Skip to main content

Waldenström’s Macroglobulinemia/Lymphoplasmacytic Lymphoma

  • Chapter
  • First Online:
Lymphoma

Part of the book series: Current Clinical Oncology ((CCO,volume 43))

  • 2390 Accesses

Abstract

Waldenström’s macroglobulinemia (WM) is included in the World Health Organization classification as the lymphoplasmacytic lymphoma. It is a rare type of non-Hodgkin lymphoma (NHL) with distinct clinicopathological features resulting from the accumulation of clonally related B lymphocytes, lymphoplasmacytic cells, and plasma cells which secrete a monoclonal IgM protein. Unlike other types of NHL, WM is rarely associated with lymphadenopathy or splenomegaly. WM has a chronic clinical course and treatment options are usually different from other types of indolent B-cell lymphoma. In this chapter, we will review the most recent data on the biology of WM and current treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenström’s macroglobulinemia. Semin Oncol. 2003;30:110–5.

    Article  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, et al. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  3. Groves FD, Travis LB, Devesa SS, Ries LA, Fraumeni Jr JF. Waldenström’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer. 1998;82:1078–81.

    Article  PubMed  CAS  Google Scholar 

  4. Hanzis C, Ojha RP, Hunter Z, Manning R, Lewicki M, Brodsky P, et al. Associated malignancies in patients with Waldenström’s macroglobulinemia and their Kin. Clin Lymphoma Myeloma Leuk. 2011;11:88–92.

    Article  PubMed  Google Scholar 

  5. Varettoni M, Tedesci A, Arcaini L, et al. Risk of second cancers in Waldenstrom macroglobulinemia. Ann Oncol. 2012;23:411–5.

    Article  PubMed  CAS  Google Scholar 

  6. Renier G, Ifrah N, Chevailler A, et al. Four brothers with Waldenstrom’s macroglobulinemia. Cancer. 1989;64:1554–9.

    Article  PubMed  CAS  Google Scholar 

  7. Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17:488–94.

    Article  PubMed  CAS  Google Scholar 

  8. Kristinsson SY, Bjorkholm M, Goldin LR, et al. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia patients: a population-based study in Sweden. Blood. 2008;112:3052–6.

    Article  PubMed  CAS  Google Scholar 

  9. McMaster ML, Csako G, Giambarresi TR, et al. Long-term evaluation of three multiple-case Waldenstrom’s macroglobulinemia families. Clin Cancer Res. 2007;13:5063–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ogmundsdottir HM, Sveinsdottir S, Sigfusson A, Skaftadottir I, Jonasson JG, Agnarsson BA. Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp Immunol. 1999;117:252–60.

    Article  PubMed  CAS  Google Scholar 

  11. Ogmundsdottir HM, Steingrimsdottir H, Haraldsdottir V. Familial paraproteinemia: hyper-responsive B-cells as endophenotype. Clin Lymphoma Myeloma Leukemia. 2011;11:82–4.

    Article  CAS  Google Scholar 

  12. Silvestri F, Barillari G, Fanin R, Zaja F, Infanti L, Patriarca F, et al. Risk of hepatitis C virus infection, Waldenström’s macroglobulinemia, and monoclonal gammopathies. Blood. 1996;88:1125–6.

    PubMed  CAS  Google Scholar 

  13. Leleu X, O’Connor K, Ho A, Santos DD, Manning R, Xu L, et al. Hepatitis C viral infection is not associated with Waldenstrom’s macroglobulinemia. Am J Hematol. 2007;82:83–4.

    Article  PubMed  Google Scholar 

  14. Schop RF, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001.

    Article  PubMed  CAS  Google Scholar 

  15. Ocio EM, Schop RF, Gonzalez B, et al. 6q deletion in Waldenstrom’s macroglobulinemia is associated with features of adverse prognosis. Br J Haematol. 2007;136:80–6.

    Article  PubMed  CAS  Google Scholar 

  16. Chang H, Qi C, Trieu Y, et al. Prognostic relevance of 6q deletion in Waldenstrom’s macroglobulinemia. Clin Lymph Myeloma. 2009;9:36–8.

    Article  CAS  Google Scholar 

  17. Nguyen-Khac F, Lejeune J, Chapiro E, et al. Cytogenetic abnormalities in a cohort of 171 patients with Waldenström macroglobulinemia before treatment: clinical and biological correlations. Blood 2010;116: Abstract 801.

    Google Scholar 

  18. Rivera AI, Li MM, Beltran G, Krause JR. Trisomy 4 as the sole cytogenetic abnormality in a Waldenstrom macroglobulinemia. Cancer Genet Cytogenet. 2002;133:172–3.

    Article  PubMed  CAS  Google Scholar 

  19. Avet-Loiseau H, Garand R, Lode L, Robillard N, Bataille R. 14q32 translocations discriminate IgM multiple myeloma from Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:153–5.

    Article  PubMed  CAS  Google Scholar 

  20. Treon SP, Xu L, Zhou Y, et al. Whole genome sequencing reveals a widely expressed mutation (MYD88 L265P) with oncogenic activity in Waldenstrom’s macroglobulinemia. Blood. 2011;118: Abstract 300.

    Google Scholar 

  21. Watters T, Kenny EF, O’Neill LAJ. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol. 2007;85:411–9.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen L, Henzel WJ, Baeuerie PA. IKAP is a scaffold protein of the IkappaB kinase complex. Nature. 1998;395:292–6.

    Article  PubMed  CAS  Google Scholar 

  23. Loiarro M, Gallo G, Fanto N, et al. Identification of critical residues of the MYD88 death domain involved in the recruitment of downstream kinases. J Biol Chem. 2009;284:28093–281023.

    Article  PubMed  CAS  Google Scholar 

  24. Lin SC, Lo YC, Wu H. Helical assembly in the MYD88-IRAK4-IRAK2 complex in TLR/IL-1R signaling. Nature. 2010;465:885–91.

    Article  PubMed  CAS  Google Scholar 

  25. Kawagoe T, Sato S, Matsushita K, et al. Sequential control of Toll-like receptor dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9:684–91.

    Article  PubMed  CAS  Google Scholar 

  26. Leleu X, Eeckhoute J, Jia X, et al. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood. 2008;111:5068–77.

    Article  PubMed  CAS  Google Scholar 

  27. Preud’homme JL, Seligmann M. Immunoglobulins on the surface of lymphoid cells in Waldenström’s macroglobulinemia. J Clin Invest. 1972;51:701–5.

    Article  PubMed  Google Scholar 

  28. Smith BR, Robert NJ, Ault KA. In Waldenstrom’s macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood. 1983;61:911–4.

    PubMed  CAS  Google Scholar 

  29. Levy Y, Fermand JP, Navarro S, Schmitt C, Vainchenker W, Seligmann M, et al. Interleukin 6 dependence of spontaneous in vitro differentiation of B cells from patients with IgM gammopathy. Proc Natl Acad Sci USA. 1990;87:3309–13.

    Article  PubMed  CAS  Google Scholar 

  30. Owen RG, Barrans SL, Richards SJ, O’Connor SJ, Child JA, Parapia LA, et al. Waldenström macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol. 2001;116:420–8.

    Article  PubMed  CAS  Google Scholar 

  31. Feiner HD, Rizk CC, Finfer MD, Bannan M, Gottesman SR, Chuba JV, et al. IgM monoclonal gammopathy/Waldenström’s macroglobulinemia: a morphological and immunophenotypic study of the bone marrow. Mod Pathol. 1990;3:348–56.

    PubMed  CAS  Google Scholar 

  32. San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:187–95.

    Article  PubMed  CAS  Google Scholar 

  33. Hunter ZR, Branagan AR, Manning R, Patterson CJ, Santos DD, Tournilhac O, et al. CD5, CD10, CD23 expression in Waldenstrom’s Macroglobulinemia. Clin Lymph. 2005;5:246–9.

    Article  CAS  Google Scholar 

  34. Wagner SD, Martinelli V, Luzzatto L. Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenström’s macroglobulinemia, and myeloma. Blood. 1994;83:3647–53.

    PubMed  CAS  Google Scholar 

  35. Aoki H, Takishita M, Kosaka M, Saito S. Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenström’s macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood. 1995;85:1913–9.

    PubMed  CAS  Google Scholar 

  36. Shiokawa S, Suehiro Y, Uike N, Muta K, Nishimura J. Sequence and expression analyses of mu and delta transcripts in patients with Waldenström’s macroglobulinemia. Am J Hematol. 2001;68:139–43.

    Article  PubMed  CAS  Google Scholar 

  37. Sahota SS, Forconi F, Ottensmeier CH, Provan D, Oscier DG, Hamblin TJ, et al. Typical Waldenström macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood. 2002;100:1505–7.

    PubMed  CAS  Google Scholar 

  38. Paramithiotis E, Cooper MD. Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci USA. 1997;94:208–12.

    Article  PubMed  CAS  Google Scholar 

  39. Tournilhac O, Santos DD, Xu L, Kutok J, Tai YT, Le Gouill S, et al. Mast cells in Waldenstrom’s Macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol. 2006;17:1275–82.

    Article  PubMed  CAS  Google Scholar 

  40. Ho A, Leleu X, Hatjiharissi E, Tournilhac O, Xu L, O’Connor K, et al. Patterson, Anderson KC., Treon pp. CD27–CD70 interactions in the pathogenesis of Waldenstrom’s Macroglobulinemia. Blood. 2008;112:4683–9.

    Article  PubMed  CAS  Google Scholar 

  41. Ngo HT, Leleu X, Lee J, Jia X, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood. 2008;112:150–8.

    Article  PubMed  CAS  Google Scholar 

  42. Merlini G, Farhangi M, Osserman EF. Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin Oncol. 1986;13:350–65.

    PubMed  CAS  Google Scholar 

  43. Farhangi M, Merlini G. The clinical implications of monoclonal immunoglobulins. Semin Oncol. 1986;13:366–79.

    PubMed  CAS  Google Scholar 

  44. Marmont AM, Merlini G. Monoclonal autoimmunity in hematology. Haematologica. 1991;76:449–59.

    PubMed  CAS  Google Scholar 

  45. Mackenzie MR, Babcock J. Studies of the hyperviscosity syndrome. II. Macroglobulinemia. J Lab Clin Med. 1975;85:227–34.

    PubMed  CAS  Google Scholar 

  46. Gertz MA, Kyle RA. Hyperviscosity syndrome. J Intens Care Med. 1995;10:128–41.

    CAS  Google Scholar 

  47. Kwaan HC, Bongu A. The Hyperviscosity syndromes. Semin Thromb Hemost. 1999;25:199–208.

    Article  PubMed  CAS  Google Scholar 

  48. Singh A, Eckardt KU, Zimmermann A, Gotz KH, Hamann M, Ratcliffe PJ, et al. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J Clin Invest. 1993;91:251–6.

    Article  PubMed  CAS  Google Scholar 

  49. Menke MN, Feke GT, McMeel JW, Branagan A, Hunter Z, Treon SP. Hyperviscosity-related retinopathy in Waldenstrom’s macroglobulinemia. Arch Opthalmol. 2006;124:1601–6.

    Article  Google Scholar 

  50. Merlini G, Baldini L, Broglia C, Comelli M, Goldaniga M, Palladini G, et al. Prognostic factors in symptomatic Waldenström’s macroglobulinemia. Semin Oncol. 2003;30:211–5.

    Article  PubMed  Google Scholar 

  51. Dellagi K, Dupouey P, Brouet JC, Billecocq A, Gomez D, Clauvel JP, et al. Waldenström’s macroglobulinemia and peripheral neuropathy: a clinical and immunologic study of 25 patients. Blood. 1983;62:280–5.

    PubMed  CAS  Google Scholar 

  52. Nobile-Orazio E, Marmiroli P, Baldini L, Spagnol G, Barbieri S, Moggio M, et al. Peripheral neuropathy in macroglobulinemia: incidence and antigen-specificity of M proteins. Neurology. 1987;37:1506–14.

    Article  PubMed  CAS  Google Scholar 

  53. Nemni R, Gerosa E, Piccolo G, Merlini G. Neuropathies associated with monoclonal gammapathies. Haematologica. 1994;79:557–66.

    PubMed  CAS  Google Scholar 

  54. Ropper AH, Gorson KC. Neuropathies associated with paraproteinemia. N Engl J Med. 1998;338:1601–7.

    Article  PubMed  CAS  Google Scholar 

  55. Treon SP, Hanzis CA, Ioakimidis LI, et al. Clinical characteristics and treatment outcome of disease-related peripheral neuropathy in Waldenstrom’s macroglobulinemia. Proc Am Soc Clin Oncol 2010; 28: Abstract 8114.

    Google Scholar 

  56. Vital A. Paraproteinemic neuropathies. Brain Pathol. 2001;11:399–407.

    Article  PubMed  CAS  Google Scholar 

  57. Latov N, Braun PE, Gross RB, Sherman WH, Penn AS, Chess L. Plasma cell dyscrasia and peripheral neuropathy: identification of the myelin antigens that react with human paraproteins. Proc Natl Acad Sci USA. 1981;78:7139–42.

    Article  PubMed  CAS  Google Scholar 

  58. Chassande B, Leger JM, Younes-Chennoufi AB, Bengoufa D, Maisonobe T, Bouche P, et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve. 1998;21:55–62.

    Article  PubMed  CAS  Google Scholar 

  59. Weiss MD, Dalakas MC, Lauter CJ, Willison HJ, Quarles RH. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J Neuroimmunol. 1999;95:174–84.

    Article  PubMed  CAS  Google Scholar 

  60. Latov N, Hays AP, Sherman WH. Peripheral neuropathy and anti-MAG antibodies. Crit Rev Neurobiol. 1988;3:301–32.

    PubMed  CAS  Google Scholar 

  61. Dalakas MC, Quarles RH. Autoimmune ataxic neuropathies (sensory ganglionopathies): are glycolipids the responsible autoantigens? Ann Neurol. 1996;39:419–22.

    Article  PubMed  CAS  Google Scholar 

  62. Eurelings M, Ang CW, Notermans NC, Van Doorn PA, Jacobs BC, Van den Berg LH. Antiganglioside antibodies in polyneuropathy associated with monoclonal gammopathy. Neurology. 2001;57:1909–12.

    Article  PubMed  CAS  Google Scholar 

  63. Ilyas AA, Quarles RH, Dalakas MC, Fishman PH, Brady RO. Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosyl groups. Ann Neurol. 1985;18:655–9.

    Article  PubMed  CAS  Google Scholar 

  64. Willison HJ, O’Leary CP, Veitch J, Blumhardt LD, Busby M, Donaghy M, et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain. 2001;124:1968–77.

    Article  PubMed  CAS  Google Scholar 

  65. Lopate G, Choksi R, Pestronk A. Severe sensory ataxia and demyelinating polyneuropathy with IgM anti-GM2 and GalNAc-GD1A antibodies. Muscle Nerve. 2002;25:828–36.

    Article  PubMed  CAS  Google Scholar 

  66. Jacobs BC, O’Hanlon GM, Breedland EG, Veitch J, Van Doorn PA, Willison HJ. Human IgM paraproteins demonstrate shared reactivity between Campylobacter jejuni lipopolysaccharides and human peripheral nerve disialylated gangliosides. J Neuroimmunol. 1997;80:23–30.

    Article  PubMed  CAS  Google Scholar 

  67. Nobile-Orazio E, Manfredini E, Carpo M, Meucci N, Monaco S, Ferrari S, et al. Frequency and clinical correlates of antineural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann Neurol. 1994;36:416–24.

    Article  PubMed  CAS  Google Scholar 

  68. Gordon PH, Rowland LP, Younger DS, Sherman WH, Hays AP, Louis ED, et al. Lymphoproliferative disorders and motor neuron disease: an update. Neurology. 1997;48:1671–8.

    Article  PubMed  CAS  Google Scholar 

  69. Pavord SR, Murphy PT, Mitchell VE. POEMS syndrome and Waldenström’s macroglobulinaemia. J Clin Pathol. 1996;49:181–2.

    Article  PubMed  CAS  Google Scholar 

  70. Crisp D, Pruzanski W. B–cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med. 1982;72:915–22.

    Article  PubMed  CAS  Google Scholar 

  71. Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (first of two parts). N Engl J Med. 1977;297:538–42.

    Article  PubMed  CAS  Google Scholar 

  72. Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (second of two parts). N Engl J Med. 1977;297:583–9.

    Article  PubMed  CAS  Google Scholar 

  73. Whittaker SJ, Bhogal BS, Black MM. Acquired immunobullous disease: a cutaneous manifestation of IgM macroglobulinaemia. Br J Dermatol. 1996;135:283–6.

    Article  PubMed  CAS  Google Scholar 

  74. Daoud MS, Lust JA, Kyle RA, Pittelkow MR. Monoclonal gammopathies and associated skin disorders. J Am Acad Dermatol. 1999;40:507–35.

    Article  PubMed  CAS  Google Scholar 

  75. Gad A, Willen R, Carlen B, Gyland F, Wickander M. Duodenal involvement in Waldenström’s macroglobulinemia. J Clin Gastroenterol. 1995;20:174–6.

    Article  PubMed  CAS  Google Scholar 

  76. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 3–1990. A 66-year-old woman with Waldenström’s macroglobulinemia, diarrhea, anemia, and persistent gastrointestinal bleeding. N Engl J Med. 1990;322:183–92.

    Google Scholar 

  77. Isaac J, Herrera GA. Cast nephropathy in a case of Waldenström’s macroglobulinemia. Nephron. 2002;91:512–5.

    Article  PubMed  Google Scholar 

  78. Morel-Maroger L, Basch A, Danon F, Verroust P, Richet G. Pathology of the kidney in Waldenström’s macroglobulinemia. Study of sixteen cases. N Engl J Med. 1970;283:123–9.

    Article  PubMed  CAS  Google Scholar 

  79. Gertz MA, Kyle RA, Noel P. Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenström’s macroglobulinemia. J Clin Oncol. 1993;11:914–20.

    PubMed  CAS  Google Scholar 

  80. Moyner K, Sletten K, Husby G, Natvig JB. An unusually large (83 amino acid residues) amyloid fibril protein AA from a patient with Waldenström’s macroglobulinaemia and amyloidosis. Scand J Immunol. 1980;11:549–54.

    Article  PubMed  CAS  Google Scholar 

  81. Gardyn J, Schwartz A, Gal R, Lewinski U, Kristt D, Cohen AM. Waldenström’s macroglobulinemia associated with AA amyloidosis. Int J Hematol. 2001;74:76–8.

    Article  PubMed  CAS  Google Scholar 

  82. Dussol B, Kaplanski G, Daniel L, Brunet P, Pellissier JF, Berland Y. Simultaneous occurrence of fibrillary glomerulopathy and AL amyloid. Nephrol Dial Transplant. 1998;13:2630–2.

    Article  PubMed  CAS  Google Scholar 

  83. Rausch PG, Herion JC. Pulmonary manifestations of Waldenström macroglobulinemia. Am J Hematol. 1980;9:201–9.

    Article  PubMed  CAS  Google Scholar 

  84. Fadil A, Taylor DE. The lung and Waldenström’s macroglobulinemia. South Med J. 1998;91:681–5.

    Article  PubMed  CAS  Google Scholar 

  85. Kyrtsonis MC, Angelopoulou MK, Kontopidou FN, Siakantaris MP, Dimopoulou MN, Mitropoulos F, et al. Primary lung involvement in Waldenström’s macroglobulinaemia: report of two cases and review of the literature. Acta Haematol. 2001;105:92–6.

    Article  PubMed  CAS  Google Scholar 

  86. Kaila VL. el Newihi HM, Dreiling BJ, Lynch CA, Mihas AA. Waldenström’s macroglobulinemia of the stomach presenting with upper gastrointestinal hemorrhage. Gastrointest Endosc. 1996;44:73–5.

    Article  PubMed  CAS  Google Scholar 

  87. Yasui O, Tukamoto F, Sasaki N, Saito T, Yagisawa H, Uno A, et al. Malignant lymphoma of the transverse colon associated with macroglobulinemia. Am J Gastroenterol. 1997;92:2299–301.

    PubMed  CAS  Google Scholar 

  88. Rosenthal JA, Curran Jr WJ, Schuster SJ. Waldenström’s macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma. Am J Hematol. 1998;58:244–5.

    Article  PubMed  CAS  Google Scholar 

  89. Recine MA, Perez MT, Cabello-Inchausti B, Lilenbaum RC, Robinson MJ. Extranodal lymphoplasmacytoid lymphoma (immunocytoma) presenting as small intestinal obstruction. Arch Pathol Lab Med. 2001;125:677–9.

    PubMed  CAS  Google Scholar 

  90. Veltman GA, van Veen S, Kluin-Nelemans JC, Bruijn JA, van Es LA. Renal disease in Waldenström’s macroglobulinaemia. Nephrol Dial Transplant. 1997;12:1256–9.

    Article  PubMed  CAS  Google Scholar 

  91. Moore Jr DF, Moulopoulos LA, Dimopoulos MA. Waldenström macroglobulinemia presenting as a renal or perirenal mass: clinical and radiographic features. Leuk Lymphoma. 1995;17:331–4.

    Article  PubMed  Google Scholar 

  92. Mascaro JM, Montserrat E, Estrach T, Feliu E, Ferrando J, Castel T, et al. Specific cutaneous manifestations of Waldenström’s macroglobulinaemia. A report of two cases. Br J Dermatol. 1982;106:17–22.

    Article  Google Scholar 

  93. Schnitzler L, Schubert B, Boasson M, Gardais J, Tourmen A. Urticaire chronique, lésions osseuses, macroglobulinémie IgM: Maladie de Waldenström? Bull Soc Fr Dermatol Syphiligr. 1974;81:363–8.

    Google Scholar 

  94. Roux S, Fermand JP, Brechignac S, Mariette X, Kahn MF, Brouet JC. Tumoral joint involvement in multiple myeloma and Waldenström’s macroglobulinemia—report of 4 cases. J Rheumatol. 1996;23:2175–8.

    PubMed  CAS  Google Scholar 

  95. Orellana J, Friedman AH. Ocular manifestations of multiple myeloma, Waldenström’s macroglobulinemia and benign monoclonal gammopathy. Surv Ophthalmol. 1981;26:157–69.

    Article  PubMed  CAS  Google Scholar 

  96. Ettl AR, Birbamer GG, Philipp W. Orbital involvement in Waldenström’s macroglobulinemia: ultrasound, computed tomography and magnetic resonance findings. Ophthalmologica. 1992;205:40–5.

    Article  PubMed  CAS  Google Scholar 

  97. Civit T, Coulbois S, Baylac F, Taillandier L, Auque J. Waldenström’s macroglobulinemia and cerebral lymphoplasmocytic proliferation: Bing and Neel syndrome. Apropos of a new case. Neurochirurgie. 1997;43:245–9.

    PubMed  CAS  Google Scholar 

  98. McMullin MF, Wilkin HJ, Elder E. Inaccurate haemoglobin estimation in Waldenström’s macroglobulinaemia. J Clin Pathol. 1995;48:787.

    Article  PubMed  CAS  Google Scholar 

  99. Hunter ZR, Manning RJ, Hanzis C, et al. IgA and IgG hypogammaglobulinemia in Waldenstrom’s macroglobulinemia. Haematologica. 2010;95:470–5.

    Article  PubMed  CAS  Google Scholar 

  100. Treon SP, Hunter Z, Ciccarelli BT, et al. IgA and IgG hypogammaglobulinemia is a constitutive feature in most Waldenstrom’s macroglobulinemia patients and may be related to mutations associated with common variable immunodeficiency disorder (CVID). Blood. 2008;112:3749.

    Article  CAS  Google Scholar 

  101. Dutcher TF, Fahey JL. The histopathology of macroglobulinemia of Waldenström. J Natl Cancer Inst. 1959;22:887–917.

    PubMed  CAS  Google Scholar 

  102. Moulopoulos LA, Dimopoulos MA, Varma DG, Manning JT, Johnston DA, Leeds NE, et al. Waldenström macroglobulinemia: MR imaging of the spine and CT of the abdomen and pelvis. Radiology. 1993;188:669–73.

    PubMed  CAS  Google Scholar 

  103. Gobbi PG, Bettini R, Montecucco C, Cavanna L, Morandi S, Pieresca C, et al. Study of prognosis in Waldenström’s macroglobulinemia: a proposal for a simple binary classification with clinical and investigational utility. Blood. 1994;83:2939–45.

    PubMed  CAS  Google Scholar 

  104. Morel P, Monconduit M, Jacomy D, Lenain P, Grosbois B, Bateli C, et al. Prognostic factors in Waldenström macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients. Blood. 2000;96:852–8.

    PubMed  CAS  Google Scholar 

  105. Dhodapkar MV, Jacobson JL, Gertz MA, Rivkin SE, Roodman GD, Tuscano JM, et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood. 2001;98:41–8.

    Article  PubMed  CAS  Google Scholar 

  106. Kyle RA, Treon SP, Alexanian R, Barlogie B, Bjorkholm M, Dhodapkar M, et al. Prognostic markers and criteria to initiate therapy in Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenström’s macroglobulinemia. Semin Oncol. 2003;30:116–20.

    Article  PubMed  Google Scholar 

  107. Dimopoulos M, Gika D, Zervas K, et al. The international staging system for multiple myeloma is applicable in symptomatic Waldenstrom’s macroglobulinemia. Leuk Lymph. 2004;45:1809–13.

    Article  Google Scholar 

  108. Anagnostopoulos A, Zervas K, Kyrtsonis M, et al. Prognostic value of serum beta 2-microglobulin in patients with Waldenstrom’s macroglobulinemia requiring therapy. Clin Lymph Myeloma. 2006;7:205–9.

    Article  CAS  Google Scholar 

  109. Morel P, Duhamel A, Gobbi P, Dimopoulos MA, Dhodapkar MV, McCoy J, et al. International prognostic scoring system for waldenstrom macroglobulinemia. Blood. 2009;113:4163–70.

    Article  PubMed  CAS  Google Scholar 

  110. Treon SP. Treatment with a bortezomib-containing regimen is associated with better therapeutic outcomes in patients with Waldenstrom’s macroglobulinemia who have familial disease predisposition. Blood. 2011;118: Abstract 1643.

    Google Scholar 

  111. Treon SP, How I. Treat Waldenstrom’s macroglobulinemia. Blood. 2009;114:419–31.

    Article  CAS  Google Scholar 

  112. Dimopoulos MA, Gertz MA, Kastritis E, et al. Update on treatment recommendations from the Fourth International Workshop on Waldenstrom’s macroglobulinemia. J Clin Oncol. 2009;27:120–6.

    Article  PubMed  Google Scholar 

  113. Leleu XP, Manning R, Soumerai JD, et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenström macroglobulinemia treated with nucleoside analogs. J Clin Oncol. 2009;27:250–5.

    Article  PubMed  Google Scholar 

  114. Kyle RA, Greipp PR, Gertz MA, Witzig TE, Lust JA, Lacy MQ, et al. Waldenström’s macroglobulinaemia: a prospective study comparing daily with intermittent oral chlorambucil. Br J Haematol. 2000;108:737–42.

    Article  PubMed  CAS  Google Scholar 

  115. Dimopoulos MA, Alexanian R. Waldenstrom’s macroglobulinemia. Blood. 1994;83:1452–9.

    PubMed  CAS  Google Scholar 

  116. Petrucci MT, Avvisati G, Tribalto M, Giovangrossi P, Mandelli F. Waldenström’s macroglobulinaemia: results of a combined oral treatment in 34 newly diagnosed patients. J Intern Med. 1989;226:443–7.

    Article  PubMed  CAS  Google Scholar 

  117. Case Jr DC, Ervin TJ, Boyd MA, Redfield DL. Waldenström’s macroglobulinemia: long-term results with the M-2 protocol. Cancer Invest. 1991;9:1–7.

    Article  PubMed  Google Scholar 

  118. Facon T, Brouillard M, Duhamel A, Morel P, Simon M, Jouet JP, et al. Prognostic factors in Waldenström’s macroglobulinemia: a report of 167 cases. J Clin Oncol. 1993;11:1553–8.

    PubMed  CAS  Google Scholar 

  119. Dimopoulos MA, Kantarjian H, Weber D, O’Brien S, Estey E, Delasalle K, et al. Primary therapy of Waldenström’s macroglobulinemia with 2-chlorodeoxyadenosine. J Clin Oncol. 1994;12:2694–8.

    PubMed  CAS  Google Scholar 

  120. Delannoy A, Ferrant A, Martiat P, Bosly A, Zenebergh A, Michaux JL. 2-Chlorodeoxyadenosine therapy in Waldenström’s macroglobulinaemia. Nouv Rev Fr Hematol. 1994;36:317–20.

    PubMed  CAS  Google Scholar 

  121. Fridrik MA, Jager G, Baldinger C, Krieger O, Chott A, Bettelheim P. First-line treatment of Waldenström’s disease with cladribine. Arbeitsgemeinschaft Medikamentose Tumortherapie. Ann Hematol. 1997;74:7–10.

    Article  PubMed  CAS  Google Scholar 

  122. Liu ES, Burian C, Miller WE, Saven A. Bolus administration of cladribine in the treatment of Waldenström macroglobulinaemia. Br J Haematol. 1998;103:690–5.

    Article  PubMed  CAS  Google Scholar 

  123. Hellmann A, Lewandowski K, Zaucha JM, Bieniaszewska M, Halaburda K, Robak T. Effect of a 2-hour infusion of 2-chlorodeoxyadenosine in the treatment of refractory or previously untreated Waldenström’s macroglobulinemia. Eur J Haematol. 1999;63:35–41.

    Article  PubMed  CAS  Google Scholar 

  124. Betticher DC, Hsu Schmitz SF, Ratschiller D, von Rohr A, Egger T, Pugin P, et al. Cladribine (2-CDA) given as subcutaneous bolus injections is active in pretreated Waldenström’s macroglobulinaemia. Swiss Group for Clinical Cancer Research (SAKK). Br J Haematol. 1997;99:358–63.

    Article  PubMed  CAS  Google Scholar 

  125. Dimopoulos MA, Weber D, Delasalle KB, Keating M, Alexanian R. Treatment of Waldenström’s macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine: identification of prognostic factors. Ann Oncol. 1995;6:49–52.

    PubMed  CAS  Google Scholar 

  126. Dimopoulos MA, O’Brien S, Kantarjian H, Pierce S, Delasalle K, Barlogie B, et al. Fludarabine therapy in Waldenström’s macroglobulinemia. Am J Med. 1993;95:49–52.

    Article  PubMed  CAS  Google Scholar 

  127. Foran JM, Rohatiner AZ, Coiffier B, Barbui T, Johnson SA, Hiddemann W, et al. Multicenter phase II study of fludarabine phosphate for patients with newly diagnosed lymphoplasmacytoid lymphoma, Waldenström’s macroglobulinemia, and mantle-cell lymphoma. J Clin Oncol. 1999;17:546–53.

    PubMed  CAS  Google Scholar 

  128. Thalhammer-Scherrer R, Geissler K, Schwarzinger I, Chott A, Gisslinger H, Knobl P, et al. Fludarabine therapy in Waldenström’s macroglobulinemia. Ann Hematol. 2000;79:556–9.

    Article  PubMed  CAS  Google Scholar 

  129. Zinzani PL, Gherlinzoni F, Bendandi M, Zaccaria A, Aitini E, Salvucci M, et al. Fludarabine treatment in resistant Waldenström’s macroglobulinemia. Eur J Haematol. 1995;54:120–3.

    Article  PubMed  CAS  Google Scholar 

  130. Leblond V, Ben Othman T, Deconinck E, Taksin AL, Harousseau JL, Delgado MA, et al. Activity of fludarabine in previously treated Waldenström’s macroglobulinemia: a report of 71 cases. Groupe Cooperatif Macroglobulinemie. J Clin Oncol. 1998;16:2060–4.

    PubMed  CAS  Google Scholar 

  131. Dimopoulos MA, Weber DM, Kantarjian H, Keating M, Alexanian R. 2-Chlorodeoxyadenosine therapy of patients with Waldenström macroglobulinemia previously treated with fludarabine. Ann Oncol. 1994;5:288–9.

    PubMed  CAS  Google Scholar 

  132. Lewandowski K, Halaburda K, Hellmann A. Fludarabine therapy in Waldenström’s macroglobulinemia patients treated previously with 2-chlorodeoxyadenosine. Leuk Lymphoma. 2002;43:361–3.

    Article  PubMed  CAS  Google Scholar 

  133. Thomas S, Hosing C, Delasalle KB, et al. Success rates of autologous stem cell collection in patients with Waldenstrom’s macroglobulinemia. Proceedings of the fifth International Workshop on Waldenstrom’s macroglobulinemia. 2008, Clinical Lymphoma and Meyloma.

    Google Scholar 

  134. Leleu X, Tamburini J, Roccaro A, et al. Balancing risk versus benefit in the treatment of Waldenstrom’s macroglobulinemia patients with nucleoside analogue based therapy. Clin Lymphoma Myeloma. 2009;9:71–3.

    Article  PubMed  CAS  Google Scholar 

  135. Treon SP, Kelliher A, Keele B, et al. Expression of serotherapy target antigens in Waldenstrom’s macroglobulinemia: therapeutic applications and considerations. Semin Oncol. 2003;30:248–52.

    Article  PubMed  CAS  Google Scholar 

  136. Treon SP, Agus DB, Link B, et al. CD20-Directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom’s macroglobulinemia. J Immunother. 2001;24:272–9.

    Article  CAS  Google Scholar 

  137. Gertz MA, Rue M, Blood E, et al. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma. 2004;45:2047–55.

    Article  PubMed  CAS  Google Scholar 

  138. Dimopoulos MA, Zervas C, Zomas A, et al. Treatment of Waldenstrom’s macroglobulinemia with rituximab. J Clin Oncol. 2002;20:2327–33.

    Article  PubMed  CAS  Google Scholar 

  139. Treon SP, Emmanouilides C, Kimby E, Kelliher A, Preffer F, Branagan AR, et al. Extended rituximab therapy in Waldenström’s macroglobulinemia. Ann Oncol. 2005;16:132–8.

    Article  PubMed  CAS  Google Scholar 

  140. Donnelly GB, Bober-Sorcinelli K, Jacobson R, Portlock CS. Abrupt IgM rise following treatment with rituximab in patients with Waldenstrom’s macroglobulinemia. Blood. 2001;98:240b.

    Google Scholar 

  141. Treon SP, Branagan AR, Anderson KC. Paradoxical increases in serum IgM levels and serum viscosity following rituximab therapy in patients with Waldenstrom’s macroglobulinemia. Ann Oncol. 2004;15:1481–3.

    Article  PubMed  CAS  Google Scholar 

  142. Ghobrial IM, Fonseca R, Greipp PR, et al. The initial “flare” of IgM level after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia: an Eastern Cooperative Oncology Group Study. Cancer. 2004;101:2593–8.

    Article  PubMed  CAS  Google Scholar 

  143. Yang G, Xu L, Hunter ZR, Liu X, Cao Y, Jiang J, Tseng H, Zhou YS, Ioakimidis L, Hanzis C, Sheehy P, Patterson CJ, Treon SP. The rituximab and IVIG related IgM flare in Waldenstrom’s macroglobulinemia is associated with monocytic activation of FCGR2A signaling, and triggering of IL-6 release by the PI3K/AKT and MAPK pathways. Blood. 2010;116: Abstract 2870.

    Google Scholar 

  144. Dimopoulos MA, Anagnostopoulos A, Zervas C, et al. Predictive factors for response to rituximab in Waldenstrom’s macroglobulinemia. Clin Lymphoma. 2005;5:270–2.

    Article  PubMed  CAS  Google Scholar 

  145. Treon SP, Hansen M, Branagan AR, et al. Polymorphisms in Fcγ[gamma]RIIIA (CD16) receptor expression are associated with clinical responses to Rituximab in Waldenstrom’s Macroglobulinemia. J Clin Oncol. 2005;23:474–81.

    Article  PubMed  CAS  Google Scholar 

  146. Treon SP, Yang G, Hanzis C, Ioakimidis L, Verselis SJ, Fox EA, et al. Attainment of complete/very good partial response following rituximab-based therapy is an important determinant to progression-free survival, and is impacted by polymorphisms in FCGR3A in Waldenstrom macroglobulinaemia. Br J Haematol. 2011;154:223–8.

    Article  PubMed  Google Scholar 

  147. Furman RR, Eradat H, Switzky JC, et al. A phase II trial of ofatumumab in subjects with Waldenstrom’s macroglobulinemia. Blood. 2011;118: Abstract 3701.

    Google Scholar 

  148. Treon SP, Hanzis C, Tripsas C, Ioakimidis L, Patterson CJ, Manning RJ, et al. Bendamustine therapy in patients with relapsed or refractory Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11:133–5.

    Article  PubMed  CAS  Google Scholar 

  149. Treon SP, Soumerai JD, Hunter ZR, Patterson CJ, Ioakimidis L, Kahl B, et al. Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood. 2011;118:276–81.

    Article  PubMed  CAS  Google Scholar 

  150. Owen RG, Rawstron AC, Osterborg A, et al. Activity of alemtuzumab in relapsed/ refractory Waldenstrom’s macroglobulinemia. Blood. 2003;102:644a.

    Google Scholar 

  151. Treon SP, Hunter ZR, Matous J, et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG trial 03–248. Clin Cancer Res. 2007;13:3320–5.

    Article  PubMed  CAS  Google Scholar 

  152. Chen CI, Kouroukis CT, White D, et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1570–5.

    Article  PubMed  CAS  Google Scholar 

  153. Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Treatment of relapsed or refractory Waldenstrom’s macroglobulinemia with bortezomib. Haematologica. 2005;90:1655–7.

    PubMed  CAS  Google Scholar 

  154. Goy A, Younes A, McLaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin. 2005;23:657–8.

    Article  Google Scholar 

  155. Dimopoulos MA, Zomas A, Viniou NA, Grigoraki V, Galani E, Matsouka C, et al. Treatment of Waldenström’s macroglobulinemia with thalidomide. J Clin Oncol. 2001;19:3596–601.

    PubMed  CAS  Google Scholar 

  156. Coleman C, Leonard J, Lyons L, Szelenyi H, Niesvizky R. Treatment of Waldenström’s macroglobulinemia with clarithromycin, low-dose thalidomide and dexamethasone. Semin Oncol. 2003;30:270–4.

    Article  PubMed  CAS  Google Scholar 

  157. Dimopoulos MA, Zomas K, Tsatalas K, Hamilos G, Efstathiou E, Gika D, et al. Treatment of Waldenström’s macroglobulinemia with single agent thalidomide or with combination of clarithromycin, thalidomide and dexamethasone. Semin Oncol. 2003;30:265–9.

    Article  PubMed  CAS  Google Scholar 

  158. Cheson BD, Rummel MJ. Bendamustine: rebirth of an old drug. J Clin Oncol. 2009;27:1492–501.

    Article  PubMed  CAS  Google Scholar 

  159. Hatjiharissi E, Mitsiades CS, Ciccarelli B, et al. Comprehensive molecular characterization of malignant and microenvironmental cells in Waldenstroms macroglobulinemia by gene expression profiling. Blood. 2007;110: Abstract 3174.

    Google Scholar 

  160. Leleu X, Jia X, Runnels J, et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110:4417–26.

    Article  PubMed  CAS  Google Scholar 

  161. Ghobrial I, Gertz M, LaPlant B, et al. Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenström macroglobulinemia. J Clin Oncol. 2010;28:1408–14.

    Article  PubMed  CAS  Google Scholar 

  162. Treon SP, Tripsas C, Ioakimidis L, et al. Prospective, multicenter study of the MTOR inhibitor everolimus (RAD001) as primary therapy in Waldenstrom’s macroglobulinemia. Blood. 2011;118: Abstract 2951.

    Google Scholar 

  163. Buske C, Hoster E, Dreyling MH, et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia. 2009;23:153–61.

    Article  PubMed  CAS  Google Scholar 

  164. Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Primary treatment of Waldenstrom’s macroglobulinemia with dexamethasone, rituximab and cyclophosphamide. J Clin Oncol. 2007;25:3344–9.

    Article  PubMed  CAS  Google Scholar 

  165. Treon SP, Hunter Z, Branagan A. CHOP plus rituximab therapy in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma. 2005;5:273–7.

    Article  CAS  Google Scholar 

  166. Ioakimidis L, Patterson CJ, Hunter ZR, Soumerai JD, Manning RJ, Sheehy P, et al. Comparative outcomes following CP-R, CVP-R and CHOP-R in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9:62–6.

    Article  PubMed  CAS  Google Scholar 

  167. Weber DM, Dimopoulos MA, Delasalle K, et al. 2-Chlorodeoxyadenosine alone and in combination for previously untreated Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:243–7.

    Article  PubMed  CAS  Google Scholar 

  168. Laszlo D, Andreola G, Rigacci L, et al. Rituximab and subcutaneous 2-chloro-2′-deoxyadenosine combination treatment for patients with Waldenstrom macroglobulinemia: clinical and biologic results of a phase II multicenter study. J Clin Oncol. 2010;28:2233–8.

    Article  PubMed  CAS  Google Scholar 

  169. Treon SP, Branagan AR, Ioakimidis L, et al. Long term outcomes to fludarabine and rituximab in Waldenstrom’s macroglobulinemia. Blood. 2009;113:3673–8.

    Article  PubMed  CAS  Google Scholar 

  170. Tam CS, Wolf MM, Westerman D, et al. Fludarabine combination therapy is highly effective in first-line and salvage treatment of patients with Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2005;6:136–9.

    Article  PubMed  Google Scholar 

  171. Hensel M, Villalobos M, Kornacker M, et al. Pentostatin/cyclophosphamide with or without rituximab: an effective regimen for patients with Waldenstrom’s macroglobulinemia/lymphoplasmacytic lymphoma. Clin Lymphoma Myeloma. 2005;6:131–5.

    Article  PubMed  Google Scholar 

  172. Dimopoulos MA, Hamilos G, Efstathiou E, et al. Treatment of Waldenstrom’s macroglobulinemia with the combination of fludarabine and cyclophosphamide. Leuk Lymphoma. 2003;44:993–6.

    Article  PubMed  CAS  Google Scholar 

  173. Tamburini J, Levy V, Chateilex C, et al. Fludarabine plus cyclophosphamide in Waldenstrom’s macroglobulinemia: results in 49 patients. Leukemia. 2005;19:1831–4.

    Article  PubMed  CAS  Google Scholar 

  174. Tedeschi A, Benevolo G, Varettoni M, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012;118:434–43.

    Article  PubMed  CAS  Google Scholar 

  175. Treon SP, Ioakimidis L, Soumerai JD, Patterson CJ, Sheehy P, Nelson M, et al. Primary therapy of Waldenstrom’s macroglobulinemia with bortezomib, dexamethasone and rituximab: results of WMCTG clinical trial 05–180. J Clin Oncol. 2009;27:3830–5.

    Article  PubMed  CAS  Google Scholar 

  176. Ghobrial IM, Xie W, Padmanabhan S, Badros A, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenström macroglobulinemia. Am J Hematol. 2010;85:670–4.

    Article  PubMed  CAS  Google Scholar 

  177. Agathocleous A, Rohatiner A, Rule S, et al. Weekly versus twice weekly bortezomib given in conjunction with rituximab, in patients with recurrent follicular lymphoma, mantle cell lymphoma and Waldenström macroglobulinaemia. Br J Haematol. 2010;151:346–53.

    Article  PubMed  CAS  Google Scholar 

  178. Dimopoulos MA, García-Sanz R, Gavriatopoulou M, et al. Primary therapy of Waldenstrom’s macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone and rituximab (BDR): a phase II study of the European Myeloma Network. Blood. 2010;116: Abstract 1941.

    Google Scholar 

  179. Treon SP, Soumerai JD, Branagan AR, et al. Thalidomide and rituximab in Waldenstrom’s macroglobulinemia. Blood. 2008;112:4452–7.

    Article  PubMed  CAS  Google Scholar 

  180. Treon SP, Soumerai JD, Branagan AR, et al. Lenalidomide and rituximab in Waldenström’s macroglobulinemia. Clin Cancer Res. 2008;15:355–60.

    Article  Google Scholar 

  181. Rummel MJ, von Gruenhagen U, Niederle N, et al. Bendamustine plus rituximab versus CHOP plus rituximab in the firstline treatment of patients with follicular, indolent and mantle cell lymphomas: Results of a randomized phase III study of the Study Group Indolent Lymphomas (StiL). Blood. 2008;112: Abstract 2596.

    Google Scholar 

  182. Treon SP, Hanzis C, Tripsas C, et al. Bendamustine therapy in patients with relapsed or refractory Waldenström’s macroglobulinemia. Clin Lymph Myeloma Leuk. 2011;11:133–5.

    Article  CAS  Google Scholar 

  183. Treon SP, Hanzis C, Manning RJ, et al. Maintenance rituximab is associated with improved clinical outcome in rituximab naïve patients with Waldenstrom’s macroglobulinemia who respond to a rituximab containing regimen. Br J Haematol. 2011;154:357–62.

    Article  PubMed  CAS  Google Scholar 

  184. Desikan R, Dhodapkar M, Siegel D, Fassas A, Singh J, Singhal S, et al. High-dose therapy with autologous haemopoietic stem cell support for Waldenström’s macroglobulinaemia. Br J Haematol. 1999;105:993–6.

    Article  PubMed  CAS  Google Scholar 

  185. Munshi NC, Barlogie B. Role for high dose therapy with autologous hematopoietic stem cell support in Waldenström’s macroglobulinemia. Semin Oncol. 2003;30:282–5.

    Article  PubMed  CAS  Google Scholar 

  186. Dreger P, Glass B, Kuse R, Sonnen R, von Neuhoff N, Bolouri H, et al. Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenström’s macroglobulinaemia. Br J Haematol. 1999;106:115–8.

    Article  PubMed  CAS  Google Scholar 

  187. Anagnostopoulos A, Dimopoulos MA, Aleman A, Weber D, Alexanian R, Champlin R, et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenström’s macroglobulinemia. Bone Marrow Transplant. 2001;27:1027–9.

    Article  PubMed  CAS  Google Scholar 

  188. Tournilhac O, Leblond V, Tabrizi R, Gressin R, Colombat P, Milpied N, et al. Transplantation in Waldenström’s macroglobulinemia—the French Experience. Semin Oncol. 2003;30:291–6.

    Article  PubMed  CAS  Google Scholar 

  189. Anagnostopoulos A, Hari PN, Perez WS, et al. Autologous or allogeneic stem cell transplantation in patients with Waldenstrom’s macroglobulinemia. Biol Blood Marrow Transplant. 2006;12:845–54.

    Article  PubMed  Google Scholar 

  190. Kyriakou C, Canals C, Sibon D, et al. High-dose therapy and autologous stem-cell transplantation in Waldenstrom macroglobulinemia: the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28:2227–32.

    Article  PubMed  CAS  Google Scholar 

  191. Kyriakou C, Canals C, Cornelissen JJ, et al. Allogeneic stem-cell transplantation in patients with Waldenström macroglobulinemia: report from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28:4926–34.

    Article  PubMed  Google Scholar 

  192. Weber D, Treon SP, Emmanouilides C, et al. Uniform response criteria in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30:127–31.

    Article  PubMed  Google Scholar 

  193. Kimby E, Treon SP, Anagnostopoulos A, et al. Update on recommendations for assessing response from the Third International Workshop on Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2006;6:380–3.

    Article  PubMed  Google Scholar 

  194. Treon SP, Merlini G, Morra E, et al. Report from the Sixth International Workshop on Waldenstrom’s macroglobulinemia. Clin Lymph Myeloma Leukemia. 2011;11:69–73.

    Article  Google Scholar 

  195. Nichols GL, Savage DG. Timing of rituximab/fludarabine in Waldenstrom’s macroglobulinemia may avert hyperviscosity. Blood. 2004;104:237b.

    Article  CAS  Google Scholar 

  196. Strauss SJ, Maharaj L, Hoare S, et al. Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol. 2006;24:2105–12.

    Article  PubMed  CAS  Google Scholar 

  197. Varghese AM, Rawstron AC, Ashcroft AJ, et al. Assessment of bone marrow response in Waldenström’s macroglobulinemia. Clin Lymph Myeloma. 2009;9:53–5.

    Article  Google Scholar 

  198. Ciccarelli BT, Yang G, Hatjiharissi E, et al. Soluble CD27 is a faithful marker of disease burden and is unaffected by the rituximab induced IgM flare, as well as plasmapheresis in patients with Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9:56–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Treon MD, MA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Treon, S.P., Merlini, G. (2013). Waldenström’s Macroglobulinemia/Lymphoplasmacytic Lymphoma. In: Younes, A., Coiffier, B. (eds) Lymphoma. Current Clinical Oncology, vol 43. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-408-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-408-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-407-4

  • Online ISBN: 978-1-62703-408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics