Skip to main content

The Male Reproductive System, Exercise, and Training: Endocrine Adaptations

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Abstract

The male gonadal axis function is strongly affected by physical exercise. Relatively short, intense exercise usually increases while more prolonged exercise usually decreases serum testosterone levels. The exercise-associated increment in circulating testosterone is considered not to be mediated by LH whereas a neuroendocrine dysfunction has been indicated as the cause of testosterone reduction in response to prolonged exercise, along with increased cortisol levels, a primary testicular dysfunction, or even an accumulation of metabolic waste materials. Chronic physical exercise may induce a state of oligospermia, a reduction of the total number of motile sperm and an increase in abnormal or immature spermatozoa. Alterations in the hormonal milieu but also the oxidative stress associated with endurance exercise may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urban RJ, Bodenburg YH, Gilkison C, et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol. 1995;269:E820–6.

    PubMed  CAS  Google Scholar 

  2. Ferrando AA, Sheffield-Moore M, Yeckel CW, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282:E601–7.

    PubMed  CAS  Google Scholar 

  3. Sinha-Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab. 2003;285:E197–205.

    PubMed  CAS  Google Scholar 

  4. Bhasin S, Storer TW, Berman N, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Sinha-Hikim I, Artaza J, Woodhouse L, et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab. 2002;283:E154–64.

    PubMed  CAS  Google Scholar 

  6. Viru A, Viru M. Preconditioning of the performance in power events by endogenous testosterone: in memory of professor Carmelo Bosco. J Strength Cond Res. 2005;19:6–8.

    PubMed  Google Scholar 

  7. Crewther BT, Cook C, Cardinale M, Weatherby RP, Lowe T. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med. 2011;41:103–23.

    Article  PubMed  Google Scholar 

  8. Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40:1037–53.

    Article  PubMed  Google Scholar 

  9. Zitzmann M. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men. In: Ghigo E, Lanfranco F, Strasburger CJ, editors. Hormone use and abuse by Athletes, vol. 29. New York, USA: Springer; 2011. p. 25–30. doi:10.1007/978-1-4419-7014-5.

    Chapter  Google Scholar 

  10. Jockenhoevel F, Schubert M. Anatomy and physiology of the testis. In: Jockenhoevel F, Schubert M, editors. Male hypogonadism. Bremen: UNI-MED Verlag; 2007. p. 12–30.

    Google Scholar 

  11. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of testicular function. In: Nieschlag E, Behre H, Nieschlag S, editors. Andrology: male reproductive health and dysfunction. 3rd ed. Heidelberg: Springer; 2009. p. 11–60.

    Google Scholar 

  12. Lanfranco F, Bonelli L, Baldi M, et al. Acylated ghrelin inhibits spontaneous LH pulsatility and responsiveness to naloxone, but not that to GnRH in young men: evidence for a central inhibitory action of ghrelin on the gonadal axis. J Clin Endocrinol Metab. 2008;93:3633–9.

    Article  PubMed  CAS  Google Scholar 

  13. Tena-Sempere M. Ghrelin and reproduction: ghrelin as novel regulator of the gonadotropic axis. Vitam Horm. 2008;77:285–300.

    Article  PubMed  CAS  Google Scholar 

  14. Cumming DC, Wheeler GD, McColl EM. The effects of exercise on reproductive function in men. Sports Med. 1989;7:1–17.

    Article  PubMed  CAS  Google Scholar 

  15. Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD. Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc. 1992;24:1346–52.

    PubMed  CAS  Google Scholar 

  16. Sherk VD, Sherk KA, Kim S, Young KC, Bemben DA. Hormone responses to a continuous bout of rock climbing in men. Eur J Appl Physiol. 2011;111:687–93.

    Article  PubMed  CAS  Google Scholar 

  17. Grandys M, Majerczak J, Zapart-Bukowska J, Kulpa J, Zoladz JA. Gonadal hormone status in highly trained sprinters and in untrained men. J Strength Cond Res. 2011;25:1079–84.

    PubMed  Google Scholar 

  18. Derbré F, Vincent S, Maitel B, et al. Androgen responses to sprint exercise in young men. Int J Sports Med. 2010;31:291–7.

    Article  PubMed  Google Scholar 

  19. Gotshalk LA, Loebel CC, Nindl BC, et al. Hormonal responses of multiset versus single-set heavy-resistance exercise protocols. Can J Appl Physiol. 1997;22:244–55.

    Article  PubMed  CAS  Google Scholar 

  20. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    Article  PubMed  CAS  Google Scholar 

  21. Kraemer WJ, Staron RS, Hagerman FC, et al. The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol. 1998;78:69–76.

    Article  CAS  Google Scholar 

  22. Häkkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med. 1995;16:507–13.

    Article  PubMed  Google Scholar 

  23. Häkkinen K, Pakarinen A, Newton RU, Kraemer WJ. Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol. 1998;77:312–9.

    Article  Google Scholar 

  24. Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev. 1989;49:159–69.

    Article  PubMed  CAS  Google Scholar 

  25. Ronnestad BR, Nygaard H, Raastad T. Physiological elevation of endogenous hormones results in superior strength training adaptation. Eur J Appl Physiol. 2011;111:2249–59.

    Article  PubMed  Google Scholar 

  26. Spiering BA, Kraemer WJ, Vingren JL, et al. Elevated endogenous testosterone concentrations potentiate muscle androgen receptor responses to resistance exercise. J Steroid Biochem Mol Biol. 2009;114:195–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ahtiainen JP, Hulmi JJ, Kraemer WJ, et al. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids. 2011;76:183–92.

    Article  PubMed  CAS  Google Scholar 

  28. Wilkerson JE, Horvath SM, Gutin B. Plasma testosterone during treadmill exercise. J Appl Physiol. 1980;49:249–53.

    PubMed  CAS  Google Scholar 

  29. Metivier G, Gauthier R, de la Cevrotriere J, Grymala D. The effect of acute exercise on the serum levels of testosterone and luteinizing (LH) hormone in human male athletes. J Sports Med Phys Fit. 1980;20:235–7.

    CAS  Google Scholar 

  30. Schmid P, Pusch PP, Wolf WW, et al. Serum FSH, LH and testosterone in humans after physical exercise. Int J Sports Med. 1982;3:84–9.

    Article  PubMed  CAS  Google Scholar 

  31. Cumming DC, Brunsting III LA, Strich G, et al. Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc. 1986;18:369–73.

    PubMed  CAS  Google Scholar 

  32. Sutton JR, Coleman MJ, Casey J, Lazarus L. Androgen responses during physical exercise. Br Med J. 1973;1:520–2.

    Article  PubMed  CAS  Google Scholar 

  33. Cadoux-Hudson TA, Few JD, Imms FJ. The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol Occup Physiol. 1985;54:321–5.

    Article  PubMed  CAS  Google Scholar 

  34. Levin J, Lloyd CW, Lobotsky J, Friedrich EH. The effect of epinephrine on testosterone production. Acta Endocrinol. 1967;55:184–92.

    PubMed  CAS  Google Scholar 

  35. Jezová D, Vigas M. Testosterone response to exercise during blockade and stimulation of adrenergic receptors in man. Horm Res. 1981;15:141–7.

    Article  PubMed  Google Scholar 

  36. Wheeler GD, Wall SR, Belcastro AN, Cumming DC. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;27:514–6.

    Article  Google Scholar 

  37. Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness. 1998;38:138–41.

    PubMed  CAS  Google Scholar 

  38. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol. 1998;85:2352–9.

    PubMed  CAS  Google Scholar 

  39. Singh A, Petrides JS, Gold PW, Chrousos GP, Deuster PA. Differential hypothalamic-pituitary-adrenal axis reactivity to psychological and physical stress. J Clin Endocrinol Metab. 1999;84:1944–8.

    Article  PubMed  CAS  Google Scholar 

  40. Slowinska-Lisowska M, Jozkow P, Medras M. Associations between physical activity and the androgenic/estrogenic status of men. Physiol Res. 2010;59:757–63.

    PubMed  CAS  Google Scholar 

  41. Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest. 2008;31:932–8.

    PubMed  CAS  Google Scholar 

  42. Arce JC, DeSouza MJ. Exercise and male factor infertility. Sports Med. 1993;15:146–69.

    Article  PubMed  CAS  Google Scholar 

  43. Bennell KL, Brukner PD, Malcolm SA. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes. Br J Sports Med. 1996;30:205–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hackney AC, Moore AW, Brownlee KK. Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung. 2005;92:121–37.

    Article  PubMed  CAS  Google Scholar 

  45. MacConnie S, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315:411–7.

    Article  PubMed  CAS  Google Scholar 

  46. McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol. 1989;31:617–21.

    Article  CAS  Google Scholar 

  47. Di Luigi L, Guidetti L, Baldari C, Fabbri A, Moretti C, Romanelli F. Physical stress and qualitative gonadotropin secretion: LH biological activity at rest and after exercise in trained and untrained men. Int J Sports Med. 2002;23:307–12.

    Article  PubMed  Google Scholar 

  48. Kujala UM, Alen M, Huhtaniemi IT. Gonadotrophin-releasing hormone and human chorionic gonadotrophin tests reveal that both hypothalamic and testicular endocrine functions are suppressed during acute prolonged physical exercise. Clin Endocrinol. 1990;33:219–25.

    Article  CAS  Google Scholar 

  49. Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus–pituitary–testis axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;200:259–71.

    Article  PubMed  CAS  Google Scholar 

  50. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28:180–9.

    PubMed  CAS  Google Scholar 

  51. Hackney AC, Sharp RL, Runyan WS, Ness RJ. Relationship of resting prolactin and testosterone in males during intensive training. Br J Sports Med. 1989;23:194.

    Article  PubMed  CAS  Google Scholar 

  52. Blueher S, Mantzoros CS. Leptin in reproduction. Curr Opin Endocrinol Diabetes Obes. 2007;14:458–64.

    Article  CAS  Google Scholar 

  53. Baylor LS, Hackney AC. Resting thyroid and leptin hormone changes in women following intense, prolonged exercise training. Eur J Appl Physiol. 2003;88:480–4.

    Article  PubMed  CAS  Google Scholar 

  54. Jürimäe J, Cicchella A, Jürimäe T, et al. Regular physical activity influences plasma ghrelin concentration in adolescent girls. Med Sci Sports Exerc. 2007;39:1736–41.

    Article  PubMed  Google Scholar 

  55. Hu Y, Asano K, Kim S, et al. Relationship between serum testosterone and activities of testicular enzymes after continuous and intermittent training in male rats. Int J Sports Med. 2004;25:99–102.

    Article  PubMed  Google Scholar 

  56. Deuster PA, Chrousos GP, Luger A, et al. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism. 1989;38:141–8.

    Article  PubMed  CAS  Google Scholar 

  57. Le Panse B, Vibarel-Rebot N, Parage G, et al. Cortisol, DHEA, and testosterone concentrations in saliva in response to an international powerlifting competition. Stress. 2010;13:528–32.

    PubMed  Google Scholar 

  58. Snegovskaya V, Viru A. Elevation of cortisol and growth hormone levels in the course of further improvement of performance capacity in trained rowers. Int J Sports Med. 1993;14:202–6.

    Article  PubMed  CAS  Google Scholar 

  59. Snegovskaya V, Viru A. Steroid and pituitary hormone responses to rowing: relative significance of exercise intensity and duration and performance level. Eur J Appl Physiol Occup Physiol. 1993;64:59–65.

    Article  Google Scholar 

  60. Passelergue P, Robert A, Lac G. Salivary cortisol and testosterone variations during an official and a simulated weightlifting competition. Int J Sports Med. 1995;16:298–303.

    Article  PubMed  CAS  Google Scholar 

  61. Minetto MA, Lanfranco F, Baldi M, et al. Corticotroph axis sensitivity after exercise: comparison between elite athletes and sedentary subjects. J Endocrinol Invest. 2007;30:215–23.

    PubMed  CAS  Google Scholar 

  62. Sakakura N, Takebe K, Nakagawa S. Inhibition of luteinizing hormone secretion induced by synthetic LRH by long-term treatment with glucocorticoids in human subjects. J Clin Endocrinol Metab. 1975;40:774–9.

    Article  PubMed  CAS  Google Scholar 

  63. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic–pituitary–adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129:229–40.

    PubMed  CAS  Google Scholar 

  64. Inder WJ, Jang C, Obeyesekere VR, Alford FP. Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1—implications for steroid-induced myopathy. Clin Endocrinol. 2010;73:126–332.

    CAS  Google Scholar 

  65. Dufau ML, Tinajero JC, Fabbri A. Corticotropin-releasing factor: an antireproductive hormone of the testis. FASEB J. 1993;7:299–307.

    PubMed  CAS  Google Scholar 

  66. Osterberg K, Karlson B, Hansen AM. Cognitive performance in patients with burnout, in relation to diurnal salivary cortisol. Stress. 2009;12:70–81.

    Article  PubMed  CAS  Google Scholar 

  67. Schulz P, Walker JP, Peyrin L, Soulier V, Curtin F, Steimer T. Lower sex hormones in men during anticipatory stress. Neuroreport. 1996;25:3101–4.

    Google Scholar 

  68. Francis KT. The relationship between high and low trait psychological stress, serum testosterone, and serum cortisol. Experientia. 1981;37:1296–7.

    Article  PubMed  CAS  Google Scholar 

  69. Nilsson PM, Moller L, Solstad K. Adverse effects of psychosocial stress on gonadal function and insulin levels in middle-aged males. J Intern Med. 1995;237:479–86.

    Article  PubMed  CAS  Google Scholar 

  70. Hackney AC, Sinning WE, Bruot BC. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med. 1990;11:298–303.

    Article  PubMed  CAS  Google Scholar 

  71. Wheeler GD, Singh M, Pierce WD, et al. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsation release. J Clin Endocrinol Metab. 1991;72:422–5.

    Article  PubMed  CAS  Google Scholar 

  72. Minetto MA, Lanfranco F, Tibaudi A, Baldi M, Termine A, Ghigo E. Changes in awakening cortisol response and midnight salivary cortisol are sensitive markers of strenuous training-induced fatigue. J Endocrinol Invest. 2008;31:16–24.

    PubMed  CAS  Google Scholar 

  73. Lucía A, Chicharro JL, Pérez M, Serratosa L, Bandrés F, Legido JC. Reproductive function in male endurance athletes: sperm analysis and hormonal profile. J Appl Physiol. 1996;81:2627–36.

    PubMed  Google Scholar 

  74. Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Vaamonde-Lemos R, Swanson RJ, Oehninger SC. Response of semen parameters to three training modalities. Fertil Steril. 2009;92:1941–6.

    Article  PubMed  Google Scholar 

  75. Wise LA, Cramer DW, Hornstein MD, Ashby RK, Missmer SA. Physical activity and semen quality among men attending an infertility clinic. Fertil Steril. 2011;95:1025–30.

    Article  PubMed  Google Scholar 

  76. Gebreegziabher Y, Marcos E, McKinon W, Rogers G. Sperm characteristics of endurance trained cyclists. Int J Sports Med. 2004;25:247–51.

    Article  PubMed  CAS  Google Scholar 

  77. Leibovitch I, Mor Y. The vicious cycling: bicycling related urogenital disorders. Eur Urol. 2005;47:277–86.

    Article  PubMed  Google Scholar 

  78. Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med. 2001;31:911–22.

    Article  PubMed  CAS  Google Scholar 

  79. Astrand PO, Rodahl K. Circulation. In: van Dalen DB, editor. Textbook of work physiology: physiological basis of exercise. New York: McGraw Hill Book Company; 1986. p. 170–5.

    Google Scholar 

  80. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc. 1993;25:218–24.

    PubMed  CAS  Google Scholar 

  81. Irvine DS. Glutathione as a treatment for male infertility. Rev Reprod. 1996;1:6–12.

    Article  PubMed  CAS  Google Scholar 

  82. Child RB, Wilkinson DM, Fallowfield JL, Donnelly AE. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half marathon run. Med Sci Sports Exerc. 1998;30:1603–7.

    Article  PubMed  CAS  Google Scholar 

  83. Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000;72:637S–46.

    PubMed  CAS  Google Scholar 

  84. Hartmann A, Niess A. Oxidative DNA damage in exercise. In: Sen C, Packer L, Hanninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier; 2000. p. 195–217.

    Google Scholar 

  85. Tsai K, Hsu TG, Hsu KM, et al. Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med. 2001;31:1465–72.

    Article  PubMed  CAS  Google Scholar 

  86. Padron OF, Brackett NL, Sharma RK, Lynne CM, Thomas Jr AJ, Agarwal A. Seminal reactive oxygen species, sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67:1115–20.

    Article  PubMed  CAS  Google Scholar 

  87. Saleh R, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Lanfranco MD, PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lanfranco, F., Minetto, M.A. (2013). The Male Reproductive System, Exercise, and Training: Endocrine Adaptations. In: Constantini, N., Hackney, A. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-314-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-314-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-313-8

  • Online ISBN: 978-1-62703-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics