Skip to main content

Lymphoblastic Lymphoma

  • Chapter
  • First Online:
Lymphoma

Part of the book series: Current Clinical Oncology ((CCO,volume 43))

  • 2368 Accesses

Abstract

Lymphoblastic lymphoma (LBL) and acute lymphoblastic leukemia (ALL) are largely overlapping entities based on morphology, immunophenotype, and molecular aberrations. Arbitrary distinctions are made between these entities by the extent of marrow involvement. Juxtaposition of genes encoding oncogenic transcription factor to T-cell receptor genes, activating Notch mutations, and loss of tumor suppressors are common events in T-LBL. Adoption of ALL-like therapy and pediatric regimens has improved outcome in LBL. Treatments targeting Notch, mTOR/Akt pathways, etc. and newer nucleoside analogs are expected to improve outcome in LBL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nathwani BN, Diamond LW, Winberg CD, et al. Lymphoblastic lymphoma: a clinicopathologic study of 95 patients. Cancer. 1981;48:2347–57.

    Article  PubMed  CAS  Google Scholar 

  2. Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000;24:1480–90.

    Article  PubMed  CAS  Google Scholar 

  3. Soslow RA, Baergen RN, Warnke RA. B-lineage lymphoblastic lymphoma is a clinicopathologic entity distinct from other histologically similar aggressive lymphomas with blastic morphology. Cancer. 1999;85:2648–54.

    Article  PubMed  CAS  Google Scholar 

  4. Raetz EA, Perkins SL, Bhojwani D, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47:130–40.

    Article  PubMed  Google Scholar 

  5. Uyttebroeck A, Vanhentenrijk V, Hagemeijer A, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48:1745–54.

    Article  PubMed  Google Scholar 

  6. Wiersma SR, Ortega J, Sobel E, Weinberg KI. Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med. 1991;324:800–8.

    Article  PubMed  CAS  Google Scholar 

  7. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9:1783–6.

    PubMed  CAS  Google Scholar 

  8. Hoelzer D, Thiel E, Arnold R, et al. Successful subtype oriented treatment strategies in adult T-All; results of 744 patients treated in three consecutive GMALL studies. Blood. 2009;114:324.

    Google Scholar 

  9. Marks DI, Paietta EM, Moorman AV, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114:5136–45.

    Article  PubMed  CAS  Google Scholar 

  10. Lones MA, Heerema NA, Le Beau MM, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172:1–11.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas DA, O’Brien S, Cortes J, et al. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood. 2004;104:1624–30.

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko Y, Frizzera G, Shikano T, Kobayashi H, Maseki N, Sakurai M. Chromosomal and immunophenotypic patterns in T cell acute lymphoblastic ­leukemia (T ALL) and lymphoblastic lymphoma (LBL). Leukemia. 1989;3:886–92.

    PubMed  CAS  Google Scholar 

  13. Macdonald D, Aguiar RC, Mason PJ, Goldman JM, Cross NC. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia. 1995;9:1628–30.

    PubMed  CAS  Google Scholar 

  14. Popovici C, Zhang B, Gregoire MJ, et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood. 1999;93:1381–9.

    PubMed  CAS  Google Scholar 

  15. Kimura N, Takihara Y, Akiyoshi T, et al. Rearrangement of T-cell receptor delta chain gene as a marker of lineage and clonality in T-cell lymphoproliferative disorders. Cancer Res. 1989;49:4488–92.

    PubMed  CAS  Google Scholar 

  16. Jacobs JC, Katz RL, Shabb N, el-Naggar A, Ordonez NG, Pugh W. Fine needle aspiration of lymphoblastic lymphoma. A multiparameter diagnostic approach. Acta Cytol. 1992;36:887–94.

    PubMed  CAS  Google Scholar 

  17. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood. 2002;99:2315–23.

    Article  PubMed  CAS  Google Scholar 

  18. Brown L, Cheng JT, Chen Q, et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990;9:3343–51.

    PubMed  CAS  Google Scholar 

  19. Jonsson OG, Kitchens RL, Baer RJ, Buchanan GR, Smith RG. Rearrangements of the tal-1 locus as clonal markers for T cell acute lymphoblastic leukemia. J Clin Invest. 1991;87:2029–35.

    Article  PubMed  CAS  Google Scholar 

  20. Xia Y, Brown L, Yang CY, et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci U S A. 1991;88:11416–20.

    Article  PubMed  CAS  Google Scholar 

  21. Mellentin JD, Smith SD, Cleary ML. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell. 1989;58:77–83.

    Article  PubMed  CAS  Google Scholar 

  22. Wang J, Jani-Sait SN, Escalon EA, et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci U S A. 2000;97:3497–502.

    Article  PubMed  CAS  Google Scholar 

  23. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A. 1991;88:4367–71.

    Article  PubMed  CAS  Google Scholar 

  24. Valge-Archer V, Forster A, Rabbitts TH. The LMO1 and LDB1 proteins interact in human T cell acute leukaemia with the chromosomal translocation t(11;14)(p15;q11). Oncogene. 1998;17:3199–202.

    Article  PubMed  CAS  Google Scholar 

  25. Royer-Pokora B, Rogers M, Zhu TH, Schneider S, Loos U, Bolitz U. The TTG-2/RBTN2 T cell oncogene encodes two alternative transcripts from two promoters: the distal promoter is removed by most 11p13 translocations in acute T cell leukaemia’s (T-ALL). Oncogene. 1995;10:1353–60.

    PubMed  CAS  Google Scholar 

  26. Rabbitts TH, Axelson H, Forster A, et al. Chromosomal translocations and leukaemia: a role for LMO2 in T cell acute leukaemia, in transcription and in erythropoiesis. Leukemia. 1997;11 Suppl 3Suppl 3:271–2.

    PubMed  Google Scholar 

  27. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991;253:79–82.

    Article  PubMed  CAS  Google Scholar 

  28. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci U S A. 1991;88:8900–4.

    Article  PubMed  CAS  Google Scholar 

  29. Hansen-Hagge TE, Schafer M, Kiyoi H, et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRdelta locus in acute lymphoblastic leukemias with t(5;14)(q34;q11). Leukemia. 2002;16:2205–12.

    Article  PubMed  CAS  Google Scholar 

  30. Soulier J, Clappier E, Cayuela JM, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106:274–86.

    Article  PubMed  CAS  Google Scholar 

  31. Speleman F, Cauwelier B, Dastugue N, et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia. 2005;19:358–66.

    Article  PubMed  CAS  Google Scholar 

  32. Erikson J, Finger L, Sun L, et al. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science. 1986;232:884–6.

    Article  PubMed  CAS  Google Scholar 

  33. Inaba T, Murakami S, Oku N, et al. Translocation between chromosomes 8q24 and 14q11 in T-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1990;49:69–74.

    Article  PubMed  CAS  Google Scholar 

  34. Clappier E, Cuccuini W, Kalota A, et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood. 2007;110:1251–61.

    Article  PubMed  CAS  Google Scholar 

  35. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.

    Article  PubMed  CAS  Google Scholar 

  36. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39:593–5.

    Article  PubMed  CAS  Google Scholar 

  37. Van Vlierberghe P, van Grotel M, Beverloo HB, et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108:3520–9.

    Article  PubMed  Google Scholar 

  38. O’Neil J, Tchinda J, Gutierrez A, et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med. 2007;204:3059–66.

    Article  PubMed  Google Scholar 

  39. Hebert J, Cayuela JM, Berkeley J, Sigaux F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias [see comments]. Blood. 1994;84:4038–44.

    PubMed  CAS  Google Scholar 

  40. Kawamura M, Ohnishi H, Guo SX, et al. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res. 1999;23:115–26.

    Article  PubMed  CAS  Google Scholar 

  41. Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–10.

    Article  PubMed  CAS  Google Scholar 

  42. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood. 2008;111:4322–8.

    Article  PubMed  CAS  Google Scholar 

  43. Bar-Eli M, Ahuja H, Foti A, Cline MJ. N-RAS mutations in T-cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation. Br J Haematol. 1989;72:36–9.

    Article  PubMed  CAS  Google Scholar 

  44. Tycko B, Smith SD, Sklar J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J Exp Med. 1991;174:867–73.

    Article  PubMed  CAS  Google Scholar 

  45. Flex E, Petrangeli V, Stella L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008;205:751–8.

    Article  PubMed  CAS  Google Scholar 

  46. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology. 2009;2009:353–61.

    Article  Google Scholar 

  48. Yeh KH, Cheng AL, Su IJ, et al. Prognostic significance of immunophenotypes in adult lymphoblastic lymphomas. Anticancer Res. 1997;17:2269–72.

    PubMed  CAS  Google Scholar 

  49. Slater DE, Mertelsmann R, Koziner B, et al. Lymphoblastic lymphoma in adults. J Clin Oncol. 1986;4:57–67.

    PubMed  CAS  Google Scholar 

  50. Kaneko Y, Frizzera G, Maseki N, et al. A novel translocation, t(9;17)(q34;q23), in aggressive childhood lymphoblastic lymphoma. Leukemia. 1988;2:745–8.

    PubMed  CAS  Google Scholar 

  51. Zinzani PL, Bendandi M, Visani G, et al. Adult lymphoblastic lymphoma: clinical features and prognostic factors in 53 patients. Leuk Lymphoma. 1996;23:577–82.

    Article  PubMed  CAS  Google Scholar 

  52. Morel P, Lepage E, Brice P, et al. Prognosis and treatment of lymphoblastic lymphoma in adults: a report on 80 patients. J Clin Oncol. 1992;10:1078–85.

    PubMed  CAS  Google Scholar 

  53. Coleman CN, Picozzi Jr VJ, Cox RS, et al. Treatment of lymphoblastic lymphoma in adults. J Clin Oncol. 1986;4:1628–37.

    PubMed  CAS  Google Scholar 

  54. Hoelzer D, Gokbuget N, Digel W, et al. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood. 2002;99:4379–85.

    Article  PubMed  CAS  Google Scholar 

  55. Uyttebroeck A, Suciu S, Laureys G, et al. Treatment of childhood T-cell lymphoblastic lymphoma according to the strategy for acute lymphoblastic leukaemia, without radiotherapy: long term results of the EORTC CLG 58881 trial. Eur J Cancer. 2008;44:840–6.

    Article  PubMed  Google Scholar 

  56. Bassan R, Spinelli O, Oldani E, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113:4153–62.

    Article  PubMed  CAS  Google Scholar 

  57. Brisco J, Hughes E, Neoh SH, et al. Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood. 1996;87: 5251–6.

    PubMed  CAS  Google Scholar 

  58. Bruggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116–23.

    Article  PubMed  Google Scholar 

  59. Mortuza FY, Papaioannou M, Moreira IM, et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20:1094–104.

    Article  PubMed  Google Scholar 

  60. Vidriales MB, Perez JJ, Lopez-Berges MC, et al. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood. 2003;101:4695–700.

    Article  PubMed  CAS  Google Scholar 

  61. Aur RJ, Hustu HO, Simone JV, Pratt CB, Pinkel D. Therapy of localized and regional lymphosarcoma of childhood. Cancer. 1971;27:1328–31.

    Article  PubMed  CAS  Google Scholar 

  62. Wollner N, Burchenal JH, Lieberman PH, Exelby P, D’Angio G, Murphy ML. Non-Hodgkin’s lymphoma in children. A comparative study of two modalities of therapy. Cancer. 1976;37:123–34.

    Article  PubMed  CAS  Google Scholar 

  63. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44:1990–9.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson JR, Wilson JF, Jenkin DT, et al. Childhood non-Hodgkin’s lymphoma. The results of a randomized therapeutic trial comparing a 4-drug regimen (COMP) with a 10-drug regimen (LSA2-L2). N Engl J Med. 1983;308:559–65.

    Article  PubMed  CAS  Google Scholar 

  65. Anderson JR, Jenkin RD, Wilson JF, et al. Long-term follow-up of patients treated with COMP or LSA2L2 therapy for childhood non-Hodgkin’s lymphoma: a report of CCG-551 from the Childrens Cancer Group. J Clin Oncol. 1993;11:1024–32.

    PubMed  CAS  Google Scholar 

  66. Hvizdala EV, Berard C, Callihan T, et al. Lymphoblastic lymphoma in children—a randomized trial comparing LSA2-L2 with the A-COP+ therapeutic regimen: a Pediatric Oncology Group Study. J Clin Oncol. 1988;6:26–33.

    PubMed  CAS  Google Scholar 

  67. Patte C, Kalifa C, Flamant F, et al. Results of the LMT81 protocol, a modified LSA2L2 protocol with high dose methotrexate, on 84 children with non-B-cell (lymphoblastic) lymphoma. Med Pediatr Oncol. 1992;20:105–13.

    Article  PubMed  CAS  Google Scholar 

  68. Magrath IT, Janus C, Edwards BK, et al. An effective therapy for both undifferentiated (including Burkitt’s) lymphomas and lymphoblastic lymphomas in children and young adults. Blood. 1984;63:1102–11.

    PubMed  CAS  Google Scholar 

  69. Reiter A, Schrappe M, Ludwig WD, et al. Intensive ALL-type therapy without local radiotherapy provides a 90 % event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95:416–21.

    PubMed  CAS  Google Scholar 

  70. Voakes JB, Jones SE, McKelvey EM. The chemotherapy of lymphoblastic lymphoma. Blood. 1981;57:186–8.

    PubMed  CAS  Google Scholar 

  71. Levine AM, Forman SJ, Meyer PR, et al. Successful therapy of convoluted T-lymphoblastic lymphoma in the adult. Blood. 1983;61:92–8.

    PubMed  CAS  Google Scholar 

  72. Bernasconi C, Brusamolino E, Lazzarino M, Morra E, Pagnucco G, Orlandi E. Lymphoblastic lymphoma in adult patients: clinicopathological features and response to intensive multiagent chemotherapy analogous to that used in acute lymphoblastic leukemia. Ann Oncol. 1990;1:141–6.

    PubMed  CAS  Google Scholar 

  73. Thomas DA, Faderl S, O’Brien S, et al. Long-term outcome for De Novo lymphoblastic lymphoma (LL) after frontline therapy with hyper-CVAD regimen and variants. ASH annual meeting abstracts. Blood. 2010;116:2831.

    Google Scholar 

  74. Sweetenham JW, Liberti G, Pearce R, Taghipour G, Santini G, Goldstone AH. High-dose therapy and autologous bone marrow transplantation for adult patients with lymphoblastic lymphoma: results of the European Group for Bone Marrow Transplantation. J Clin Oncol. 1994;12:1358–65.

    PubMed  CAS  Google Scholar 

  75. Sweetenham JW, Santini G, Qian W, et al. High-dose therapy and autologous stem-cell transplantation versus conventional-dose consolidation/maintenance therapy as postremission therapy for adult patients with lymphoblastic lymphoma: results of a randomized trial of the European Group for Blood and Marrow Transplantation and the United Kingdom Lymphoma Group. J Clin Oncol. 2001;19:2927–36.

    PubMed  CAS  Google Scholar 

  76. Hunault M, Truchan-Graczyk M, Caillot D, et al. Outcome of adult T-lymphoblastic lymphoma after acute lymphoblastic leukemia-type treatment: a GOELAMS trial. Haematologica. 2007;92:1623–30.

    Article  PubMed  CAS  Google Scholar 

  77. Bouabdallah R, Xerri L, Bardou VJ, et al. Role of induction chemotherapy and bone marrow transplantation in adult lymphoblastic lymphoma: a report on 62 patients from a single center. Ann Oncol. 1998;9:619–25.

    Article  PubMed  CAS  Google Scholar 

  78. Levine JE, Harris RE, Loberiza Jr FR, et al. A comparison of allogeneic and autologous bone marrow transplantation for lymphoblastic lymphoma. Blood. 2003;101:2476–82.

    Article  PubMed  CAS  Google Scholar 

  79. Burkhardt B, Woessmann W, Zimmermann M, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24:491–9.

    Article  PubMed  Google Scholar 

  80. Dabaja BS, Ha CS, Thomas DA, et al. The role of local radiation therapy for mediastinal disease in adults with T-cell lymphoblastic lymphoma. Cancer. 2002;94:2738–44.

    Article  PubMed  Google Scholar 

  81. Ciudad J, San Miguel JF, Lopez-Berges MC, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol. 1998;16:3774–81.

    PubMed  CAS  Google Scholar 

  82. Foroni L, Coyle LA, Papaioannou M, et al. Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response. Leukemia. 1997;11:1732–41.

    Article  PubMed  CAS  Google Scholar 

  83. Coustan-Smith E, Sandlund JT, Perkins SL, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol. 2009;27:3533–9.

    Article  PubMed  Google Scholar 

  84. DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109:5136–42.

    Article  PubMed  CAS  Google Scholar 

  85. Gokbuget N, Basara N, Baurmann H, et al. High single drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3504–11.

    Article  PubMed  Google Scholar 

  86. Burkhardt B, Reiter A, Landmann E, et al. Poor outcome for children and adolescents with progressive disease or relapse of lymphoblastic lymphoma: a report from the Berlin–Frankfurt–Muenster Group. J Clin Oncol. 2009;27:3363–9.

    Article  PubMed  Google Scholar 

  87. Mitsui T, Mori T, Fujita N, Inada H, Horibe K, Tsurusawa M. Retrospective analysis of relapsed or primary refractory childhood lymphoblastic lymphoma in Japan. Pediatr Blood Cancer. 2009;52:591–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. O’Brien MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Borthakur, G., O’Brien, S.M. (2013). Lymphoblastic Lymphoma. In: Younes, A., Coiffier, B. (eds) Lymphoma. Current Clinical Oncology, vol 43. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-408-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-408-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-407-4

  • Online ISBN: 978-1-62703-408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics