Skip to main content

Nonreceptor Protein Kinases c-Src, c-Yes, and FAK Are Biomarkers for Male Contraceptive Research

  • Chapter
  • First Online:
Book cover New Advances on Disease Biomarkers and Molecular Targets in Biomedicine

Abstract

A major obstacle in male contraceptive research and development is the lack of reliable and sensitive biomarkers to monitor the efficacy and potency of candidate compounds under investigation. Since the use of routine andrology techniques/analyses, such as sperm count, sperm motility, sperm morphology, sperm DNA integrity, sperm metabolism, and other semen characteristics (e.g., semen volume, pH, bacterial content) are tedious, representing the combined changes that take place in the testis and the male reproductive tract including the epididymis, rete testis, efferent ducts, prostate, and seminal vesicles. As such, the number of compounds that can be rapidly screened and tested is severely limited. Also, the outcomes are often difficult to interpret since it is not known if a compound under investigation exerts its effects mostly in the testis, the epididymis, another accessory sex organ or a combination of these organs. Herein, we summarize recent findings in the field regarding the use of nonreceptor protein kinases c-Src, c-Yes, and FAK as possible biomarkers for male contraceptive development based on our experience with adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly known as AF-2364). This information should pave the way of using these, and possibly other, markers for male contraceptive research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czernilofsky AP et al (1980) Nucleotide sequence of an avian sarcoma virus oncogene (Src) and proposed amino acid sequence for gene product. Nature 287:198–203

    Article  PubMed  CAS  Google Scholar 

  2. Smart JE et al (1981) Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp 60v-src) and its normal cellular homologue (pp60c-src). Proc Natl Acad Sci USA 78:6013–6017

    Article  PubMed  CAS  Google Scholar 

  3. Oppermann H, Levinson AD, Varmus HE, Levintow L, Bishop JM (1979) Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc Natl Acad Sci USA 76:1804–1808

    Article  PubMed  CAS  Google Scholar 

  4. Xiao X, Mruk DD, Cheng FL, Cheng CY (2012) c-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. Adv Exp Med Biol 763:295–317

    Google Scholar 

  5. Mayer BJ, Baltimore D (1993) Signalling through SH2 and SH3 domains. Trends Cell Biol 3:8–13

    Article  PubMed  CAS  Google Scholar 

  6. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    PubMed  CAS  Google Scholar 

  7. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  8. Vanhaesebroeck BL, Leevers S et al (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 10:535–602

    Article  Google Scholar 

  9. Williams R, Berndt A, Miller S, Hon WC, Zhang X (2009) Form and flexibility in phosphoinositide 3-kinases. Biochem Soc Trans 37:615–626

    Article  PubMed  CAS  Google Scholar 

  10. Frame MC, Fincham VJ, Carragher NO, Wyke JA (2002) v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233–245

    Article  PubMed  CAS  Google Scholar 

  11. Frame MC (2004) Newest findings on the oldest oncogene: how activated src does it. J Cell Sci 117:989–998

    Article  PubMed  CAS  Google Scholar 

  12. Cheng CY, Mruk DD (2009) Regulation of blood-testis barrier dynamics by focal adhesion kinase (FAK). An unexpected turn of events. Cell Cycle 8:3493–3499

    Article  PubMed  CAS  Google Scholar 

  13. Cheng CY, Mruk DD (2012) The blood-testis barrier and its implication in male contraception. Pharmacol Rev 64:16–64

    Article  PubMed  CAS  Google Scholar 

  14. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60: 261–310

    Article  PubMed  CAS  Google Scholar 

  15. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  16. Tamura M et al (1999) PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274:20693–20703

    Article  PubMed  CAS  Google Scholar 

  17. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ (2010) The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 11:802–814

    Article  PubMed  CAS  Google Scholar 

  18. Cheng CY et al (2005) AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception 72:251–261

    Article  PubMed  CAS  Google Scholar 

  19. Cheng CY, Mruk DD (2010) New frontiers in non-hormonal male contraception. Contraception 82:476–482

    Article  PubMed  Google Scholar 

  20. Mok KW, Mruk DD, Lie PPY, Lui WY, Cheng CY (2011) Adjudin, a potential male contraceptive, exerts its effects locally in the seminifeorus epithelium of mammalian testes. Reproduction 141:571–580

    Article  PubMed  CAS  Google Scholar 

  21. Cheng CY, Lie PPY, Wong EWP, Mruk DD, Silvestrini B (2011) Adjudin disrupts spermatogenesis via the action of some unlikely partners: Eps8, Arp2/3 complex, drebrin E, PAR6 and 14-3-3. Spermatogenesis 1:291–297

    Article  PubMed  Google Scholar 

  22. Wine R, Chapin R (1999) Adhesion and signaling proteins spatiotemporally associated with spermiation in the rat. J Androl 20:198–213

    PubMed  CAS  Google Scholar 

  23. Lee NPY, Cheng CY (2005) Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J Cell Physiol 202:344–360

    Article  PubMed  CAS  Google Scholar 

  24. Cheng CY, Mruk DD (2010) A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6:380–395

    Article  PubMed  CAS  Google Scholar 

  25. Vogl AW, Vaid KS, Guttman JA (2008) The Sertoli cell cytoskeleton. Adv Exp Med Biol 636:186–211

    Article  PubMed  CAS  Google Scholar 

  26. Yan HHN, Cheng CY (2006) Laminin α3 forms a complex with β3 and γ3 chains that serves as the ligand for α6β1-integrin at the apical ectoplasmic specialization in adult rat testes. J Biol Chem 281:17286–17303

    Article  PubMed  CAS  Google Scholar 

  27. Wong CH et al (2005) Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes. Endocrinology 146:1192–1204

    Article  PubMed  CAS  Google Scholar 

  28. Salanova M, Stefanini M, De Curtis I, Palombi F (1995) Integrin receptor α6β1 is localized at specific sites of cell-to-cell contact in rat seminiferous epithelium. Biol Reprod 52:79–87

    Article  PubMed  CAS  Google Scholar 

  29. Palombi F, Salanova M, Tarone G, Farini D, Stefanini M (1992) Distribution of β1 integrin subunit in rat seminiferous epithelium. Biol Reprod 47:1173–1182

    Article  PubMed  CAS  Google Scholar 

  30. Salanova M et al (1998) Junctional contacts between Sertoli cells in normal and aspermatogenic rat seminiferous epithelium contain α6β1 integrins, and their formation is controlled by follicle-stimulating hormone. Biol Reprod 58:371–378

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J et al (2005) Regulation of Sertoli-germ cell adherens junction dynamics via changes in protein-protein interactions of the N-cadherin-β-catenin protein complex which are possibly mediated by c-Src and myotubularin-related protein 2: an in vivo study using an androgen suppression model. Endocrinology 146:1268–1284

    Article  PubMed  CAS  Google Scholar 

  32. Li JCH et al (2000) Rat testicular myotubularin, a protein tyrosine phosphatase expressed by Sertoli and germ cells, is a potential marker for studying cell-cell interactions in the rat testis. J Cell Physiol 185:366–385

    Article  PubMed  CAS  Google Scholar 

  33. Bolino A et al (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167:711–721

    Article  PubMed  CAS  Google Scholar 

  34. Laporte J, Blondeau F, Buj-Bello A, Mandel J (2001) The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 17:221–228

    Article  PubMed  CAS  Google Scholar 

  35. Mruk DD, Cheng CY (2011) The myotubularin family of lipid phosphatases in disease and in spermatogenesis. Biochem J 433:253–262

    Article  PubMed  CAS  Google Scholar 

  36. Wang CQF, Mruk DD, Lee WM, Cheng CY (2007) Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Exp Cell Res 313:1373–1392

    Article  PubMed  CAS  Google Scholar 

  37. Yan HHN, Mruk DD, Wong EWP, Lee WM, Cheng CY (2008) An autocrine axis in the testis that coordinates spermiation and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci USA 105:8950–8955

    Article  PubMed  CAS  Google Scholar 

  38. Xiao X, Mruk DD, Lee WM, Cheng CY (2011) c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. Int J Biochem Cell Biol 43:651–665

    Article  PubMed  CAS  Google Scholar 

  39. Hess RA, de Franca LR (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    Article  PubMed  Google Scholar 

  40. Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225

    Article  PubMed  CAS  Google Scholar 

  41. Siu MKY, Mruk DD, Lee WM, Cheng CY (2003) Adhering junction dynamics in the testis are regulated by an interplay of β1-integrin and focal adhesion complex (FAC)-associated proteins. Endocrinology 144:2141–2163

    Article  PubMed  CAS  Google Scholar 

  42. Beardsley A, Robertson DM, O’Donnell L (2006) A complex containing α6β1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 190:759–770

    Article  PubMed  CAS  Google Scholar 

  43. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: the process of sperm release. Spermatogenesis 1:14–35

    Article  PubMed  Google Scholar 

  44. Siu ER et al (2009) An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 150:3336–3344

    Article  PubMed  CAS  Google Scholar 

  45. Siu ER, Wong EWP, Mruk DD, Porto CS, Cheng CY (2009) Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 106:9298–9303

    Article  PubMed  CAS  Google Scholar 

  46. Mruk DD, Cheng CY (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  PubMed  CAS  Google Scholar 

  47. Su L, Cheng CY, Mruk DD (2010) Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol 42:1864–1875

    Article  PubMed  CAS  Google Scholar 

  48. Mok KW, Mruk DD, Lee WM, Cheng CY (2012) Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility. Int J Androl 35:86–101

    Article  PubMed  CAS  Google Scholar 

  49. Tash JS et al (2008) A novel potent indazole carboxylic acid derivative blocks spermatogenesis and is contraceptive in rats after a single oral dose. Biol Reprod 78:1127–1138

    Article  PubMed  CAS  Google Scholar 

  50. Tash JS et al (2008) Gamendazole, an orally active indazole carboxylic acid male contraceptive agent, targets HSP90AB1 (HSP90BHETA) and EEF1A1 (eEF1A), and stimulates Il1a transcription in rat Sertoli cells. Biol Reprod 78:1139–1152

    Article  PubMed  CAS  Google Scholar 

  51. Hild SA, Attardi BJ, Reel JR (2004) The ability of a gonadotropin-releasing hormone antagonist, acyline, to prevent irreversible infertility induced by the indenopyridine, CDB-4022, in adult male rats: the role of testosterone. Biol Reprod 71:348–358

    Article  PubMed  CAS  Google Scholar 

  52. Hild SA, Reel JR, Dykstra MJ, Mann PC, Marshall GR (2007) Acute adverse effects of the indenopyridine CDB-4022 on the ultrastructure of Sertoli cells, spermatocytes, and spermatids in rat testes: comparison to the known Sertoli cell toxicant Di-n-pentylphthalate (DPP). J Androl 28:621–629

    Article  PubMed  CAS  Google Scholar 

  53. Hild SA, Reel JR, Larner JM, Blye RP (2001) Disruption of spermatogenesis and Sertoli cell structure and function by the indenopyridine CDB-4022 in rats. Biol Reprod 65:1771–1779

    Article  PubMed  CAS  Google Scholar 

  54. Schulze GE et al (2001) BMS-189453, a novel retinoid receptor antagonist, is a potent testicular toxin. Toxicol Sci 59:297–308

    Article  PubMed  CAS  Google Scholar 

  55. Chung SS et al (2011) Oral administration of a retinoic acid receptor antagonist reversibly inhibits spermatogenesis in mice. Endocrinology 152:2492–2502

    Article  PubMed  CAS  Google Scholar 

  56. Mok KW et al (2012) The apical ectoplasmic specialization-blood-testis barrier functional axis is a novel target for male contraception. Adv Exp Med Biol 763:334–355

    Google Scholar 

  57. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  Google Scholar 

  58. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  59. Cowan-Jacob SW et al (2005) The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13:861–871

    Article  PubMed  CAS  Google Scholar 

  60. Sundstrom JM et al (2009) Identification and analysis of occludin phosphosites: a combined mass spectrometry and bioinformatics approach. J Proteome Res 8:808–817

    Article  PubMed  CAS  Google Scholar 

  61. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18:516–523

    Article  PubMed  CAS  Google Scholar 

  62. Creedon H, Brunton VG (2012) SRC kinase inhibitors: promising cancer therapeutics? Crit Rev Oncog 17:145–159

    Article  PubMed  Google Scholar 

  63. Wong EWP, Cheng CY (2011) Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol Sci 32:290–299

    Article  PubMed  CAS  Google Scholar 

  64. Gallick GE, Com PG, Zurita AJ, Lin SH (2012) Small-molecule protein tyrosin kinase inhibitors for the treatment of metastatic prostate cancer. Future Med Chem 4:107–119

    Article  PubMed  CAS  Google Scholar 

  65. Matthaios D, Zarogoulidis P, Balgouranidou I, Chatzaki E, Kakolyrisa S (2011) Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology 81:259–272

    Article  PubMed  CAS  Google Scholar 

  66. Clezardin P (2011) Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res 13:207

    Article  PubMed  CAS  Google Scholar 

  67. Sudol M (2011) From Rous sarcoma virus to plasminogen activator, src oncogene and cancer management. Oncogene 30:3003–3010

    Article  PubMed  CAS  Google Scholar 

  68. Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032

    Article  PubMed  CAS  Google Scholar 

  69. Wang S, Basson MD (2011) Protein kinase B/AKT and focal adhesion kinase: two close signaling partners in cancer. Anticancer Agents Med Chem 11:993–1002

    Article  PubMed  CAS  Google Scholar 

  70. Infusino GA, Jacobson JR (2012) Endothelial FAK as a therapeutic target in disease. Microvasc Res 83:89–96

    Article  PubMed  CAS  Google Scholar 

  71. Lechertier T, Hodivala-Dilke K (2012) Focal adhesion kinase and tumor angiogenesis. J Pathol 226:404–412

    Article  PubMed  CAS  Google Scholar 

  72. Yin B (2011) Focal adhesion kinase as a target in the treatment of hematological malignancies. Leuk Res 35:1416–1418

    Article  PubMed  CAS  Google Scholar 

  73. Puls LN, Eadens M, Messersmith W (2011) Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16:566–578

    Article  PubMed  CAS  Google Scholar 

  74. Hayashi I, Vuori K, Liddington RC (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Biol 9:101–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health, NICHD, R01 HD056034 to C.Y.C; U54 HD029990 Project 5 to C.Y.C; Hong Kong University CRCG Seed Funding Research Grant to W.M.L; Hong Kong Research Grants Council/National Natural Science Foundation of China N_HKU717/12 to W.M.L.; the Government of India, Department of Biotechnology (BT/BI/03/015/2002 to P.P.M), and Department of Information Technology (DIT/R & D/BIO/15(9)/2007 to P.P.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Cheng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xiao, X. et al. (2013). Nonreceptor Protein Kinases c-Src, c-Yes, and FAK Are Biomarkers for Male Contraceptive Research. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_1

Download citation

Publish with us

Policies and ethics