Skip to main content

PPAR Ligands

  • Chapter
  • First Online:
  • 645 Accesses

Abstract

PPARs were originally described as orphan nuclear receptors, but numerous potential endogenous ligand(s) were soon described; however, the real identity of true endogenous PPAR ligand is still very much debated (Varga et al. 2011). All three PPARs are activated by a variety of polyunsaturated long-chain fatty acids and arachidonic acid derivatives (Dreyer et al. 1993; Grimaldi 2007). Because of this, it has been hypothesized that PPARs act as lipid sensors rather than being specific receptors for one particular lipid molecule. This idea suggests an important role for these receptors in adapting the metabolic rates of various tissues to the concentration of dietary lipids (Grimaldi 2007). In addition to these naturally occurring molecules, numerous synthetic ligands of varying selectivity bind to and activate various PPAR subtypes. The lack of strict specificity of ligand binding to PPARs might be attributed, at least in part, to the unusually large ligand-binding pocket in these receptors compared to other more specific nuclear hormone receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnett D, Craig JG, Robinson DS, Rogers MP (1977) Effect of clofibrate on glucose tolerance in maturity onset diabetes. Br J Clin Pharmacol 4:455–458

    Google Scholar 

  • Bentley P, Calder I, Elcombe C, Grasso P, Stringer D, Wiegand HJ (1993) Hepatic peroxisome proliferation in rodents and its significance for humans. Food Chem Toxicol 31:857–907

    Google Scholar 

  • Blumcke S, Schwartzkopff W, Lobeck H, Edmondson NA, Prentice DE, Blane GF (1983) Influence of fenofibrate on cellular and subcellular liver structure in hyperlipidemic patients. Atherosclerosis 46:105–116

    Google Scholar 

  • Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P (2005) Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 517:174–178

    Google Scholar 

  • Bugge A, Mandrup S (2010) Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation. PPAR Res 2010:169506

    Google Scholar 

  • Cantello BC, Cawthorne MA, Cottam GP, Duff PT, Haigh D, Hindley RM, Lister CA, Smith SA, Thurlby PL (1994) [[omega-(Heterocyclyamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. J Med Chem 37:3977–3985

    Google Scholar 

  • Cattley RC, DeLuca J, Elconbe C, Fenner-Crisp P, Lake BG, Marsman DS, Pastor TA, Popp JA, Robinson DE, Schwetz B, Tugwood J, Wahli W (1998) Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul Toxicol Pharmacol 27:47–60

    Google Scholar 

  • Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, Semenkovich CF (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138:476–488

    Google Scholar 

  • Chang AY, Wyse BM, Gilchrist BJ, Peterson T, Diani AR (1983) Ciglitazone, a new hypoglycemic agent. I. Studies in ob/ob and db/db mice, diabetic Chinese hamsters and normal and streptozotosin-diabetic rats. Diabetes 32:830–838

    Google Scholar 

  • Cheatham WW (2010) Peroxisome proliferator-activated receptor translational research and clinical experience. Am J Clin Nutr 91:262S–266S

    Google Scholar 

  • Coleman JD, Prabhu KS, Thompson JT, Reddy PS, Peters JM, Peterson BR, Reddy CC, Vanden Heuvel JP (2007) The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med 42:1155–1164

    Google Scholar 

  • Cottet J, Redel J, Krumm-Heller C, Tricaud ME (1953) Hypocholesterolemic property of sodium phenyl ethyl acetate (22 TH) in the rat. Bull Acad Natl Med 137:441–442

    Google Scholar 

  • Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett 47:34–38

    Google Scholar 

  • Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993) Positive regulation of peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator–activated receptors (PPAR). Biol Cell 77:67–76

    Google Scholar 

  • Esposito E, Cuzzocrea S (2011) Targeting the peroxisome proliferator-activated receptors (PPARs) in spinal cord injury. Expert Opin Ther Targets 15:943–959

    Google Scholar 

  • Fievet C, Fruchart JC, Stales B (2006) PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and metabolic syndrome. Curr Opin Pharmacol 6:606–614

    Google Scholar 

  • Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D (2005) Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48:1147–1153

    Google Scholar 

  • Fujita T, Sugiyama Y, Taketomi S, Sohda T, Kawamatsu Y, Iwatsuka H, Suzuoki Z (1983) Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexyl methoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 32:804–810

    Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of a new oral antidiabetic agent CS-045: studies in kk and ob/ob mice and zucker fatty rats. Diabetes 37:1549–1558

    Google Scholar 

  • Fyffe SA, Alphey MS, Buetow L, Smith TK, Ferguson MA, Sørensen MD, Björkling F, Hunter WN (2006) Recombinant human PPAR-beta/delta ligand-binding domain is locked in an activated conformation by endogenous fatty acids. J Mol Biol 356:1005–10013

    Google Scholar 

  • Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafson JA (1993) Interaction of peroxisome-proliferator-activated receptor and retinoid x-receptor. Proc Natl Acad Sci USA 90:1440–1444

    Google Scholar 

  • Ghosh M, Wang H, Ai Y, Romeo E, Luyendyk JP, Peters JM, Mackman N, Dey SK, Hla T (2007) COX-2 suppresses tissue factor expression via endocannabinoid-directed PPARdelta activation. J Exp Med 204:2053–2061

    Google Scholar 

  • Gonzalez IC, Lamar J, Iradier F, Xu Y, Winneroski LL, York J, Yumibe N, Zink R, Montrose-Rafizadeh C, Etgen GJ, Broderick CL, Oldham BA, Mantlo N (2007) Design and synthesis of a novel class of dual PPARgamma/delta agonists. Bioorg Med Chem Lett 17:1052–1055

    Google Scholar 

  • Goto T, Nagai H, Egawa K, Kim YI, Kato S, Taimatsu A, Sakamoto T, Ebisu S, Hohsaka T, Miyagawa H, Murakami S, Takahashi N, Kawada T (2011) Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist. Biochem J 438:111–119

    Google Scholar 

  • Grimaldi PA (2007) Peroxisome proliferator activated receptors as sensors of fatty acids and derivatives. Cell Mol Life Sci 64:2459–2464

    Google Scholar 

  • Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016

    Google Scholar 

  • Gupta RA, Tan J, Krause WF, Geraci MW, Willson TM, Dey SK, DuBois RN (2000) Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA 97:13275–13280

    Google Scholar 

  • Hess R, Staubli W, Riess W (1965) Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208:856–858

    Google Scholar 

  • Ijpenberg A, Jeanin E, Wahli W, Desvergne B (1997) Polrity and specific sequence requirements of peroxisome proliferator-activated receptor heterodimer binding to DNA. A functional analysis of the malic enzyme PPAR response element. J Biol Chem 272:20108–20117

    Google Scholar 

  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-Cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature 358:771–774

    Google Scholar 

  • Lalloyer F, Staels B (2010) Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 30:894–899

    Google Scholar 

  • Leibowitz MD, Fiévet C, Hennuyer N, Peinado-Onsurbe J, Duez H, Bergera J, Cullinan CA, Sparrow CP, Baffic J, Berger GD, Santini C, Marquis RW, Tolman RL, Smith RG, Moller DE, Auwerx J (2000) Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett 473:333–336

    Google Scholar 

  • Lim H, Gupta R, Ma W-G, Paria B, Moller D, Morrow J, DuBois R, Trzaskos J, Dey S (1999) Cyclooxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARγ. Gene Dev 13:1561–1574

    Google Scholar 

  • Mathivat A, Cottet J (1953) Clinical trials on the hypocholesterolimia producing effect of 2-phenyl butyric acid. Bull Mem Soc Med Hop Paris 69:1030–1048

    Google Scholar 

  • Matzkies F, Schulzky D, Berg G (1978) Porcetofen, a new lipid-and urine-acid-reducing substance. Frtschr Med 96:1939–1941

    Google Scholar 

  • Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, Hauser S, Rosen ED, Ge K, Roeder RG, Spiegelman BM (2002) Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem 277:41925–41930

    Google Scholar 

  • Narala VR, Adapala RK, Suresh MV, Brock TG, Peters-Golden M, Reddy RC (2010) Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem 285:22067–22074

    Google Scholar 

  • Nielsen R, Grontved L, Stunnenberg HG, Mandrup S (2006) Peroxisome proliferator-activated receptor subtype-and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery. Mol Cell Biol 26:5698–5714

    Google Scholar 

  • Oakes ND, Kennedy CJ, Jenkins AB, Laybutt DR, Chisholm DJ, Kraegen EW (1994) A new antidiabetic agent, BRL-49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 43:1203–1210

    Google Scholar 

  • Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W (2002) Peroxisome proliferator activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277:16750–16757

    Google Scholar 

  • O’Sullivan SE, Kendall DA (2010) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215:611–616

    Google Scholar 

  • Reddy JK, Azamoff DL, Hignite CE (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283:397–398

    Google Scholar 

  • Rubenstrunk A, Hanf R, Hum DW, Fruchart JC, Staels B (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771:1065–1081

    Google Scholar 

  • Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345

    Google Scholar 

  • Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA (2010) Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem 285:12321–12333

    Google Scholar 

  • Schupp M, Lazar MA (2010) Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem 285:40409–40415

    Google Scholar 

  • Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 278:41589–41592

    Google Scholar 

  • Sohda T, Mizuno K, Tawada H, Sugiyama Y, Fujita T, Kawamatsu Y (1982a) Studies on antidiabetic agents I: synthesis of 5-[4-(2-methyl-2-phenylpropoxy)-benzyl]thiazolidine-2,4-dione (AL-321) and related compounds. Chem Pharm Bull(Tokyo) 30:3563–3573

    Google Scholar 

  • Sohda T, Mizuno K, Imamiya A, Sugiyama Y, Fujita T, Kawamatsu Y (1982b) Studies on antidiabetic agents II: synthesis of 5-[4-(1-methylcyclohexyl methoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem Pharm Bull(Tokyo) 30:3580–3600

    Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy) benzyl]-2,4-thiazolidinediones. Arzneimitteleforschung 40:37–42

    Google Scholar 

  • Sun Y, Alexander SP, Kendall DA, Bennett AJ (2006) Cannabinoids and PPARalpha signaling. Biochem Soc Trans 34:1095–1097

    Google Scholar 

  • Throp JM, Waring WS (1962) Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature 194:948–949

    Google Scholar 

  • Tsukahara T, Tsukahara R, Fujiwara Y, Yue J, Cheng Y, Guo H, Bolen A, Zhang C, Balazs L, Re F, Du G, Frohman MA, Baker DL, Parrill AL, Uchiyama A, Kobayashi T, Murakami-Murofushi K, Tigyi G (2010) Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid. Mol Cell 39:421–432

    Google Scholar 

  • Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812:1007–1022

    Google Scholar 

  • Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K (2010) The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. EMBO J 29:3395–3407

    Google Scholar 

  • Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170

    Google Scholar 

  • Watkins PB, Whitcomb RW (1998) Hepatic dysfunction associated with troglitazone. N Engl J Med 338:916–917

    Google Scholar 

  • Ziouzenkova O, Perrey S, Asatryan L, Hwang J, MacNaul KL, Moller DE, Rader DJ, Sevanian A, Zechner R, Hoefler G, Plutzky J (2003) Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci USA 100:2730–2735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Youssef, J.A., Badr, M.Z. (2013). PPAR Ligands. In: Peroxisome Proliferator-Activated Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-420-3_4

Download citation

Publish with us

Policies and ethics