ba and A20. J Virol 85:10101–10108

    Article  PubMed  CAS  Google Scholar 

  37. Woodhouse SD et al (2010) Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of Hepatitis C virus infection in vitro. Hepatology 52:443–453

    Article  PubMed  CAS  Google Scholar 

  38. Amberger J, Bocchini C, Hamosh A (2011) A new face and new challenges for online Mendelian Inheritance in Man (OMIM (R)). Hum Mutat 32:564–567

    Article  PubMed  Google Scholar 

  39. de Hoon M, Hayashizaki Y. Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques. 2008. 44: 627–628, 630, 632.

    Google Scholar 

  40. Shiraki T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100:15776–15781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National 973 Basic Research Program of China (2011CB910703, 2013CB911300, 2012CB518900), the National Science and Technology Major Project (2011ZX09302-001-01, 2012ZX09501001-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, S., Kuang, M., Zhao, X., Huang, C. (2013). Functional Proteomics Screening for Novel Anti-viral Drug Targets. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_11

Download citation

Publish with us

Policies and ethics