Skip to main content

The Effects of Altitude on the Hormonal Response to Physical Exercise

  • Chapter
  • First Online:
  • 2894 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The neuroendocrine system is deeply involved in the adaptive processes to altitude hypoxia, which require a fine-tuned modulation in the homeostatic steady state of several endocrine and metabolic functions. Physical exercise per se is well known to induce complex hormonal responses, which greatly depend on the intrinsic characteristics of the exercise bout. Moreover, several variables, such as energy balance and environmental factors, can further influence these metabolic and endocrine adaptive processes. Therefore, the overall effect of altitude and physical exercise on endocrine functions has been studied for many years, although this research field still hides numerous methodological pitfalls that prevent final conclusions from being drawn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roth J, Glick SM, Yalow RS. Hypoglycemia: a potent stimulus to the secretion of growth hormone. Science. 1963;140:987–8.

    Article  PubMed  CAS  Google Scholar 

  2. Sutton JR, Lazarus L. Growth hormone and exercise comparison of physiological and pharmacological stimuli. J Appl Physiol. 1976;41:523–7.

    PubMed  CAS  Google Scholar 

  3. Felsing NE, Brasel JA, Cooper DM. Effect of low and high intensity exercise on circulating growth hormone in men. J Clin Endocrinol Metab. 1992;75:157–62.

    Article  PubMed  CAS  Google Scholar 

  4. Gibney J, Healy ML, Sönksen PH. The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocr Rev. 2007;28:603–24.

    Article  PubMed  CAS  Google Scholar 

  5. Cumming DC. Hormones and athletic performance. In: Felig P, Baxter JD, Frohman LA, editors. Endocrinology and metabolism. 3rd ed. New York, NY: McGraw-Hill; 1995. p. 1837–85.

    Google Scholar 

  6. Weltman A, Weltman JY, Womack CJ, et al. Exercise training decreases the growth hormone (GH) response to acute constant-load exercise. Med Sci Sports Exerc. 1997;29:669–76.

    Article  PubMed  CAS  Google Scholar 

  7. Wideman L, Weltman JY, Hartman ML, et al. Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med. 2002;32:987–1004.

    Article  PubMed  Google Scholar 

  8. Okada Y, Hikita T, Ishitobi K, et al. Human growth hormone secretion during exposure to hot air in normal adult male subjects. J Clin Endocrinol Metab. 1972;34:759–63.

    Article  PubMed  CAS  Google Scholar 

  9. Christensen SE, Jorgensen OL, Moller N, et al. Characterization of growth hormone release in response to external heating. Comparison to exercise induced release. Acta Endocrinol (Copenh). 1984;107:295–301.

    CAS  Google Scholar 

  10. Cappon JP, Ipp E, Brasel JA, et al. Acute effect of high-fat and high-glucose meals on the growth hormone response to exercise. J Clin Endocrinol Metab. 1993;76:1418–22.

    Article  PubMed  CAS  Google Scholar 

  11. Peyreigne C, Bouix D, Fedou C, et al. Effect of hydration on exercise-induced growth hormone response. Eur J Endocrinol. 2001;145:445–50.

    Article  PubMed  CAS  Google Scholar 

  12. Pritzlaff-Roy CJ, Widemen L, Weltman JY, et al. Gender governs the relationship between exercise intensity and growth hormone release in young adults. J Appl Physiol. 2002;92:2053–60.

    PubMed  CAS  Google Scholar 

  13. Schwarz AJ, Brasel JA, Hintz RL, et al. Acute effect of brief low- and high-intensity exercise on ­circulating IGF-I, II, ands IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab. 1996;81:3492–7.

    Article  PubMed  CAS  Google Scholar 

  14. Zanconato S, Moromisato DY, Moromisato MY, et al. Effect of training and growth hormone suppression on insulin-like growth factor-I mRNA in young rats. J Appl Physiol. 1994;76:2204–9.

    PubMed  CAS  Google Scholar 

  15. Anand IS, Chandrashekhar Y, Rao SK, et al. Body fluid compartments, renal blood flow, and ­hormones at 6,000 m in normal subjects. J Appl Physiol. 1993;74:1234–9.

    PubMed  CAS  Google Scholar 

  16. Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157:733–40.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts AC, Butterfield GE, Cymerman A, et al. Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81:1762–71.

    PubMed  CAS  Google Scholar 

  19. Larsen JJ, Hansen JM, Olsen NV, et al. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol. 1997;504:241–9.

    Article  PubMed  CAS  Google Scholar 

  20. de Glisezinski I, Crampes F, Harant I, et al. Decrease of subcutaneous adipose tissue lipolysis after exposure to hypoxia during a simulated ascent of Mt Everest. Pflugers Arch. 1999;439:134–40.

    Article  PubMed  Google Scholar 

  21. Braun B, Rock PB, Zamudio S, et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol. 2001;91:623–31.

    PubMed  CAS  Google Scholar 

  22. Ramirez G, Herrera R, Pineda D, et al. The effects of high altitude on hypothalamic–pituitary secretory dynamics in men. Clin Endocrinol. 1995;43:11–8.

    Article  CAS  Google Scholar 

  23. Heat D, Williams DR. Endocrine function in man at high altitude. 2nd ed. London: Churchill Livingston; 1981. p. 247–58.

    Google Scholar 

  24. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.

    PubMed  CAS  Google Scholar 

  25. Brooks GA. Increased glucose dependency in circulatory compensated hypoxia. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and mountain medicine. Burlington, VA: Queen City Printers; 1992. p. 213–6.

    Google Scholar 

  26. Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sawhney RC, Malhotra AS, Singh T. Glucoregulatory hormones in man at high altitude. Eur J Appl Physiol. 1991;62:286–91.

    Article  CAS  Google Scholar 

  28. Raynaud J, Drouet L, Martineaud JP, Bordachar J, Coudert J, Durand J. Time course of plasma growth hormone during exercise in humans at altitude. J Appl Physiol. 1981;50:229–33.

    PubMed  CAS  Google Scholar 

  29. Sawhney RC, Malhotra AS. Circadian rhythmicity of growth hormone at high altitude in man. Ind J Physiol Pharmacol. 1991;35:55–7.

    CAS  Google Scholar 

  30. Sutton JR. Effect of acute hypoxia on the hormonal response to exercise. J Appl Physiol. 1977;42:587–92.

    PubMed  CAS  Google Scholar 

  31. Van Helder WP, Casey K, Radomski MW. Regulation of growth hormone during exercise by oxygen demand and availability. Eur J Appl Physiol. 1987;56:628–32.

    Article  Google Scholar 

  32. Strüder HK, Hollmann W, Platen P. Increased prolactin response to hyperoxia at rest and during endurance exercise. Int J Sports Med. 1996;17:390–2.

    Article  PubMed  Google Scholar 

  33. Schmidt W, Doré S, Hilgendorf A, et al. Effects of exercise during normoxia and hypoxia on the growth hormone-insulin-like growth factor I axis. Eur J Appl Physiol. 1995;71:424–30.

    Article  CAS  Google Scholar 

  34. Gutiérrez A, Gonzalez-Gross M, Ruiz JR, et al. Acute exposure to moderate high altitude decreases growth hormone response to physical exercise in untrained subjects. J Sports Med Phys Fitness. 2003;43:554–8.

    PubMed  Google Scholar 

  35. Kjær M, Banhsbo J, Lortie G, et al. Hormonal response to exercise in humans: influence of hypoxia and physical training. Am J Physiol. 1988;254:R197–203.

    PubMed  Google Scholar 

  36. Freemark M, Avril I, Fleenor D, et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology. 2002;143:1378–85.

    Article  PubMed  CAS  Google Scholar 

  37. Maccario M, Grottoli S, Razzore P, et al. Effects of glucose load and/or arginine on insulin and growth hormone secretion in hyperprolactinemia and obesity. Eur J Endocrinol. 1996;135(2):205–10.

    Article  PubMed  CAS  Google Scholar 

  38. Bole-Feysot C. GoffinV, Edery M, et al. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–58.

    Article  PubMed  CAS  Google Scholar 

  39. Pellegrini I, Lebrun J, Ali S, et al. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol. 1992;6:1023–31.

    Article  PubMed  CAS  Google Scholar 

  40. Horseman N. ZhaoW, Montecino-Rodriguez E, et al. Defective mammopoiesis, but normal hematopoiesis in mice with target disruption of the prolactin gene. EMBO J. 1997;16:6926–35.

    Article  PubMed  CAS  Google Scholar 

  41. Bouchard B, Ormandy C, Di Santo J, et al. Immune system development and function in prolactin receptor-deficient mice. J Immunol. 1999;163:576–82.

    PubMed  CAS  Google Scholar 

  42. Buckley A. Prolactin, lymphocyte growth and survival factor. Lupus. 2001;10:684–90.

    Article  PubMed  CAS  Google Scholar 

  43. Sawhney RC, Chhabra PC, Malhotra AS, et al. Hormone profiles at high altitude in man. Andrologia. 1985;17:178–84.

    Article  PubMed  CAS  Google Scholar 

  44. Knudtzon J, Bogsnes A, Norman N. Changes in prolactin and growth hormone levels during hypoxia and exercise. Horm Metab Res. 1989;21:453–4.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzales GF, Carrillo CE. Low serum prolactin levels in native women at high altitude. Int J Gynecol Obstet. 1993;43:169–75.

    Article  CAS  Google Scholar 

  46. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28:180–9.

    PubMed  CAS  Google Scholar 

  47. Hackney AC. Characterization of the prolactin response to prolonged endurance exercise. Acta Kinesiologiae (University of Tartu). 2008;13:31–8.

    Google Scholar 

  48. De Meirleir KL, Baeyens L, L’Hermite-Baleriaux M, et al. Exercise-induced prolactin release is related to anaerobiosis. J Clin Endocrinol Metab. 1985;60:1250–2.

    Article  PubMed  Google Scholar 

  49. Oleshansky MA, Zoltick JM, Herman RH, et al. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. Eur J Appl Physiol Occup Physiol. 1990;59:405–10.

    Article  PubMed  CAS  Google Scholar 

  50. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22:724–63.

    Article  PubMed  CAS  Google Scholar 

  51. Olsen NV, Hansen JM, Kanstrup IL, et al. Renal hemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans. J Appl Physiol. 1993;74:2166–73.

    PubMed  CAS  Google Scholar 

  52. Serebrovskaya TV, Karaban IN, Kolesnikova EE, et al. Geriatric men at altitude: hypoxic ventilatory sensitivity and blood dopamine changes. Respiration. 2000;67:253–60.

    Article  PubMed  CAS  Google Scholar 

  53. Panjwani U, Thakur L, Anand JP, et al. Effect of simulated ascent to 3500 meter on neuro-endocrine functions. Indian J Physiol Pharmacol. 2006;50:250–6.

    PubMed  CAS  Google Scholar 

  54. Markianos M, Kosmidis ML, Sfagos C. Reductions in plasma prolactin during acute erythropoietin administration. Neuro Endocrinol Lett. 2006;27:355–8.

    PubMed  CAS  Google Scholar 

  55. Bouissou P, Brisson GR, Peronnet F, et al. Inhibition of exercise-induced blood prolactin response by acute hypoxia. Can J Sport Sci. 1987;12:49–50.

    PubMed  CAS  Google Scholar 

  56. Brisson GR, Boisvert P, Péronnet F, et al. Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. Eur J Appl Physiol Occup Physiol. 1989;58:816–20.

    Article  PubMed  CAS  Google Scholar 

  57. Reis FM, Ribeiro-de-Oliveira JA, Machado LJ, et al. Plasma prolactin and glucose alterations induced by surgical stress: a single or dual response? Exp Physiol. 1998;83:1–10.

    PubMed  CAS  Google Scholar 

  58. Basu M, Pal K, Prasad R, et al. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl. 1997;20:153–8.

    Article  PubMed  CAS  Google Scholar 

  59. Richalet JP, Letournel M, Souberbielle JC. Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1685–92.

    Article  PubMed  CAS  Google Scholar 

  60. Galbo H. The hormonal response to exercise. Diabetes Metab Rev. 1986;1:385–408.

    Article  PubMed  CAS  Google Scholar 

  61. McMurray RG, Eubanks TE, Hackney AC. Nocturnal hormonal responses to weight training exercise. Eur J Appl Physiol. 1995;72:121–6.

    Article  CAS  Google Scholar 

  62. McMurray RG, Hackney AC. The endocrine system and exercise. In: Garrett W, Kirkendahl D, editors. Exercise & sports science. New York, NY: Williams & Wilkins; 2000. p. 135–62.

    Google Scholar 

  63. Moore AW, Timmerman S, Brownlee KK, et al. Strenuous, fatiguing exercise: relationship of cortisol to circulating thyroid hormones. Int J Endocrinol Metab. 2005;1:18–24.

    Google Scholar 

  64. Hackney AC, Viru A. Research methodology: issues with endocrinological measurements in exercise science and sport medicine. J Athletic Training. 2008;43:631–9.

    Article  Google Scholar 

  65. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266:R817–23.

    PubMed  CAS  Google Scholar 

  66. Surks MI. Elevated PBI, free thyroxine and plasma protein concentration in man at high altitude. J Appl Physiol. 1966;21:1185–90.

    PubMed  CAS  Google Scholar 

  67. Snyder LM, Reddy WJ. Thyroid hormone control of erythrocyte 2,3-diphosphoglyceric acid concentrations. Science. 1970;169:879–80.

    Article  PubMed  CAS  Google Scholar 

  68. Surks MI, Beckwitt HJ, Chidsey CA. Changes in plasma thyroxine concentration and metabolism, catecholamine excretion and basal oxygen consumption in man during acute exposure to high altitude. J Clin Endocrinol Metab. 1967;27:789–99.

    Article  PubMed  CAS  Google Scholar 

  69. Kotchen TA, Mougey EH, Hogan RP, et al. Thyroid responses to simulated altitude. J Appl Physiol. 1973;34:165–8.

    PubMed  CAS  Google Scholar 

  70. Stock MJ, Chapman C, Stirling JL, et al. Effects of exercise, altitude and food on blood hormone and metabolite levels. J Appl Physiol. 1978;45:350–4.

    PubMed  CAS  Google Scholar 

  71. Wright AD. Birmingham Medical Research Expeditionary Society 1977 Expedition: Thyroid function and acute mountain sickness. Postgrad Med J. 1979;55:483–6.

    Article  PubMed  CAS  Google Scholar 

  72. Mordes JP, Blume FD, Boyer S, et al. High-altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med. 1983;308:1135–8.

    Article  PubMed  CAS  Google Scholar 

  73. Chakraborty S, Samaddar J, Batabyal SK. Thyroid status of humans at high altitude. Clin Chim Acta. 1987;166:111–3.

    Article  PubMed  CAS  Google Scholar 

  74. Sawhney RC, Malhotra AS. Thyroid function in sojourners and acclimatised low landers at high altitude in man. Horm Metab Res. 1991;23:81–4.

    Article  PubMed  CAS  Google Scholar 

  75. Férézou J, Richalet JP, Sérougue C, et al. Reduction of postprondial lipemia after acute exposure to high altitude hypoxia. Int J Sports Med. 1993;14:78–85.

    Article  PubMed  Google Scholar 

  76. Basu M, Pal K, Malhotra AS, et al. Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol. 1995;39:17–21.

    Article  PubMed  CAS  Google Scholar 

  77. Barnholt KE, Hoffman AR, Rock PB, et al. Endocrine responses to acute and chronic high-altitude exposure (4300 meters): modulating effects of caloric restriction. Am J Physiol Endocrinol Metab. 2006;290:E1078–88.

    Article  PubMed  CAS  Google Scholar 

  78. Hackney AC, Feith S, Pozos R, et al. Effects of altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66:325–9.

    PubMed  CAS  Google Scholar 

  79. Savourey G, Caravel JP, Barnavol B, et al. Thyroid hormone changes in a cold air environment after local cold acclimation. J Appl Physiol. 1994;76:1963–7.

    PubMed  CAS  Google Scholar 

  80. Imoberdorf R, Garlick PJ, McNurlan MA, et al. Skeletal muscle protein synthesis after active or passive ascent to high altitude. Med Sci Sports Exerc. 2006;38:1082–7.

    Article  PubMed  CAS  Google Scholar 

  81. Bernet VJ, Wartofsky L. Thyroid function and exercise. In: Warren MP, Constantini NW, editors. Contemporary endocrinology: sports endocrinology. Totowa, NJ: Humana; 2000. p. 97–118.

    Chapter  Google Scholar 

  82. Pozos RS, Danzl DF. Human physiological response to cold stress and hypothermia. In: Lounsbury DE, Bellamy RF, Zajtchuk R, editors. Textbooks of military medicine: Medical aspects of harsh environments, vol. 1. Falls Church, VA: Department of the Army, Office of The Surgeon General; 2001. p. 351–82.

    Google Scholar 

  83. Westerterp KR, Kayser B. Body mass regulation at altitude. Eur J Gastroenterol Hepatol. 2006;18:1–3.

    Article  PubMed  Google Scholar 

  84. Hamad N, Travis SP. Weight loss at high altitude: pathophysiology and practical implications. Eur J Gastroenterol Hepatol. 2006;18:5–10.

    Article  PubMed  Google Scholar 

  85. Rastogi GK, Malhotra MS, Srivastava MC, et al. Study of the pituitary-thyroid functions at high altitude in man. J Clin Endocrinol Metab. 1977;44:447–52.

    Article  PubMed  CAS  Google Scholar 

  86. Souberbielle JC, Richalet JP, Garabedian M, et al. High-altitude hypoxia and calcium metabolism. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and the brain. Burlington, VA: Queen City Printers; 1995. p. 336.

    Google Scholar 

  87. Richalet JP, Kacimi R, Antezana AM. The control of chronotropic function in hypobaric hypoxia. Int J Sports Med. 1992;13:S22–4.

    Article  PubMed  Google Scholar 

  88. Honig A, Behm R, Habeck JO. Sodium metabolism in high-altitude hypoxia, primary systemic hypertension and the peripheral arterial chemoreceptors. Acta Physiol Pol. 1985;36(1):21–37.

    PubMed  CAS  Google Scholar 

  89. León-Velarde F, Richalet JP, Chavez JC, et al. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81:2229–34.

    PubMed  Google Scholar 

  90. Fischetti F, Fabris B, Zaccaria M, et al. Effects of prolonged high-altitude exposure on peripheral adrenergic receptors in young healthy volunteers. Eur J Appl Physiol. 2000;82:439–45.

    Article  PubMed  CAS  Google Scholar 

  91. Hackney AC. Effects of endurance exercise on the reproductive system of men: The “exercise-­hypogonadal male condition”. J Endocrinol Invest. 2008;31:932–8.

    PubMed  CAS  Google Scholar 

  92. Vingren JL, Kraemer WJ, Ratamess NA, et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40:1037–53.

    Article  PubMed  Google Scholar 

  93. Zitzmann M. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men. In: Ghigo E, Lanfranco F, Strasburger CJ, editors. Hormone use and abuse by athletes, vol. 29. New York, NY: Springer; 2011. p. 25–30.

    Chapter  Google Scholar 

  94. Cumming DC, Brunsting 3rd LA, Strich G, et al. Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc. 1986;18:369–73.

    PubMed  CAS  Google Scholar 

  95. Hoffman JR, Maresh CM, Armstrong LE, et al. Effects of hydration state on plasma testosterone, cortisol and catecholamine concentrations before and during mild exercise at elevated temperature. Eur J Appl Physiol Occup Physiol. 1994;69:294–300.

    Article  PubMed  CAS  Google Scholar 

  96. Wheeler GD, Wall SR, Belcastro AN, et al. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252:514–6.

    Article  PubMed  CAS  Google Scholar 

  97. MacConnie S, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing ­hormone secretion in male marathon runners. N Engl J Med. 1986;315:411–7.

    Article  PubMed  CAS  Google Scholar 

  98. McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol. 1989;31:617–21.

    Article  CAS  Google Scholar 

  99. Humpeler E, Skrabal F, Bartsch G. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur J Appl Physiol. 1980;45:167–76.

    Article  CAS  Google Scholar 

  100. Vasankari TJ, Rusko H, Kujala UM, et al. The effects of ski training at altitude and racing on pituitary, adrenal and testicular function in men. Eur J Appl Physiol. 1993;66:221–5.

    Article  CAS  Google Scholar 

  101. Friedl KE, Plymate SR, Bernhard WN, et al. Elevation of plasma estradiol in healthy men during a mountaineering expedition. Horm Metabol Res. 1988;20:239–42.

    Article  CAS  Google Scholar 

  102. Garmendia F, Valdivia H, Castillo O, et al. Hypothalamo-hypophyso-gonadal response to clomiphene citrate at median high altitude. Horm Metab Res. 1982;14:679–80.

    Article  PubMed  CAS  Google Scholar 

  103. Fellmann N, Bedu M, Spielvogel H, et al. Anaerobic metabolism during pubertal development at high altitude. J Appl Physiol. 1988;64:1382–6.

    PubMed  CAS  Google Scholar 

  104. Kryger M, Glas R, Jackson D, et al. Impaired oxygenation during sleep in excessive polycythemia of high altitude: improvement with respiratory stimulation. Sleep. 1978;1:3–17.

    PubMed  CAS  Google Scholar 

  105. Okumura A, Fuse H, Kawauchi Y, et al. Changes in male reproductive function after high altitude mountaineering. High Alt Med Biol. 2003;4:349–53.

    Article  PubMed  Google Scholar 

  106. Guerra-Garcia R. Testosterone metabolism in man exposed to high altitude. Acta Endocrinol Panam. 1971;2:55–9.

    Google Scholar 

  107. Semple PD, Beastall GH, Watson WS, et al. Serum testosterone depression associated with hypoxia in respiratory failure. Clin Sci. 1980;58:105–6.

    PubMed  CAS  Google Scholar 

  108. De Rosa M, Zarrilli S, Di Sarno A, et al. Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine. 2003;20:75–82.

    Article  PubMed  Google Scholar 

  109. Regensteiner JG, Woodard WD, Hagerman DD, et al. Combined effects of female hormones and metabolic rate on ventilatory drives in women. J Appl Physiol. 1989;66:808–13.

    PubMed  CAS  Google Scholar 

  110. Saaresranta T, Polo O. Hormones and breathing. Chest. 2002;122:2165–82.

    Article  PubMed  CAS  Google Scholar 

  111. Friedl KE, Moore RJ, Hoyt RW, et al. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J Appl Physiol. 2000;88:1820–30.

    PubMed  CAS  Google Scholar 

  112. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    Article  PubMed  CAS  Google Scholar 

  113. Bangham CRM, Hackett PH. Effects of high altitude on endocrine function in the sherpas of Nepal. J Endocrinol. 1978;79:147–8.

    Article  PubMed  CAS  Google Scholar 

  114. Pelliccione F, Verratti V, D’Angeli A, et al. Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertil Steril. 2011;96(1):28–33.

    Article  PubMed  Google Scholar 

  115. Weiner N. Norepinephrine, epinephrine and the sympathomimetic amines. In: Goodman LS, Gilman A, Goodman Gilman A, editors. The pharmacological basis of therapeutics. New York, NY: MacMillan; 1980. p. 138–75.

    Google Scholar 

  116. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol. 1972;33(5):607–10.

    PubMed  CAS  Google Scholar 

  117. Banister EW, Griffiths J. Blood levels of adrenergic amines during exercise. J Appl Physiol. 1972;33(5):674–6.

    PubMed  CAS  Google Scholar 

  118. Bouissou P, Péronnet F, Brisson G, et al. Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur J Appl Physiol Occup Physiol. 1986;55(3):290–4.

    Article  PubMed  CAS  Google Scholar 

  119. Rostrup M. Catecholamines, hypoxia and high altitude. Acta Physiol Scand. 1998;162:389–99.

    Article  PubMed  CAS  Google Scholar 

  120. Mazzeo RS, Bender PR, Brooks GA, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261(4 Pt 1):E419–24.

    PubMed  CAS  Google Scholar 

  121. Escourrou P, Johnson DG, Rowell LB. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J Appl Physiol. 1984;57(5):1507–11.

    PubMed  CAS  Google Scholar 

  122. Brooks GA, Wolfel EE, Butterfield GE, et al. Poor relationship between arterial (lactate) and leg net release during exercise at 4,300 m altitude. Am J Physiol. 1998;275(4 Pt 2):R1192–201.

    PubMed  CAS  Google Scholar 

  123. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80(2):605–15.

    PubMed  CAS  Google Scholar 

  124. Richalet JP, Le Trong JL, Rathat C, et al. Reversal of hypoxia-induced decrease in human cardiac response to isoproterenol infusion. J Appl Physiol. 1989;67:523–7.

    PubMed  CAS  Google Scholar 

  125. Antezana AM, Richalet JP, Noriega I, et al. Hormonal changes in normal and polycythemic high altitude natives. J Appl Physiol. 1995;79:795–800.

    PubMed  CAS  Google Scholar 

  126. Raff H. Endocrine adaptation to hypoxia. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. New York, NY: Oxford University Press; 1996. p. 1259–75.

    Google Scholar 

  127. Mazzeo R. Catecholamine response during 12 days of high-altitude exposure (4,300 m) in women. J Appl Physiol. 1998;84:1151–7.

    PubMed  CAS  Google Scholar 

  128. Bao X, Kennedy BP, Hopkins SR, et al. Human autonomic activity and its response to acute oxygen supplement after high altitude acclimatization. Auton Neurosci. 2002;102:54–9.

    Article  PubMed  Google Scholar 

  129. Asano K, Mazzeo RS, McCullough RE, et al. Relation of sympathetic activation to ventilation in man at 4300 m altitude. Aviat Space Environ Med. 1997;68:104–10.

    PubMed  CAS  Google Scholar 

  130. Horbein TF. Adrenal cortical response to chronic hypoxia. J Appl Physiol. 1962;17:246–8.

    Google Scholar 

  131. Sutton JR, Viol GW, Gray GW, et al. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J Appl Physiol. 1977;43:421–4.

    PubMed  CAS  Google Scholar 

  132. Richalet JP, Rutgers V, Bouchet P, et al. Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med. 1989;60:105–11.

    PubMed  CAS  Google Scholar 

  133. Richalet JP, Antezana AM, Bienvenu A, et al. Physiological factors in survival at extreme altitude. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington, VA: Quenn City Printers; 1993. p. 235–51.

    Google Scholar 

  134. Davies CT, Few JD. Effects of exercise on adrenocortical function. J Appl Physiol. 1973;35:887–91.

    PubMed  CAS  Google Scholar 

  135. Duclos M, Guinot M, Le Bouc Y. Cortisol and GH: odd and controversial ideas. Appl Physiol Nutr Metab. 2007;32:895–903.

    Article  PubMed  CAS  Google Scholar 

  136. Raastad T, Bjoro T, Hallen J. Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82:121–8.

    Article  PubMed  CAS  Google Scholar 

  137. Hill EE, Zack E, Battaglini C, et al. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest. 2008;31:587–91.

    PubMed  CAS  Google Scholar 

  138. Häkkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med. 1995;16:507–13.

    Article  PubMed  Google Scholar 

  139. Silverman HG, Mazzeo RS. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. J Gerontol A Biol Sci Med Sci. 1996;51:B30–7.

    Article  PubMed  CAS  Google Scholar 

  140. Davis SN, Galassetti P, Wasserman DH, et al. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab. 2000;85:224–30.

    Article  PubMed  CAS  Google Scholar 

  141. Judelson DA, Maresh CM, Yamamoto LM, et al. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J Appl Physiol. 2008;105:816–24.

    Article  PubMed  Google Scholar 

  142. Duclos M, Corcuff J-B, Rashedi M, et al. Trained versus untrained men: different immediate post-exercise responses of pituitary-adrenal axis. A preliminary study. Eur J Appl Physiol. 1997;75:343–50.

    Article  CAS  Google Scholar 

  143. Lawrence DL, Shenker Y. Effect of hypoxic exercise on atrial natriuretic factor and aldosterone regulation. Am J Hypertens. 1991;4(4 Pt 1):341–7.

    PubMed  CAS  Google Scholar 

  144. Bouissou P, Fiet J, Guezennec CY, et al. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Eur J Appl Physiol Occup Physiol. 1988;57(1):110–3.

    Article  PubMed  CAS  Google Scholar 

  145. Raff H, Tzankoff SP, Fitzgerald RS. ACTH and cortisol responses to hypoxia in dogs. J Appl Physiol. 1981;51:1257–60.

    PubMed  CAS  Google Scholar 

  146. Draper N, Dickson T, Fryer S, et al. Plasma cortisol concentrations and perceived anxiety in response to on-sight rock climbing. Int J Sports Med. 2012;33(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  147. Ou LC, Tenney SM. Adrenocortical function in rats chronically exposed to high altitude. J Appl Physiol. 1979;47(6):1185–7.

    PubMed  CAS  Google Scholar 

  148. Maresh CM, Noble BJ, Robertson KL, et al. Aldosterone, cortisol, and electrolyte responses to hypobaric hypoxia in moderate-altitude natives. Aviat Space Environ Med. 1985;56(11):1078–84.

    PubMed  CAS  Google Scholar 

  149. Maresh CM, Noble BJ, Robertson KL, et al. Adrenocortical responses to maximal exercise in ­moderate-altitude natives at 447 Torr. J Appl Physiol. 1984;56(2):482–8.

    PubMed  CAS  Google Scholar 

  150. Savourey G, Garcia N, Caravel JP, et al. Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol. 1998;77:37–43.

    Article  CAS  Google Scholar 

  151. Divertie GD, Jensen MD, Miles JM. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes. 1991;40:1228–32.

    Article  PubMed  CAS  Google Scholar 

  152. Djurhuus CB, Gravholt CH, Nielsen S, et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283:E172–7.

    PubMed  CAS  Google Scholar 

  153. Young AJ, Evans WJ, Cymerman A, et al. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization. J Appl Physiol. 1982;52:857–62.

    PubMed  CAS  Google Scholar 

  154. Fenske W, Störk S, Blechschmidt A, et al. Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab. 2009;94(1):123–9.

    Article  PubMed  CAS  Google Scholar 

  155. Wade CE, Freund BJ, Claybaugh JR. Fluid and electrolyte homeostasis during and following exercise: hormonal and non-hormonal factors. In: Claybaugh JR, Wade CE, editors. Hormonal regulation of fluid and electrolytes: environmental effects. New York, NY: Plenum; 1989. p. 1–44.

    Chapter  Google Scholar 

  156. Blume FD, Boyer SJ, Braverman LE, et al. Impaired osmoregulation at high altitude (studies on mount Everest). JAMA. 1984;252:524–6.

    Article  PubMed  CAS  Google Scholar 

  157. Claybaugh JR, Wade CE, Sato AK, et al. Antidiuretic hormone responses to eucapnic and hypocapnic hypoxia in humans. J Appl Physiol. 1982;53:815–23.

    PubMed  CAS  Google Scholar 

  158. Bärtsch P, Maggiorini M, Schobersberger W, et al. Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol. 1991;71(1):136–43.

    PubMed  Google Scholar 

  159. Loeppky JA, Roach RC, Maes D, et al. Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol. 2005;6(1):60–71.

    Article  PubMed  CAS  Google Scholar 

  160. Williams ES. Salivary electrolyte composition at high altitude. Clin Sci. 1961;21:37–42.

    PubMed  CAS  Google Scholar 

  161. Williams ES. Electrolyte regulation during the adaptation of humans to life at high altitude. Proc R Soc Lond B Biol Sci. 1966;165:266–80.

    Article  PubMed  CAS  Google Scholar 

  162. Frayser R, Rennie ID, Gray GW, et al. Hormonal and electrolyte response to exposure to 17,500 ft. J Appl Physiol. 1975;38:636–42.

    PubMed  CAS  Google Scholar 

  163. Ramirez G, Hammond M, Agosti SJ, et al. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat Space Environ Med. 1992;63:891–8.

    PubMed  CAS  Google Scholar 

  164. Slater JD, Tuffley RE, Williams ES, et al. Control of aldosterone secretion during acclimatization to hypoxia in man. Clin Sci. 1969;37:327–41.

    PubMed  CAS  Google Scholar 

  165. Rock PB, Kraemer WJ, Fulco CS, et al. Effects of altitude acclimatization on fluid regulatory hormone response to submaximal exercise. J Appl Physiol. 1993;75:1208–15.

    PubMed  CAS  Google Scholar 

  166. Kotchen TA, Hogan RP, Boyd AE, et al. Renin, noradrenaline and adrenaline responses to simulated altitude. Clin Sci. 1973;44:243–51.

    PubMed  CAS  Google Scholar 

  167. Hogan RP, Kotchen TA, Boyd AE, et al. Effect of altitude on renin-aldosterone system and metabolism of water and electrolytes. J Appl Physiol. 1973;35:385–90.

    PubMed  CAS  Google Scholar 

  168. Milledge JS, Catley DM, Ward MP, et al. Renin-aldosterone and angiotensin-converting enzyme during prolonged altitude exposure. J Appl Physiol. 1983;55:699–702.

    PubMed  CAS  Google Scholar 

  169. Tunny TJ, van Gelder J, Gordon RD, et al. Effects of altitude on atrial natriuretic peptide: the bicentennial Mount Everest Expedition. Clin Exp Pharmacol Physiol. 1989;16:287–91.

    Article  PubMed  CAS  Google Scholar 

  170. Olsen NV, Kanstrup IL, Richalet JP, et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated subjects. J Appl Physiol. 1992;73:2036–43.

    PubMed  CAS  Google Scholar 

  171. Zaccaria M, Rocco S, Noventa D, et al. Sodium regulating hormones at high altitude: basal and post-exercise levels. J Clin Endocrinol Metab. 1998;83:570–4.

    Article  PubMed  CAS  Google Scholar 

  172. Bestle MH, Olsen NV, Poulsen TD, et al. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and renal response to osmostimulation in men. J Appl Physiol. 2002;92:1911–22.

    PubMed  CAS  Google Scholar 

  173. Bärtsch P, Shaw S, Francioli M, et al. Atrial natriuretic peptide in acute mountain sickness. J Appl Physiol. 1988;65:1929–37.

    PubMed  Google Scholar 

  174. Maher JT, Jones LG, Hartley LH, et al. Aldosterone dynamics during graded exercise at sea level and high altitude. J Appl Physiol. 1975;39:18–22.

    PubMed  CAS  Google Scholar 

  175. Convertino VA, Veil LC, Bernauer EM, et al. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol. 1981;50:123–8.

    PubMed  Google Scholar 

  176. Shigeoka JW, Colice GL, Ramirez G. Effect of normoxemic and hypoxemic exercise on renin and aldosterone. J Appl Physiol. 1985;59:142–8.

    PubMed  CAS  Google Scholar 

  177. Bouissou P, Péronnet F, Brisson G, et al. Fluid-electrolyte shift and renin-aldosterone responses to exercise under hypoxia. Horm Metab Res. 1987;19:331–4.

    Article  PubMed  CAS  Google Scholar 

  178. Bouissou P, Richalet JP, Galen FX, et al. Effect of beta-adrenoceptor blockade on renin-aldosterone and alpha-ANF during exercise at altitude. J Appl Physiol. 1989;67:141–6.

    PubMed  CAS  Google Scholar 

  179. Bocqueraz O, Koulmann N, Guigas B, et al. Fluid-regulatory hormone responses during cycling exercise in acute hypobaric hypoxia. Med Sci Sports Exerc. 2004;36:1730–6.

    Article  PubMed  CAS  Google Scholar 

  180. Richalet JP, Déchaux M, Bienvenu A, et al. Erythropoiesis and renal function at the altitude of 6,542 m. Jpn J Mount Med. 1995;15:135–50.

    Google Scholar 

  181. Meehan RT. Renin, aldosterone and vasopressin response to hypoxia during 6 hours of mild exercise. Aviat Space Environ Med. 1986;57:960–5.

    PubMed  CAS  Google Scholar 

  182. Okazaki S, Tamura Y, Hatano T, et al. Hormonal disturbances of fluid-electrolyte metabolism under altitude exposure in man. Aviat Space Environ Med. 1984;55:200–5.

    PubMed  CAS  Google Scholar 

  183. Robach P, Déchaux M, Jarrot S, et al. Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure. J Appl Physiol. 2000;89:29–37.

    PubMed  CAS  Google Scholar 

  184. Robach P, Lafforgue E, Olsen NV, et al. Recovery of plasma volume after 1 week of exposure at 4,350 m. Pflugers Arch. 2002;444:821–8.

    Article  PubMed  CAS  Google Scholar 

  185. Broglio F, Prodam F, Riganti F, et al. Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions. Front Horm Res. 2006;35:102–14.

    Article  PubMed  CAS  Google Scholar 

  186. Tschop M, Strasburger CJ, Hartmann G, et al. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet. 1998;352:1119–20.

    Article  PubMed  CAS  Google Scholar 

  187. Shukla V, Singh SN, Vats P, et al. Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutr Neurosci. 2005;8:161–5.

    Article  PubMed  CAS  Google Scholar 

  188. Zaccaria M, Ermolao A, Bonvicini P, et al. Decreased serum leptin levels during prolonged high ­altitude exposure. Eur J Appl Physiol. 2004;92:249–53.

    Article  PubMed  CAS  Google Scholar 

  189. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301(4):E567–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Benso MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benso, A., Prencipe, N., Di Giacomo, S., Lanfranco, F., Grottoli, S. (2013). The Effects of Altitude on the Hormonal Response to Physical Exercise. In: Constantini, N., Hackney, A. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-314-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-314-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-313-8

  • Online ISBN: 978-1-62703-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics