Skip to main content

Practical Application of Virtual Bronchoscopic Navigation

  • Chapter
  • First Online:
Interventional Bronchoscopy

Part of the book series: Respiratory Medicine ((RM,volume 10))

Abstract

Transbronchial biopsy for peripheral pulmonary lesions (PPLs) is associated with fewer complications than percutaneous biopsy. However, the diagnostic yield using transbronchial biopsy can be inadequate, and depends on the operator’s skill. Virtual bronchoscopic navigation (VBN) is a method in which a bronchoscope is guided using virtual bronchoscopy (VB) images on the bronchial route to a peripheral lesion. A system that allows automatic search for the route to the target, production of VB images, and matched display with real images has been developed. This system is used for diagnosis of peripheral lesions, marker placement for surgery or radiotherapy, and education and training. VBN is used in combination with CT-guided ultrathin bronchoscopy, endobronchial ultrasonography with a guide-sheath (EBUS-GS), and bronchoscopy with or without X-ray fluoroscopy. Based on prospective studies, the diagnostic yield is 74 % for all PPLs and 68 % for lesions ≤2 cm. In a recent randomized study, use of VBN in association with EBUS-GS increased the diagnostic yield for ≤3 cm lesions from 67 to 80 %, and shortened the total examination time. A meta-analysis has also revealed the usefulness of VBN. There are many advantages of VBN. Even beginners can readily use this technique for peripheral lesions, and a high diagnostic rate can be obtained. To increase the diagnostic yield using VBN, it is important to clarify the relationship between the lesion and extracted bronchi, select appropriate bronchoscopic techniques, and combine them with VBN. CT should be performed under appropriate conditions. VBN is a useful method to support bronchoscopy; wider use and further development of this system are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EBUS:

Endobronchial ultrasonography

EBUS-GS:

Endobronchial ultrasonography with a guide-sheath

EMN:

Electromagnetic navigation

PPL:

Peripheral pulmonary lesion

VB:

Virtual bronchoscopy

VBN:

Virtual bronchoscopic navigation

References

  1. Kaneko M, Eguchi K, Ohmatsu H, et al. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996;201:798–802.

    PubMed  CAS  Google Scholar 

  2. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011; 365:395–409.

    Article  PubMed  Google Scholar 

  3. Yung RC. Tissue diagnosis of suspected lung cancer: selecting between bronchoscopy, transthoracic needle aspiration, and resectional biopsy. Respir Care Clin N Am. 2003;9:51–76.

    Article  PubMed  Google Scholar 

  4. Rivera MP, Mehta AC. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132:131S–48S.

    Article  PubMed  Google Scholar 

  5. Manhire A, Charig M, Clelland C, et al. Guidelines for radiologically guided lung biopsy. Thorax. 2003;58:920–36.

    Article  PubMed  CAS  Google Scholar 

  6. Tomiyama N, Yasuhara Y, Nakajima Y, et al. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol. 2006;59:60–4.

    Article  PubMed  Google Scholar 

  7. Asano F, Aoe M, Ohsaki Y, et al. Deaths and complications associated with respiratory endoscopy: a survey by the Japan society for respiratory endoscopy in 2010. Respirology. 2012;17:478–85.

    Article  PubMed  Google Scholar 

  8. Chechani V. Bronchoscopic diagnosis of solitary ­pulmonary nodules and lung masses in the absence of endobronchial abnormality. Chest. 1996;109:620–5.

    Article  PubMed  CAS  Google Scholar 

  9. Baaklini WA, Reinoso MA, Gorin AB, et al. Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules. Chest. 2000;117:1049–54.

    Article  PubMed  CAS  Google Scholar 

  10. Naidich DP, Sussman R, Kutcher WL, et al. Solitary pulmonary nodules. CT-bronchoscopic correlation. Chest. 1988;93:595–8.

    Article  PubMed  CAS  Google Scholar 

  11. Minami H, Ando Y, Nomura F, et al. Interbronchoscopist variability in the diagnosis of lung cancer by flexible bronchoscopy. Chest. 1994;105:1658–62.

    Article  PubMed  CAS  Google Scholar 

  12. Dolina MY, Cornish DC, Merritt SA, et al. Interbronchoscopist variability in endobronchial path selection: a simulation study. Chest. 2008;133:897–905.

    Article  PubMed  Google Scholar 

  13. Vining DJ, Liu K, Choplin RH, et al. Virtual bronchoscopy. Relationships of virtual reality endobronchial simulations to actual bronchoscopic findings. Chest. 1996;109:549–53.

    Article  PubMed  CAS  Google Scholar 

  14. Hoppe H, Dinkel HP, Walder B, et al. Grading airway stenosis down to the segmental level using virtual bronchoscopy. Chest. 2004;125:704–11.

    Article  PubMed  Google Scholar 

  15. De Wever W, Vandecaveye V, Lanciotti S, et al. Multidetector CT-generated virtual bronchoscopy: an illustrated review of the potential clinical indications. Eur Respir J. 2004;23:776–82.

    Article  PubMed  Google Scholar 

  16. Asano F, Matsuno Y, Matsushita T, et al. Transbronchial diagnosis of a pulmonary peripheral small lesion using an ultrathin bronchoscope with virtual bronchoscopic navigation. J Bronchol. 2002;9:108–11.

    Article  Google Scholar 

  17. Asano F, Matsuno Y, Shinagawa N, et al. A virtual bronchoscopic navigation system for pulmonary peripheral lesions. Chest. 2006;130:559–66.

    Article  PubMed  Google Scholar 

  18. Asano F, Matsuno Y, Tsuzuku A, et al. Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath. Lung Cancer. 2008;60:366–73.

    Article  PubMed  Google Scholar 

  19. Asano F, Matsuno Y, Takeichi N, et al. Virtual bronchoscopy in navigation of an ultrathin bronchoscope. J Jpn Soc Bronchol. 2002;24:433–8.

    Google Scholar 

  20. Shinagawa N, Yamazaki K, Onodera Y, et al. CT-guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004;125:1138–43.

    Article  PubMed  Google Scholar 

  21. Asahina H, Yamazaki K, Onodera Y, et al. Transbronchial biopsy using endobronchial ultrasonography with a guide sheath and virtual bronchoscopic navigation. Chest. 2005;128:1761–5.

    Article  PubMed  Google Scholar 

  22. Shinagawa N, Yamazaki K, Onodera Y, et al. Virtual bronchoscopic navigation system shortens the examination time—feasibility study of virtual bronchoscopic navigation system. Lung Cancer. 2007;56:201–6.

    Article  PubMed  Google Scholar 

  23. Ishida T, Asano F, Yamazaki K, et al. Virtual ­bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011;66:1072–7.

    Article  PubMed  Google Scholar 

  24. Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142(2):385–93.

    Article  PubMed  Google Scholar 

  25. Rodenwaldt J, Kopka L, Roedel R, et al. 3D virtual endoscopy of the upper airway: optimization of the scan parameters in a cadaver phantom and clinical assessment. J Comput Assist Tomogr. 1997;21:405–11.

    Article  PubMed  CAS  Google Scholar 

  26. Ferretti GR, Thony F, Bosson JL, et al. Benign abnormalities and carcinoid tumors of the central airways: diagnostic impact of CT bronchography. AJR Am J Roentgenol. 2000;174:1307–13.

    Article  PubMed  CAS  Google Scholar 

  27. Adaletli I, Kurugoglu S, Ulus S, et al. Utilization of low-dose multidetector CT and virtual bronchoscopy in children with suspected foreign body aspiration. Pediatr Radiol. 2007;37:33–40.

    Article  PubMed  Google Scholar 

  28. Colt HG, Crawford SW, Galbraith 3rd O. Virtual reality bronchoscopy simulation: a revolution in procedural training. Chest. 2001;120:1333–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ost D, DeRosiers A, Britt EJ, et al. Assessment of a bronchoscopy simulator. Am J Respir Crit Care Med. 2001;164:2248–55.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka M, Takizawa H, Satoh M, et al. Assessment of an ultrathin bronchoscope that allows cytodiagnosis of small airways. Chest. 1994;106:1443–7.

    Article  PubMed  CAS  Google Scholar 

  31. Saka H. Ultra-fine bronchoscopy: biopsy for peripheral lesions. Nippon Rinsho. 2002;60 Suppl 5:188–90.

    PubMed  Google Scholar 

  32. Asano F, Matsuno Y, Komaki C, et al. CT-guided transbronchial diagnosis using ultrathin bronchoscope for small peripheral pulmonary lesions. Nihon Kokyuki Gakkai Zasshi. 2002;40:11–6.

    PubMed  Google Scholar 

  33. Asano F, Kimura T, Shindou J, et al. Usefulness of CT-guided ultrathin bronchoscopy in the diagnosis of peripheral pulmonary lesions that could not be diagnosed by standard transbronchial biopsy. J Jpn Soc Bronchol. 2002;24:80–5.

    Google Scholar 

  34. Fujisawa T, Tanaka M, Saka H. Report by the Bronchus Nomenclature Working Group. J Jpn Soc Bronchol. 2000;22:330–1.

    Google Scholar 

  35. Seemann MD, Seemann O, Luboldt W, et al. Hybrid rendering of the chest and virtual bronchoscopy [corrected]. Eur J Med Res. 2000;5:431–7.

    PubMed  CAS  Google Scholar 

  36. Edell E, Krier-Morrow D. Navigational bronchoscopy: overview of technology and practical considerations—new current procedural terminology codes effective 2010. Chest. 2010;137:450–4.

    Article  PubMed  Google Scholar 

  37. Eberhardt R, Kahn N, Gompelmann D, et al. LungPoint—a new approach to peripheral lesions. J Thorac Oncol. 2010;5:1559–63.

    Article  PubMed  Google Scholar 

  38. Mori K, Deguchi D, Sugiyama J, et al. Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images. Med Image Anal. 2002;6:321–36.

    Article  PubMed  CAS  Google Scholar 

  39. Higgins WE, Helferty JP, Lu K, et al. 3D CT-video fusion for image-guided bronchoscopy. Comput Med Imaging Graph. 2008;32:159–73.

    Article  PubMed  Google Scholar 

  40. McLennan G, Ferguson JS, Thomas K, et al. The use of MDCT-based computer-aided pathway finding for mediastinal and perihilar lymph node biopsy: a randomized controlled prospective trial. Respiration. 2007;74:423–31.

    Article  PubMed  Google Scholar 

  41. Merritt SA, Gibbs JD, Yu KC, et al. Image-guided bronchoscopy for peripheral lung lesions: a phantom study. Chest. 2008;134:1017–26.

    Article  PubMed  Google Scholar 

  42. Mori K, Deguchi D, Kitasaka T, et al. Improvement of accuracy of marker-free bronchoscope tracking using electromagnetic tracker based on bronchial branch information. Med Image Comput Comput Assist Interv. 2008;11:535–42.

    PubMed  Google Scholar 

  43. Schwarz Y, Mehta AC, Ernst A, et al. Electromagnetic navigation during flexible bronchoscopy. Respiration. 2003;70:516–22.

    Article  PubMed  Google Scholar 

  44. Schwarz Y, Greif J, Becker HD, et al. Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest. 2006;129:988–94.

    Article  PubMed  Google Scholar 

  45. Wagner U, Walthers EM, Gelmetti W, et al. Computer-tomographically guided fiberbronchoscopic transbronchial biopsy of small pulmonary lesions: a feasibility study. Respiration. 1996;63:181–6.

    Article  PubMed  CAS  Google Scholar 

  46. Kobayashi T, Shimamura K, Hanai K. Computed tomography- guided bronchoscopy with an ultrathin fiberscope. Diagn Ther Endosc. 1996;2:229–32.

    Article  PubMed  CAS  Google Scholar 

  47. Shinagawa N, Yamazaki K, Onodera Y, et al. Factors related to diagnostic sensitivity using an ultrathin bronchoscope under CT guidance. Chest. 2007;131:549–53.

    Article  PubMed  Google Scholar 

  48. Matsuno Y, Asano F, Shindoh J, et al. CT-guided ultrathin bronchoscopy: bioptic approach and factors in predicting diagnosis. Intern Med. 2011;50:2143–8.

    Article  PubMed  Google Scholar 

  49. Herth FJ, Ernst A, Becker HD. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respir J. 2002;20:972–4.

    Article  PubMed  CAS  Google Scholar 

  50. Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004;126:959–65.

    Article  PubMed  Google Scholar 

  51. Yoshikawa M, Sukoh N, Yamazaki K, et al. Diagnostic value of endobronchial ultrasonography with a guide sheath for peripheral pulmonary lesions without X-ray fluoroscopy. Chest. 2007;131:1788–93.

    Article  PubMed  Google Scholar 

  52. Tachihara M, Ishida T, Kanazawa K, et al. A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer. 2007;57:322–7.

    Article  PubMed  Google Scholar 

  53. Asano F. Virtual bronchoscopic navigation. Clin Chest Med. 2010;31:75–85.

    Article  PubMed  Google Scholar 

  54. Asano F, Matsuno Y, Ibuka T, et al. A barium marking method using an ultrathin bronchoscope with virtual bronchoscopic navigation. Respirology. 2004;9:409–13.

    Article  PubMed  Google Scholar 

  55. Asano F, Shindoh J, Shigemitsu K, et al. Ultrathin bronchoscopic barium marking with virtual bronchoscopic navigation for fluoroscopy-assisted thoracoscopic surgery. Chest. 2004;126:1687–93.

    Article  PubMed  Google Scholar 

  56. Gildea TR, Mazzone PJ, Karnak D, et al. Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med. 2006;174:982–9.

    Article  PubMed  Google Scholar 

  57. Eberhardt R, Anantham D, Ernst A, et al. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med. 2007;176:36–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiro Asano M.D., F.C.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asano, F. (2013). Practical Application of Virtual Bronchoscopic Navigation. In: Mehta, A., Jain, P. (eds) Interventional Bronchoscopy. Respiratory Medicine, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-395-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-395-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-394-7

  • Online ISBN: 978-1-62703-395-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics