Skip to main content

The Effect of Exercise on the Hypothalamic–Pituitary–Adrenal Axis

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Current knowledge of the relationship between the HPA axis and physical exercise in normal and highly trained individuals highlights the importance of adequate preparation for exercise. The activation of the HPA (hypothalamic–pituitary–adrenal) axis in response to physical activity in humans has been abundantly reported. The HPA axis consists of three structurally independent components including the hypothalamus, the anterior pituitary, and the adrenal cortex. These structures are intimately interacting through the release of neuroendocrine messengers and the activation or the inhibition of the nervous system influencing the functions of most organs and tissues in the body. Such interactions imply among others peptide hormones CRF (corticotrophin-releasing factor), ACTH (adrenocorticotropic hormone), and arginine vasopressin (AVP) and their specific receptors, as well as smaller molecular species such as corticosteroids. The information summarized in this chapter points out that the HPA axis importantly influences stress-induced functions and that the intensity of HPA axis activation is intimately related to the type of training and the intensity at which it is performed. Altogether, these effects indicate the influences of the activation of the HPA axis in physical activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Watts AG. Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol. 2005;26(3–4):109–30.

    Article  PubMed  CAS  Google Scholar 

  2. Uht RM, McKelvy JF, Harrison RW, Bohn MC. Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res. 1988;19(4):405–11, 468–9.

    Google Scholar 

  3. Sawchenko PE, Swanson LW. Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain. Fed Proc. 1985;44(1 Pt 2):221–7.

    PubMed  CAS  Google Scholar 

  4. Muller MB, Wurst W. Getting closer to affective disorders: the role of CRH receptor systems. Trends Mol Med. 2004;10(8):409–15.

    Article  PubMed  Google Scholar 

  5. Linton EA, Behan DP, Saphier PW, Lowry PJ. Corticotropin-releasing hormone (CRH)-binding protein: reduction in the adrenocorticotropin-releasing activity of placental but not hypothalamic CRH. J Clin Endocrinol Metab. 1990;70(6):1574–80.

    Article  PubMed  CAS  Google Scholar 

  6. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213(4514):1394–7.

    Article  PubMed  CAS  Google Scholar 

  7. Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378(6554):287–92.

    Article  PubMed  CAS  Google Scholar 

  8. Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98(5):2843–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–11.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A. 2001;98(13):7570–5.

    Article  PubMed  CAS  Google Scholar 

  11. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med. 1997;215(1):1–10.

    PubMed  CAS  Google Scholar 

  12. Brown MR, Fisher LA. Regulation of the autonomic nervous system by corticotropin-releasing factor. Paper presented at corticotropin-releasing factor: basic and clinical studies of a neuropeptide1990; Boca Raton.

    Google Scholar 

  13. Heinrichs SC, Tache Y. Therapeutic potential of CRF receptor antagonists: a gut-brain perspective. Expet Opin Investig Drugs. 2001;10(4):647–59.

    Article  CAS  Google Scholar 

  14. Koob GF, Cole BJ, Swerdlow NR, Le Moal M, Britton KT. Stress, performance, and arousal: focus on CRF. NIDA Res Monogr. 1990;97:163–76.

    PubMed  CAS  Google Scholar 

  15. Krysiak R, Obuchowicz E, Herman ZS. Role of corticotropin-releasing factor (CRF) in anxiety. Pol J Pharmacol. 2000;52(1):15–25.

    PubMed  CAS  Google Scholar 

  16. Fisher LA, Rivier J, Rivier C, Spiess J, Vale W, Brown MR. Corticotropin-releasing factor (CRF): central effects on mean arterial pressure and heart rate in rats. Endocrinology. 1982;110(6):2222–4.

    Article  PubMed  CAS  Google Scholar 

  17. Taché Y, Gunion MM, Stephens R. CRF: central nervous system action to influence gastrointestinal function and role in the gastrointestinal response to stress. Paper presented at corticotropin-releasing factor: basic and clinical studies of a neuropeptide1990; Boca Raton.

    Google Scholar 

  18. Brownstein MJ, Russell JT, Gainer H. Synthesis, transport, and release of posterior pituitary hormones. Science. 1980;207(4429):373–8.

    Article  PubMed  CAS  Google Scholar 

  19. Nishimura H, Fan Z. Regulation of water movement across vertebrate renal tubules. Comp Biochem Physiol Mol Integr Physiol. 2003;136(3):479–8.

    Article  Google Scholar 

  20. Dogterom J, Snijdewint FG, Buijs RM. The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett. 1978;9(4):341–6.

    Article  PubMed  CAS  Google Scholar 

  21. Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 1978;192(3):423–5.

    Article  PubMed  CAS  Google Scholar 

  22. DeVries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985;233(2):236–54.

    Article  PubMed  CAS  Google Scholar 

  23. Michell RH, Kirk CJ, Billah MM. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979;7(5):861–5.

    PubMed  CAS  Google Scholar 

  24. Jard S, Lombard C, Marie J, Devilliers G. Vasopressin receptors from cultured mesangial cells resemble V1a type. Am J Physiol. 1987;253(1 Pt 2):F41–9.

    PubMed  CAS  Google Scholar 

  25. Antoni FA, Holmes MC, Makara GB, Karteszi M, Laszlo FA. Evidence that the effects of ­arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides. 1984;5(3):519–22.

    Article  PubMed  CAS  Google Scholar 

  26. Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51(3):372–90.

    Article  PubMed  CAS  Google Scholar 

  27. Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol. 2008;20(6):692–9.

    Article  PubMed  CAS  Google Scholar 

  28. Oliver RL, Davis JR, White A. Characterisation of ACTH related peptides in ectopic Cushing’s syndrome. Pituitary. 2003;6(3):119–26.

    Article  PubMed  CAS  Google Scholar 

  29. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149(2):79–90.

    Article  PubMed  CAS  Google Scholar 

  30. Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009;16(5):265–71.

    Article  PubMed  CAS  Google Scholar 

  31. Itoi K, Jiang YQ, Iwasaki Y, Watson SJ. Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol. 2004;16(4):348–55.

    Article  PubMed  CAS  Google Scholar 

  32. Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab. 1993;77(6):1690–4.

    Article  PubMed  CAS  Google Scholar 

  33. Crofford LJ, Kalogeras KT, Mastorakos G, et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab. 1997;82(4):1279–83.

    Article  PubMed  CAS  Google Scholar 

  34. Inder WJ, Hellemans J, Ellis MJ, Evans MJ, Livesey JH, Donald RA. Elevated basal adrenocorticotropin and evidence for increased central opioid tone in highly trained male athletes. J Clin Endocrinol Metab. 1995;80(1):244–8.

    Article  PubMed  CAS  Google Scholar 

  35. White A. Adrenocorticotropic hormone, Endocrinology. Philadelphia: Elsevier; 2005.

    Google Scholar 

  36. Arvat E, Maccario M, Di Vito L, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab. 2001;86(3):1169–74.

    Article  PubMed  CAS  Google Scholar 

  37. Jankord R, McAllister RM, Ganjam VK, Laughlin MH. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R728–4.

    Article  PubMed  CAS  Google Scholar 

  38. Gambacciani M, Liu JH, Swartz WH, Tueros VS, Rasmussen DD, Yen SS. Intrinsic pulsatility of ACTH release from the human pituitary in vitro. Clin Endocrinol. 1987;26(5):557–63.

    Article  CAS  Google Scholar 

  39. Xia Y, Wikberg JE. Localization of ACTH receptor mRNA by in situ hybridization in mouse adrenal gland. Cell Tissue Res. 1996;286(1):63–8.

    Article  PubMed  CAS  Google Scholar 

  40. Gorrigan RJ, Guasti L, King P, Clark AJ, Chan LF. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. J Mol Endocrinol. 2011;46(3):227–32.

    Article  PubMed  CAS  Google Scholar 

  41. Chan LF, Metherell LA, Clark AJ. Effects of melanocortins on adrenal gland physiology. Eur J Pharmacol. 2011;660(1):171–80.

    Article  PubMed  CAS  Google Scholar 

  42. John CD, Gavins FN, Buss NA, Cover PO, Buckingham JC. Annexin A1 and the formyl peptide receptor family: neuroendocrine and metabolic aspects. Curr Opin Pharmacol. 2008;8(6):765–76.

    Article  PubMed  CAS  Google Scholar 

  43. Buckingham JC. Glucocorticoids: exemplars of multi-tasking. Br J Pharmacol. 2006;147 Suppl 1:S258–68.

    PubMed  CAS  Google Scholar 

  44. Jankord R, Ganjam VK, Turk JR, Hamilton MT, Laughlin MH. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs. Appl Physiol Nutr Metab. 2008;33(3):461–9.

    Article  PubMed  CAS  Google Scholar 

  45. Campbell JE, Rakhshani N, Fediuc S, Bruni S, Riddell MC. Voluntary wheel running initially increases adrenal sensitivity to adrenocorticotropic hormone, which is attenuated with long-term training. J Appl Physiol. 2009;106(1):66–72.

    Article  PubMed  Google Scholar 

  46. Fediuc S, Campbell JE, Riddell MC. Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague–Dawley rats. J Appl Physiol. 2006;100(6):1867–75.

    Article  PubMed  CAS  Google Scholar 

  47. Smoak B, Deuster P, Rabin D, Chrousos G. Corticotropin-releasing hormone is not the sole factor mediating exercise-induced adrenocorticotropin release in humans. J Clin Endocrinol Metab. 1991;73(2):302–6.

    Article  PubMed  CAS  Google Scholar 

  48. Leal-Cerro A, Gippini A, Amaya MJ, et al. Mechanisms underlying the neuroendocrine response to physical exercise. J Endocrinol Investig. 2003;26(9):879–85.

    CAS  Google Scholar 

  49. Angeli A, Minetto M, Dovio A, Paccotti P. The overtraining syndrome in athletes: a stress-related disorder. J Endocrinol Investig. 2004;27(6):603–12.

    CAS  Google Scholar 

  50. Skoluda N, Dettenborn L, Stalder T, Kirschbaum C. Elevated hair cortisol concentrations in endurance athletes. Psychoneuroendocrinology. 2012;37(5):611–7.

    Article  PubMed  CAS  Google Scholar 

  51. Duclos M, Corcuff JB, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol. 2001;144(4):363–8.

    Article  PubMed  CAS  Google Scholar 

  52. Faria CD, Castro RB, Longui CA, et al. Impact of prolonged low-grade physical training on the in vivo glucocorticoid sensitivity and on glucocorticoid receptor-alpha mRNA levels of obese adolescents. Horm Res Paediatr. 2010;73(6):458–64.

    Article  PubMed  CAS  Google Scholar 

  53. Wright HE, Selkirk GA, McLellan TM. HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur J Appl Physiol. 2010;108(5):987–97.

    Article  PubMed  Google Scholar 

  54. Duclos M, Corcuff JB, Arsac L, et al. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol. 1998;48(4):493–501.

    Article  CAS  Google Scholar 

  55. Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol. 1991;71(5):1807–12.

    PubMed  CAS  Google Scholar 

  56. Bobbert T, Brechtel L, Mai K, et al. Adaptation of the hypothalamic-pituitary hormones during intensive endurance training. Clin Endocrinol. 2005;63(5):530–6.

    Article  CAS  Google Scholar 

  57. Ratel S. High-intensity and resistance training and elite young athletes. Med Sport Sci. 2011;56:84–96.

    PubMed  Google Scholar 

  58. Fatouros I, Chatzinikolaou A, Paltoglou G, et al. Acute resistance exercise results in catecholaminergic rather than hypothalamic-pituitary-adrenal axis stimulation during exercise in young men. Stress. 2010;13(6):461–8.

    PubMed  CAS  Google Scholar 

  59. Minetto MA, Lanfranco F, Baldi M, et al. Corticotroph axis sensitivity after exercise: comparison between elite athletes and sedentary subjects. J Endocrinol Investig. 2007;30(3):215–23.

    CAS  Google Scholar 

  60. Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Investig. 2008;31(7):587–91.

    CAS  Google Scholar 

  61. Inder WJ, Hellemans J, Swanney MP, Prickett TC, Donald RA. Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes. J Appl Physiol. 1998;85(3):835–41.

    PubMed  CAS  Google Scholar 

  62. Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28(8):1015–9.

    Article  PubMed  CAS  Google Scholar 

  63. Hackney AC, Viru A. Twenty-four-hour cortisol response to multiple daily exercise sessions of moderate and high intensity. Clin Physiol. 1999;19(2):178–82.

    Article  PubMed  CAS  Google Scholar 

  64. Georgopoulos NA, Rottstein L, Tsekouras A, et al. Abolished circadian rhythm of salivary cortisol in elite artistic gymnasts. Steroids. 2011;76(4):353–7.

    Article  PubMed  CAS  Google Scholar 

  65. Schmikli SL, de Vries WR, Brink MS, Backx FJ. Monitoring performance, pituitary-adrenal hormones and mood profiles: how to diagnose non-functional over-reaching in male elite junior soccer players. Br J Sports Med. 2012;46(14):1019–23.

    Article  PubMed  Google Scholar 

  66. Wisen AG, Ekberg K, Wohlfart B, Ekman R, Westrin A. Plasma ANP and BNP during exercise in patients with major depressive disorder and in healthy controls. J Affect Disord. 2011;129(1–3):371–5.

    Article  PubMed  CAS  Google Scholar 

  67. Carr BR, Mason JI. The effects of alpha-human atrial natriuretic polypeptide on steroidogenesis by fetal zone cells of the human fetal adrenal gland. Am J Obstet Gynecol. 1988;159(6):1361–5.

    PubMed  CAS  Google Scholar 

  68. Crandall ME, Gregg CM. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology. 1986;44(4):439–45.

    Article  PubMed  CAS  Google Scholar 

  69. Strohle A, Holsboer F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry. 2003;36 Suppl 3:S207–14.

    PubMed  Google Scholar 

  70. Strohle A, Kellner M, Holsboer F, Wiedemann K. Atrial natriuretic hormone decreases endocrine response to a combined dexamethasone-corticotropin-releasing hormone test. Biol Psychiatry. 1998;43(5):371–5.

    Article  PubMed  CAS  Google Scholar 

  71. Bonifazi M, Mencarelli M, Fedele V, et al. Glucocorticoid receptor mRNA expression in peripheral blood mononuclear cells in high trained compared to low trained athletes and untrained subjects. J Endocrinol Investig. 2009;32(10):816–20.

    CAS  Google Scholar 

  72. Duclos M, Guinot M, Colsy M, et al. High risk of adrenal insufficiency after a single articular steroid injection in athletes. Med Sci Sports Exerc. 2007;39(7):1036–43.

    Article  PubMed  CAS  Google Scholar 

  73. de Graaf-Roelfsema E, Keizer HA, van Breda E, Wijnberg ID, van der Kolk JH. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet Q. 2007;29(3):82–101.

    Article  PubMed  Google Scholar 

  74. Cayado P, Munoz-Escassi B, Dominguez C, et al. Hormone response to training and competition in athletic horses. Equine Vet J. 2006;36:274–8.

    Article  Google Scholar 

  75. Banfi G, Dolci A. Free testosterone/cortisol ratio in soccer: usefulness of a categorization of values. J Sports Med Phys Fitness. 2006;46(4):611–6.

    PubMed  CAS  Google Scholar 

  76. Uusitalo AL, Huttunen P, Hanin Y, Uusitalo AJ, Rusko HK. Hormonal responses to endurance training and overtraining in female athletes. Clin J Sport Med. 1998;8(3):178–86.

    Article  PubMed  CAS  Google Scholar 

  77. Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol. 2004;91(2–3):140–6.

    Article  PubMed  CAS  Google Scholar 

  78. Lehmann M, Foster C, Dickhuth HH, Gastmann U. Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):1140–5.

    Article  PubMed  CAS  Google Scholar 

  79. Lehmann MJ, Lormes W, Opitz-Gress A, et al. Training and overtraining: an overview and experimental results in endurance sports. J Sports Med Phys Fitness. 1997;37(1):7–17.

    PubMed  CAS  Google Scholar 

  80. Garrido P. Aging and stress: past hypotheses, present approaches and perspectives. Aging Dis. 2011;2(1):80–99.

    PubMed  Google Scholar 

  81. Traustadottir T, Bosch PR, Matt KS. The HPA axis response to stress in women: effects of aging and fitness. Psychoneuroendocrinology. 2005;30(4):392–402.

    Article  PubMed  CAS  Google Scholar 

  82. Traustadottir T, Bosch PR, Cantu T, Matt KS. Hypothalamic-pituitary-adrenal axis response and recovery from high-intensity exercise in women: effects of aging and fitness. J Clin Endocrinol Metab. 2004;89(7):3248–54.

    Article  PubMed  CAS  Google Scholar 

  83. Burman MA, Hamilton KL, Gewirtz JC. Role of corticosterone in trace and delay conditioned fear-potentiated startle in rats. Behav Neurosci. 2010;124(2):294–9.

    Article  PubMed  CAS  Google Scholar 

  84. Cooper MA, Huhman KL. Blocking corticotropin-releasing factor-2 receptors, but not corticotropin-releasing factor-1 receptors or glucocorticoid feedback, disrupts the development of conditioned defeat. Physiol Behav. 2010;101(4):527–32.

    Article  PubMed  CAS  Google Scholar 

  85. Row BW, Dohanich GP. Post-training administration of corticotropin-releasing hormone (CRH) enhances retention of a spatial memory through a noradrenergic mechanism in male rats. Neurobiol Learn Mem. 2008;89(4):370–8.

    Article  PubMed  CAS  Google Scholar 

  86. Chen Y, Rex CS, Rice CJ, et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A. 2010;107(29):13123–8.

    Article  PubMed  CAS  Google Scholar 

  87. Malisch JL, Saltzman W, Gomes FR, Rezende EL, Jeske DR, Garland Jr T. Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiol Biochem Zool. 2007;80(1):146–56.

    Article  PubMed  CAS  Google Scholar 

  88. Murani E, Ponsuksili S, D’Eath RB, et al. Association of HPA axis-related genetic variation with stress reactivity and aggressive behaviour in pigs. BMC Genet. 2010;11:74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Richard PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

St-Pierre, D.H., Richard, D. (2013). The Effect of Exercise on the Hypothalamic–Pituitary–Adrenal Axis. In: Constantini, N., Hackney, A. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-314-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-314-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-313-8

  • Online ISBN: 978-1-62703-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics