Skip to main content

Molecular Profiling of Peripheral T-Cell Lymphomas

  • Chapter
  • First Online:
Lymphoma

Part of the book series: Current Clinical Oncology ((CCO,volume 43))

  • 2386 Accesses

Abstract

Based on their own experience and knowledge of the literature, the authors revise the pathobiological characteristics of peripheral T-cell lymphomas (PTCL) by focusing on the most recent data available as far as gene expression profile (GEP) analyses are concerned.

First, GEP studies provided important insight into the histogenesis, molecular pathogenesis, and targeted treatments of different PTCL subtypes. For example, it was clearly shown that angioimmunoblastic T-cell lymphoma (AITL) corresponds to T follicular helper (TFH) lymphocytes and presents consistent deregulation of genes involved in angiogenesis. Noteworthy, targeting some of them, such as VEGF/VEGFR2, may represent an innovative and effective therapeutic strategy. Secondly, it was shown that PTCLs/not otherwise specified (PTCL/NOS) include at least three different subset characterized by specific cellular derivation (T-central memory, T-cytotoxic, and TFH) and possibly different outcome. Besides that, notably, all PTCLs/NOS present with constant deregulation of certain molecules, including the PDGFRA, which represents a suitable therapeutic target in this setting. Finally, both ALK+ and ALK ALCLs have been shown to be distinct from the other PTCLs, possibly constituting separate entities. Remarkably, the molecular profile of the ALK+ forms largely relies on the activation of ALK and its downstream STAT3, while other tyrosine kinases are probably activated in the ALK ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    PubMed  CAS  Google Scholar 

  2. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood 1997;89(11):3909–18.

    Google Scholar 

  3. Swerdlow Steven H, International Agency for Research on Cancer. WHO classification of tumors of hematopoietic and lymphoid tissues. IVth ed. Lyon: IARC; 2008.

    Google Scholar 

  4. Pileri S, Ralfkiaer E, Weisenburger D, et al. Peripheral T-cell lymphoma, not otherwise specified. In: Swerdlow S, Campo E, Harris NL, et al., editors. WHO classification of tumors of hematopoietic and lymphoid tissues. IVth ed. Lyon: IARC; 2008. p. 429.

    Google Scholar 

  5. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  6. Savage KJ, Harris NL, Vose JM, et al. ALK− anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+  ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.

    Article  PubMed  CAS  Google Scholar 

  7. Evens AM, Gartenhaus RB. Treatment of T-cell non-Hodgkin’s lymphoma. Curr Treat Options Oncol. 2004;5(4):289–303.

    Article  PubMed  Google Scholar 

  8. Lopez-Guillermo A, Cid J, Salar A, et al. Peripheral T-cell lymphomas: initial features, natural history, and prognostic factors in a series of 174 patients diagnosed according to the R.E.A.L. Classification. Ann Oncol. 1998;9(8):849–55.

    Article  PubMed  CAS  Google Scholar 

  9. Gisselbrecht C, Gaulard P, Lepage E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood. 1998;92(1):76–82.

    PubMed  CAS  Google Scholar 

  10. Effect of age on the characteristics and clinical behavior of non-Hodgkin’s lymphoma patients. The Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol 1997;8(10):973–8.

    Google Scholar 

  11. Went P, Agostinelli C, Gallamini A, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol. 2006;24(16):2472–9.

    Article  PubMed  CAS  Google Scholar 

  12. Rudiger T, Weisenburger DD, Anderson JR, et al. Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol. 2002;13(1):140–9.

    Article  PubMed  CAS  Google Scholar 

  13. Zettl A, Rudiger T, Konrad MA, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol. 2004;164(5):1837–48.

    Article  PubMed  CAS  Google Scholar 

  14. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood. 2006;107(11):4500–7.

    Article  PubMed  CAS  Google Scholar 

  15. Hartmann S, Gesk S, Scholtysik R, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol. 2010;148(3):402–12.

    Article  PubMed  Google Scholar 

  16. Ascani S, Zinzani PL, Gherlinzoni F, et al. Peripheral T-cell lymphomas. Clinico-pathologic study of 168 cases diagnosed according to the R.E.A.L. Classification. Ann Oncol. 1997;8(6):583–92.

    Article  PubMed  CAS  Google Scholar 

  17. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34.

    Article  PubMed  CAS  Google Scholar 

  18. Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28(9):1583–90.

    Article  PubMed  CAS  Google Scholar 

  19. Tracey L, Villuendas R, Dotor AM, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood. 2003;102(3):1042–50.

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Delgado B, Melendez B, Cuadros M, et al. Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res. 2004;10(15):4971–82.

    Article  PubMed  CAS  Google Scholar 

  21. Martinez-Delgado B, Cuadros M, Honrado E, et al. Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia. 2005;19(12):2254–63.

    Article  PubMed  CAS  Google Scholar 

  22. Piccaluga PP, Agostinelli C, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA. Expression of platelet-derived growth factor receptor alpha in peripheral T-cell lymphoma not otherwise specified. Lancet Oncol. 2005;6(6):440.

    Article  PubMed  Google Scholar 

  23. Ballester B, Ramuz O, Gisselbrecht C, et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene. 2006;25(10):1560–70.

    Article  PubMed  CAS  Google Scholar 

  24. Mahadevan D, Spier C, Della Croce K, et al. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther. 2005;4(12):1867–79.

    Article  PubMed  CAS  Google Scholar 

  25. Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+  subtypes. Blood. 2007;109(5):2156–64.

    Article  PubMed  CAS  Google Scholar 

  26. de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109(11):4952–63.

    Article  PubMed  Google Scholar 

  27. Cuadros M, Dave SS, Jaffe ES, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol. 2007;25(22):3321–9.

    Article  PubMed  Google Scholar 

  28. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007;67(22):10703–10.

    Article  PubMed  CAS  Google Scholar 

  29. Miyazaki K, Yamaguchi M, Imai H, et al. Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood. 2009;113(5):1071–4.

    Article  PubMed  CAS  Google Scholar 

  30. Pise-Masison CA, Radonovich M, Dohoney K, et al. Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood. 2009;113(17):4016–26.

    Article  PubMed  CAS  Google Scholar 

  31. Huang Y, de Reynies A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal-type. Blood. 2010;115(6):1226–37.

    Article  PubMed  CAS  Google Scholar 

  32. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026–36.

    Article  PubMed  CAS  Google Scholar 

  33. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

    Article  PubMed  CAS  Google Scholar 

  34. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  PubMed  CAS  Google Scholar 

  35. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    Article  PubMed  CAS  Google Scholar 

  36. Watson A, Mazumder A, Stewart M, Balasubramanian S. Technology for microarray analysis of gene expression. Curr Opin Biotechnol. 1998;9(6):609–14.

    Article  PubMed  CAS  Google Scholar 

  37. Dupuis J, Boye K, Martin N, et al. Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol. 2006;30(4):490–4.

    Article  PubMed  Google Scholar 

  38. Grogg KL, Attygale AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A. Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol. 2006;19(8):1101–7.

    PubMed  CAS  Google Scholar 

  39. Roncador G, Garcia Verdes-Montenegro JF, Tedoldi S, et al. Expression of two markers of germinal center T cells (SAP and PD-1) in angioimmunoblastic T-cell lymphoma. Haematologica. 2007;92(8):1059–66.

    Article  PubMed  CAS  Google Scholar 

  40. Marafioti T, Paterson JC, Ballabio E, et al. The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell-derivation. Haematologica. 2010;95(3):432–9.

    Article  PubMed  CAS  Google Scholar 

  41. Laurent C, Fazilleau N, Brousset P. A novel subset of T-helper cells: follicular T-helper cells and their markers. Haematologica. 2010;95(3):356–8.

    Article  PubMed  CAS  Google Scholar 

  42. Rudiger T, Geissinger E, Muller-Hermelink HK. ‘Normal counterparts’ of nodal peripheral T-cell lymphoma. Hematol Oncol. 2006;24(4):175–80.

    Article  PubMed  Google Scholar 

  43. Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.

    Article  PubMed  Google Scholar 

  44. Tapper J, Kettunen E, El-Rifai W, Seppala M, Andersson LC, Knuutila S. Changes in gene expression during progression of ovarian carcinoma. Cancer Genet Cytogenet. 2001;128(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  45. Sado Y, Kagawa M, Naito I, et al. Organization and expression of basement membrane collagen IV genes and their roles in human disorders. J Biochem (Tokyo). 1998;123(5):767–76.

    Article  CAS  Google Scholar 

  46. van den Boom J, Wolter M, Kuick R, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163(3):1033–43.

    Article  PubMed  Google Scholar 

  47. Jin S, Tong T, Fan W, et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21(57):8696–704.

    Article  PubMed  CAS  Google Scholar 

  48. Papa S, Zazzeroni F, Bubici C, et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol. 2004;6(2):146–53.

    Article  PubMed  CAS  Google Scholar 

  49. Chen F, Lu Y, Zhang Z, et al. Opposite effect of NF-kappa B and c-Jun N-terminal kinase on p53-independent GADD45 induction by arsenite. J Biol Chem. 2001;276(14):11414–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hirose T, Sowa Y, Takahashi S, et al. p53-independent induction of Gadd45 by histone deacetylase inhibitor: coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene. 2003;22(49):7762–73.

    Article  PubMed  CAS  Google Scholar 

  51. Tan KO, Tan KM, Chan SL, et al. MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem. 2001;276(4):2802–7.

    Article  PubMed  CAS  Google Scholar 

  52. Nagashima M, Shiseki M, Pedeux RM, et al. A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene. 2003;22(3):343–50.

    Article  PubMed  CAS  Google Scholar 

  53. Gunduz M, Ouchida M, Fukushima K, et al. Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene. 2002;21(28):4462–70.

    Article  PubMed  CAS  Google Scholar 

  54. Lee MS, Hanspers K, Barker CS, Korn AP, McCune JM. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol. 2004;16(8):1109–24.

    Article  PubMed  CAS  Google Scholar 

  55. Chtanova T, Newton R, Liu SM, et al. Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J Immunol. 2005;175(12):7837–47.

    PubMed  CAS  Google Scholar 

  56. Chtanova T, Tangye SG, Newton R, et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol. 2004;173(1):68–78.

    PubMed  CAS  Google Scholar 

  57. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003;4(10):R70.

    Article  PubMed  Google Scholar 

  58. Han JS, Macarak E, Rosenbloom J, Chung KC, Chaqour B. Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Eur J Biochem. 2003;270(16):3408–21.

    Article  PubMed  CAS  Google Scholar 

  59. Leu SJ, Liu Y, Chen N, Chen CC, Lam SC, Lau LF. Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic inducer CCN1 (CYR61). J Biol Chem. 2003;278(36):33801–8.

    Article  PubMed  CAS  Google Scholar 

  60. Schober JM, Lau LF, Ugarova TP, Lam SC. Identification of a novel integrin alphaMbeta2 binding site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. J Biol Chem. 2003;278(28):25808–15.

    Article  PubMed  CAS  Google Scholar 

  61. Tsai MS, Bogart DF, Castaneda JM, Li P, Lupu R. Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene. 2002;21(53):8178–85.

    Article  PubMed  CAS  Google Scholar 

  62. Tsai MS, Hornby AE, Lakins J, Lupu R. Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res. 2000;60(20):5603–7.

    PubMed  CAS  Google Scholar 

  63. Lin MT, Chang CC, Chen ST, et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem. 2004;279(23):24015–23.

    Article  PubMed  CAS  Google Scholar 

  64. Kassem H, Sangar V, Cowan R, Clarke N, Margison GP. A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. Int J Cancer. 2002;101(5):454–60.

    Article  PubMed  CAS  Google Scholar 

  65. Xu J, Capezzone M, Xu X, Hershman JM. Activation of nicotinamide N-methyltransferase gene promoter by hepatocyte nuclear factor-1{beta} in human papillary thyroid cancer cells. Mol Endocrinol. 2005;19(2):527–39.

    Article  PubMed  CAS  Google Scholar 

  66. Piccaluga P, Agostinelli C, Righi S, et al. Expression of classical NF-kappa B pathway molecules in peripheral t-cell lymphoma not otherwise specified. In: 10th international conference on malignant lymphoma, Lugano, 4–6 June 2008, p. 231.

    Google Scholar 

  67. Briones J, Moga E, Espinosa I, et al. Bcl-10 protein highly correlates with the expression of phosphorylated p65 NF-kappaB in peripheral T-cell lymphomas and is associated with clinical outcome. Histopathology. 2009;54(4):478–85.

    Article  PubMed  Google Scholar 

  68. Yang J, Liu X, Nyland SB, et al. Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. Blood. 2010;115(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  69. Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623–9.

    Article  PubMed  CAS  Google Scholar 

  70. Chiarle R, Martinengo C, Mastini C, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med. 2008;14(6):676–80.

    Article  PubMed  CAS  Google Scholar 

  71. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  72. Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, et al. Antileukemia activity of the combination of an ­anthracycline with a histone deacetylase inhibitor. Blood. 2006;108(4):1174–82.

    Article  PubMed  CAS  Google Scholar 

  73. Strupp C, Aivado M, Germing U, Gattermann N, Haas R. Angioimmunoblastic lymphadenopathy (AILD) may respond to thalidomide treatment: two case reports. Leuk Lymphoma. 2002;43(1):133–7.

    Article  PubMed  CAS  Google Scholar 

  74. Bruns I, Fox F, Reinecke P, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19(11):1993–5.

    Article  PubMed  CAS  Google Scholar 

  75. Dogan A, Ngu LS, Ng SH, Cervi PL. Pathology and clinical features of angioimmunoblastic T-cell lymphoma after successful treatment with thalidomide. Leukemia. 2005;19(5):873–5.

    Article  PubMed  CAS  Google Scholar 

  76. Ramasamy K, Lim Z, Pagliuca A, Salisbury JR, Mufti GJ, Devereux S. Successful treatment of refractory angioimmunoblastic T-cell lymphoma with thalidomide and dexamethasone. Haematologica. 2006;91(8 Suppl):ECR44.

    PubMed  Google Scholar 

  77. Aguiar Bujanda D. Complete response of relapsed angioimmunoblastic T-cell lymphoma following therapy with bevacizumab. Ann Oncol. 2008;19(2):396–7.

    Article  PubMed  CAS  Google Scholar 

  78. Gottardi M, Danesin C, Canal F, et al. Complete remission induced by thalidomide in a case of angioimmunoblastic T-cell lymphoma refractory to autologous stem cell transplantation. Leuk Lymphoma. 2008;49(9):1836–8.

    Article  PubMed  Google Scholar 

  79. Kim YH, Duvic M, Obitz E, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109(11):4655–62.

    Article  PubMed  CAS  Google Scholar 

  80. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103(8):2920–4.

    Article  PubMed  CAS  Google Scholar 

  81. Gallamini A, Zaja F, Patti C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110(7):2316–23.

    Article  PubMed  CAS  Google Scholar 

  82. Piccaluga PP, Agostinelli C, Righi S, Zinzani PL, Pileri SA. Expression of CD52 in peripheral T-cell lymphoma. Haematologica. 2007;92(4):566–7.

    Article  PubMed  Google Scholar 

  83. Rodig SJ, Abramson JS, Pinkus GS, et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res. 2006;12(23):7174–9.

    Article  PubMed  CAS  Google Scholar 

  84. Chang ST, Lu CL, Chuang SS. CD52 expression in non-mycotic T- and NK/T-cell lymphomas. Leuk Lymphoma. 2007;48(1):117–21.

    Article  PubMed  Google Scholar 

  85. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2011;363(19):1812–21.

    Article  Google Scholar 

  86. Falini B, Bolognesi A, Flenghi L, et al. Response of refractory Hodgkin’s disease to monoclonal anti-CD30 immunotoxin. Lancet. 1992;339(8803):1195–6.

    Article  PubMed  CAS  Google Scholar 

  87. Weisenburger DD, Savage KJ, Harris NL, et al. Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project. Blood. 2011;117(12):3402–8.

    Article  PubMed  CAS  Google Scholar 

  88. Bekkenk MW, Vermeer MH, Jansen PM, et al. Peripheral T-cell lymphomas unspecified presenting in the skin: analysis of prognostic factors in a group of 82 patients. Blood. 2003;102(6):2213–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kojima H, Hasegawa Y, Suzukawa K, et al. Clinicopathological features and prognostic factors of Japanese patients with “peripheral T-cell lymphoma, unspecified” diagnosed according to the WHO classification. Leuk Res. 2004;28(12):1287–92.

    Article  PubMed  Google Scholar 

  90. Rodriguez-Antona C, Leskela S, Zajac M, et al. Expression of CYP3A4 as a predictor of response to chemotherapy in peripheral T-cell lymphomas. Blood. 2007;110(9):3345–51.

    Article  PubMed  CAS  Google Scholar 

  91. Agostinelli C, Piccaluga PP, Went P, et al. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J Clin Pathol. 2008;61(11):1160–7.

    Article  PubMed  CAS  Google Scholar 

  92. Lenz G, Staudt LM. Aggressive lymphomas. N Engl J Med. 2010;362(15):1417–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors have no conflicting financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Piccaluga MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Piccaluga, P.P., Pileri, S.A. (2013). Molecular Profiling of Peripheral T-Cell Lymphomas. In: Younes, A., Coiffier, B. (eds) Lymphoma. Current Clinical Oncology, vol 43. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-408-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-408-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-407-4

  • Online ISBN: 978-1-62703-408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics