Skip to main content

Interrelations Between Acute and Chronic Exercise Stress and the Immune and Endocrine Systems

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Interaction between the endocrine and immune system is necessary to regulate our health. However, under some conditions, stress hormones can overstimulate or suppress the immune system, resulting in harmful consequences (1). Stress is often considered negative, yet it is an intrinsic part of everyday life. Stress is not clearly defined; it is context-specific and depends on the nature of factors that challenge our body. Internal stimuli will elicit different stress reactions compared with external stimuli (1). Similarly, some stressors will induce responses that may benefit survival, whereas others will cause disturbances that may endanger our health. Stress also depends on how our bodies perceive and respond to stressful stimuli (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16:300–17.

    Article  PubMed  CAS  Google Scholar 

  2. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5:243–51.

    Article  PubMed  CAS  Google Scholar 

  3. Bartholome B, Spies CM, Gaber T, Schuchmann S, Berki T, Kunkel D, et al. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J. 2004;18:70–80.

    Article  PubMed  CAS  Google Scholar 

  4. Miller AH, Spencer RL, Pearce BD, Pisell TL, Azrieli Y, Tanapat P, et al. Glucocorticoid receptors are differentially expressed in the cells and tissues of the immune system. Cell Immunol. 1998;186:45–54.

    Article  PubMed  CAS  Google Scholar 

  5. Maisel AS, Harris T, Rearden CA, Michel MC. Beta-adrenergic receptors in lymphocyte subsets after exercise. Alterations in normal individuals and patients with congestive heart failure. Circulation. 1990;82:2003–10.

    Article  PubMed  CAS  Google Scholar 

  6. Liggett SB. Identification and characterization of a homogeneous population of beta 2-adrenergic receptors on human alveolar macrophages. Am Rev Respir Dis. 1989;139:552–5.

    Article  PubMed  CAS  Google Scholar 

  7. Marinetti GV, Rosenfeld SI, Thiem PA, Condemi JJ, Leddy JP. Beta-adrenergic receptors of human leukocytes. Studies with intact mononuclear and polymorphonuclear cells and membranes comparing two radioligands in the presence and absence of chloroquine. Biochem Pharmacol. 1983;32:2033–43.

    Article  PubMed  CAS  Google Scholar 

  8. Swanson MA, Lee WT, Sanders VM. IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol. 2001;166:232–40.

    PubMed  CAS  Google Scholar 

  9. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158:4200–10.

    PubMed  CAS  Google Scholar 

  10. Loza MJ, Foster S, Peters SP, Penn RB. Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells. Blood. 2006;107:2052–60.

    Article  PubMed  CAS  Google Scholar 

  11. Bao JY, Huang Y, Wang F, Peng YP, Qiu YH. Expression of alpha-AR subtypes in T lymphocytes and role of the alpha-ARs in mediating modulation of T cell function. Neuroimmunomodulation. 2007;14:344–53.

    Article  PubMed  CAS  Google Scholar 

  12. Roupe van der Voort C, Heijnen CJ, Wulffraat N, Kuis W, Kavelaars A. Stress induces increases in IL-6 production by leucocytes of patients with the chronic inflammatory disease juvenile rheumatoid arthritis: a putative role for alpha(1)-adrenergic receptors. J Neuroimmunol. 2000;110:223–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bresson JL, Jeay S, Gagnerault MC, Kayser C, Beressi N, Wu Z, et al. Growth hormone (GH) and prolactin receptors in human peripheral blood mononuclear cells: relation with age and GH-binding protein. Endocrinology. 1999;140:3203–9.

    Article  PubMed  CAS  Google Scholar 

  14. Rapaport R, Sills IN, Green L, Barrett P, Labus J, Skuza KA, et al. Detection of human growth hormone receptors on IM-9 cells and peripheral blood mononuclear cell subsets by flow cytometry: correlation with growth hormone-binding protein levels. J Clin Endocrinol Metab. 1995;80:2612–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hattori N, Saito T, Yagyu T, Jiang BH, Kitagawa K, Inagaki C. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab. 2001;86:4284–91.

    Article  PubMed  CAS  Google Scholar 

  16. Pellegrini I, Lebrun JJ, Ali S, Kelly PA. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol. 1992;6:1023–31.

    Article  PubMed  CAS  Google Scholar 

  17. Lai JP, Douglas SD, Ho WZ. Human lymphocytes express substance P and its receptor. J Neuroimmunol. 1998;86:80–6.

    Article  PubMed  CAS  Google Scholar 

  18. Petitto JM, Huang Z, McCarthy DB. Molecular cloning of NPY-Y1 receptor cDNA from rat splenic lymphocytes: evidence of low levels of mRNA expression and (125I)NPY binding sites. J Neuroimmunol. 1994;54:81–6.

    Article  PubMed  CAS  Google Scholar 

  19. Radulovic M, Dautzenberg FM, Sydow S, Radulovic J, Spiess J. Corticotropin-releasing factor receptor 1 in mouse spleen: expression after immune stimulation and identification of receptor-bearing cells. J Immunol. 1999;162:3013–21.

    PubMed  CAS  Google Scholar 

  20. Cloez-Tayarani I, Petit-Bertron AF, Venters HD, Cavaillon JM. Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors. Int Immunol. 2003;15:233–40.

    Article  PubMed  CAS  Google Scholar 

  21. Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125–63.

    Article  PubMed  CAS  Google Scholar 

  22. Adcock IM, Brown CR, Shirasaki H, Barnes PJ. Effects of dexamethasone on cytokine and phorbol ester stimulated c-Fos and c-Jun DNA binding and gene expression in human lung. Eur Respir J. 1994;7:2117–23.

    Article  PubMed  CAS  Google Scholar 

  23. Ramdas J, Harmon JM. Glucocorticoid-induced apoptosis and regulation of NF-kappaB activity in human leukemic T cells. Endocrinology. 1998;139:3813–21.

    Article  PubMed  CAS  Google Scholar 

  24. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, et al. Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol. 1995;9:401–12.

    Article  PubMed  CAS  Google Scholar 

  25. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1994;91:752–6.

    Article  PubMed  CAS  Google Scholar 

  26. Salicru AN, Sams CF, Marshall GD. Cooperative effects of corticosteroids and catecholamines upon immune deviation of the type-1/type-2 cytokine balance in favor of type-2 expression in human peripheral blood mononuclear cells. Brain Behav Immun. 2007;21:913–20.

    Article  PubMed  CAS  Google Scholar 

  27. Gayo A, Mozo L, Suarez A, Tunon A, Lahoz C, Gutierrez C. Glucocorticoids increase IL-10 expression in multiple sclerosis patients with acute relapse. J Neuroimmunol. 1998;85:122–30.

    Article  PubMed  CAS  Google Scholar 

  28. DeKruyff RH, Fang Y, Umetsu DT. Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production. J Immunol. 1998;160:2231–7.

    PubMed  CAS  Google Scholar 

  29. Blotta MH, DeKruyff RH, Umetsu DT. Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol. 1997;158:5589–95.

    PubMed  CAS  Google Scholar 

  30. Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002;966:290–303.

    Article  PubMed  CAS  Google Scholar 

  31. Calcagni E, Elenkov IJ. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci. 2006;1069:62–76.

    Article  PubMed  CAS  Google Scholar 

  32. Zen M, Canova M, Campana C, Bettio S, Nalotto L, Rampudda M, et al. The kaleidoscope of glucocorticoid effects on immune system. Autoimmun Rev. 2011;10:305–10.

    Article  PubMed  CAS  Google Scholar 

  33. Panina-Bordignon P, Mazzeo D, Lucia PD, D’Ambrosio D, Lang R, Fabbri L, et al. Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest. 1997;100:1513–9.

    Article  PubMed  CAS  Google Scholar 

  34. Agarwal SK, Marshall GD. Beta-adrenergic modulation of human type-1/type-2 cytokine balance. J Allergy Clin Immunol. 2000;105:91–8.

    Article  PubMed  CAS  Google Scholar 

  35. Ramer-Quinn DS, Baker RA, Sanders VM. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol. 1997;159:4857–67.

    PubMed  CAS  Google Scholar 

  36. Riether C, Kavelaars A, Wirth T, Pacheco-Lopez G, Doenlen R, Willemen H, et al. Stimulation of beta-adrenergic receptors inhibits calcineurin activity in CD4(+) T cells via PKA-AKAP interaction. Brain Behav Immun. 2011;25:59–66.

    Article  PubMed  CAS  Google Scholar 

  37. Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79:1093–104.

    Article  PubMed  CAS  Google Scholar 

  38. Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev. 2000;21:292–312.

    Article  PubMed  CAS  Google Scholar 

  39. Dobashi H, Sato M, Tanaka T, Tokuda M, Ishida T. Growth hormone restores glucocorticoid-induced T cell suppression. FASEB J. 2001;15:1861–3.

    PubMed  CAS  Google Scholar 

  40. Jeay S, Sonenshein GE, Postel-Vinay MC, Kelly PA, Baixeras E. Growth hormone can act as a cytokine controlling survival and proliferation of immune cells: new insights into signaling pathways. Mol Cell Endocrinol. 2002;188:1–7.

    Article  PubMed  CAS  Google Scholar 

  41. Warwick-Davies J, Lowrie DB, Cole PJ. Growth hormone is a human macrophage activating factor. Priming of human monocytes for enhanced release of H2O2. J Immunol. 1995;154:1909–18.

    PubMed  CAS  Google Scholar 

  42. Kooijman R, Willems M, De Haas CJ, Rijkers GT, Schuurmans AL, Van Buul-Offers SC, et al. Expression of type I insulin-like growth factor receptors on human peripheral blood mononuclear cells. Endocrinology. 1992;131:2244–50.

    Article  PubMed  CAS  Google Scholar 

  43. Clevenger CV, Russell DH, Appasamy PM, Prystowsky MB. Regulation of interleukin 2-driven T-lymphocyte proliferation by prolactin. Proc Natl Acad Sci U S A. 1990;87:6460–4.

    Article  PubMed  CAS  Google Scholar 

  44. Woody MA, Welniak LA, Sun R, Tian ZG, Henry M, Richards S, et al. Prolactin exerts hematopoietic growth-promoting effects in vivo and partially counteracts myelosuppression by azidothymidine. Exp Hematol. 1999;27:811–6.

    Article  PubMed  CAS  Google Scholar 

  45. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–38.

    Article  PubMed  CAS  Google Scholar 

  46. Banks WA, Erickson MA. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37:26–32.

    Article  PubMed  CAS  Google Scholar 

  47. Engelhardt B. The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des. 2008;14:1555–65.

    Article  PubMed  CAS  Google Scholar 

  48. Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav Immun. 2006;20:449–55.

    Article  PubMed  CAS  Google Scholar 

  49. Quan N. Immune-to-brain signaling: how important are the blood–brain barrier-independent pathways? Mol Neurobiol. 2008;37:142–52.

    Article  PubMed  CAS  Google Scholar 

  50. Chen G, McCuskey RS, Reichlin S. Blood interleukin-6 and tumor necrosis factor-alpha elevation after intracerebroventricular injection of Escherichia coli endotoxin in the rat is determined by two opposing factors: peripheral induction by LPS transferred from brain to blood and inhibition of peripheral response by a brain-mediated mechanism. Neuroimmunomodulation. 2000;8:59–69.

    Article  PubMed  Google Scholar 

  51. Tonnesen E, Christensen NJ, Brinklov MM. Natural killer cell activity during cortisol and adrenaline infusion in healthy volunteers. Eur J Clin Invest. 1987;17:497–503.

    Article  PubMed  CAS  Google Scholar 

  52. Davis JM, Albert JD, Tracy KJ, Calvano SE, Lowry SF, Shires GT, et al. Increased neutrophil mobilization and decreased chemotaxis during cortisol and epinephrine infusions. J Trauma. 1991;31:725–31.

    Article  PubMed  CAS  Google Scholar 

  53. Kittner JM, Jacobs R, Pawlak CR, Heijnen CJ, Schedlowski M, Schmidt RE. Adrenaline-induced immunological changes are altered in patients with rheumatoid arthritis. Rheumatology (Oxford). 2002;41:1031–9.

    Article  CAS  Google Scholar 

  54. Van Tits LJ, Michel MC, Grosse-Wilde H, Happel M, Eigler FW, Soliman A, et al. Catecholamines increase lymphocyte beta 2-adrenergic receptors via a beta 2-adrenergic, spleen-dependent process. Am J Physiol. 1990;258:E191–202.

    PubMed  Google Scholar 

  55. Kappel M, Tvede N, Galbo H, Haahr PM, Kjaer M, Linstow M, et al. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. J Appl Physiol. 1991;70:2530–4.

    PubMed  CAS  Google Scholar 

  56. Tvede N, Kappel M, Klarlund K, Duhn S, Halkjaer-Kristensen J, Kjaer M, et al. Evidence that the effect of bicycle exercise on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine. Int J Sports Med. 1994;15:100–4.

    Article  PubMed  CAS  Google Scholar 

  57. Januszkiewicz A, Essen P, McNurlan MA, Ringden O, Garlick PJ, Wernerman J. A combined stress hormone infusion decreases in vivo protein synthesis in human T lymphocytes in healthy volunteers. Metabolism. 2001;50:1308–14.

    Article  PubMed  CAS  Google Scholar 

  58. Schedlowski M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR, et al. Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol. 1996;156:93–9.

    PubMed  CAS  Google Scholar 

  59. Richardson RP, Rhyne CD, Fong Y, Hesse DG, Tracey KJ, Marano MA, et al. Peripheral blood leukocyte kinetics following in vivo lipopolysaccharide (LPS) administration to normal human subjects. Influence of elicited hormones and cytokines. Ann Surg. 1989;210:239–45.

    Article  PubMed  CAS  Google Scholar 

  60. Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol. 2010;184:503–11.

    Article  PubMed  CAS  Google Scholar 

  61. Bosch JA, Berntson GG, Cacioppo JT, Dhabhar FS, Marucha PT. Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain Behav Immun. 2003;17:251–9.

    Article  PubMed  CAS  Google Scholar 

  62. Anane LH, Edwards KM, Burns VE, Drayson MT, Riddell NE, van Zanten JJ, et al. Mobilization of gammadelta T lymphocytes in response to psychological stress, exercise, and beta-agonist infusion. Brain Behav Immun. 2009;23:823–9.

    Article  PubMed  CAS  Google Scholar 

  63. Kappel M, Poulsen TD, Galbo H, Pedersen BK. Effects of elevated plasma noradrenaline concentration on the immune system in humans. Eur J Appl Physiol. 1998;79:93–8.

    Article  CAS  Google Scholar 

  64. Kappel M, Hansen MB, Diamant M, Jorgensen JO, Gyhrs A, Pedersen BK. Effects of an acute bolus growth hormone infusion on the human immune system. Horm Metab Res. 1993;25:579–85.

    Article  PubMed  CAS  Google Scholar 

  65. Burns AM, Keogan M, Donaldson M, Brown DL, Park GR. Effects of inotropes on human leucocyte numbers, neutrophil function and lymphocyte subtypes. Br J Anaesth. 1997;78:530–5.

    Article  PubMed  CAS  Google Scholar 

  66. Sondergaard SR, Ostrowski K, Ullum H, Pedersen BK. Changes in plasma concentrations of interleukin-6 and interleukin-1 receptor antagonists in response to adrenaline infusion in humans. Eur J Appl Physiol. 2000;83:95–8.

    Article  PubMed  CAS  Google Scholar 

  67. Keller P, Keller C, Robinson LE, Pedersen BK. Epinephrine infusion increases adipose interleukin-6 gene expression and systemic levels in humans. J Appl Physiol. 2004;97:1309–12.

    Article  PubMed  CAS  Google Scholar 

  68. Steensberg A, Toft AD, Schjerling P, Halkjaer-Kristensen J, Pedersen BK. Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am J Physiol. 2001;281:C1001–4.

    CAS  Google Scholar 

  69. Jan BU, Coyle SM, Oikawa LO, Lu SE, Calvano SE, Lehrer PM, et al. Influence of acute epinephrine infusion on endotoxin-induced parameters of heart rate variability: a randomized controlled trial. Ann Surg. 2009;249:750–6.

    Article  PubMed  Google Scholar 

  70. Barber AE, Coyle SM, Marano MA, Fischer E, Calvano SE, Fong Y, et al. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol. 1993;150:1999–2006.

    PubMed  CAS  Google Scholar 

  71. van der Poll T, Barber AE, Coyle SM, Lowry SF. Hypercortisolemia increases plasma interleukin-10 concentrations during human endotoxemia—a clinical research center study. J Clin Endocrinol Metab. 1996;81:3604–6.

    Article  PubMed  Google Scholar 

  72. Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol. 2003;285:E433–7.

    CAS  Google Scholar 

  73. de Metz J, Sprangers F, Endert E, Ackermans MT, ten Berge IJ, Sauerwein HP, et al. Interferon-gamma has immunomodulatory effects with minor endocrine and metabolic effects in humans. J Appl Physiol. 1999;86:517–22.

    PubMed  Google Scholar 

  74. McCarthy D, MacDonald I, Grant M, Marbut M, Watling M. Studies on the immediate and delayed leucocytosis elicited by brief (30 min) strenuous exercise. Eur J Appl Physiol. 1992;64:513–7.

    Article  CAS  Google Scholar 

  75. Suzuki K, Sato H, Kikuchi T, Abe T, Nakaji S, Sugawara K, et al. Capacity of circulating neutrophils to produce reactive oxygen species after exhaustive exercise. J Appl Physiol. 1996;81:1213–22.

    PubMed  CAS  Google Scholar 

  76. Peake JM, Wilson G, Hordern M, Suzuki K, Nosaka K, Yamaya K, et al. Changes in neutrophil receptor expression, degranulation and respiratory burst activity after moderate and high intensity exercise. J Appl Physiol. 2004;97:612–8.

    Article  PubMed  CAS  Google Scholar 

  77. Rhind SG, Gannon GA, Shek PN, Brenner IK, Severs Y, Zamecnik J, et al. Contribution of exertional hyperthermia to sympathoadrenal-mediated lymphocyte subset redistribution. J Appl Physiol. 1999;87:1178–85.

    PubMed  CAS  Google Scholar 

  78. Steensberg A, Toft AD, Bruunsgaard H, Sandmand M, Halkjaer-Kristensen J, Pedersen BK. Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J Appl Physiol. 2001;91:1708–12.

    PubMed  CAS  Google Scholar 

  79. Brenner IK, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, et al. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol. 1999;87:699–710.

    PubMed  CAS  Google Scholar 

  80. Hansen MK, O’Connor KA, Goehler LE, Watkins LR, Maier SF. The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol. 2001;280:R929–34.

    PubMed  CAS  Google Scholar 

  81. Cross MC, Radomski MW, Vanhelder WP, Rhind SG, Shephard RJ. Endurance exercise with and without a thermal clamp: effects on leukocytes and leukocyte subsets. J Appl Physiol. 1996;81:822–9.

    PubMed  CAS  Google Scholar 

  82. Gabriel H, Schwarz L, Steffens G, Kindermann W. Immunoregulatory hormones, circulating leucocyte and lymphocyte subpopulations before and after endurance exercise of different intensities. Int J Sports Med. 1992;13:359–66.

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;86:1360–7.

    Google Scholar 

  84. Kruger K, Agnischock S, Lechtermann A, Tiwari S, Mishra M, Pilat C, et al. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. J Appl Physiol. 2011;110:1226–32.

    Article  PubMed  CAS  Google Scholar 

  85. Papanicolaou DA, Petrides JS, Tsigos C, Bina S, Kalogeras KT, Wilder R, et al. Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. Am J Physiol Endocrinol Metab. 1996;34:E601–5.

    Google Scholar 

  86. Rhind SG, Gannon GA, Shephard RJ, Buguet A, Shek PN, Radomski MW. Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. Int J Hyperthermia. 2004;20:503–16.

    Article  PubMed  CAS  Google Scholar 

  87. Singh A, Papanicolaou DA, Lawrence LL, Howell EA, Chrousos GP, Deuster PA. Neuroendocrine responses to running in women after zinc and vitamin E supplementation. Med Sci Sports Exerc. 1999;31:536–42.

    Article  PubMed  CAS  Google Scholar 

  88. Rhind SG, Castellani JW, Brenner IK, Shephard RJ, Zamecnik J, Montain SJ, et al. Intracellular monocyte and serum cytokine expression is modulated by exhausting exercise and cold exposure. Am J Physiol Regul Integr Comp Physiol. 2001;281:R66–75.

    PubMed  CAS  Google Scholar 

  89. Walsh NP, Whitham M. Exercising in environmental extremes: a greater threat to immune function? Sports Med. 2006;36:941–76.

    Article  PubMed  Google Scholar 

  90. Febbraio MA, Lambert DL, Starkie RL, Proietto J, Hargreaves M. Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J Appl Physiol. 1998;84:465–70.

    PubMed  CAS  Google Scholar 

  91. Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol. 2001;537:633–9.

    Article  PubMed  CAS  Google Scholar 

  92. Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA. The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J Physiol. 2003;546:299–305.

    Article  PubMed  CAS  Google Scholar 

  93. Foster NK, Martyn JB, Rangno RE, Hogg JC, Pardy RL. Leukocytosis of exercise: role of cardiac output and catecholamines. J Appl Physiol. 1986;61:2218–23.

    PubMed  CAS  Google Scholar 

  94. McMurray RG, Forsythe WA, Mar MH, Hardy CJ. Exercise intensity-related responses of beta-­endorphin and catecholamines. Med Sci Sports Exerc. 1987;19:570–4.

    PubMed  CAS  Google Scholar 

  95. Weltman A, Pritzlaff CJ, Wideman L, Weltman JY, Blumer JL, Abbott RD, et al. Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol. 2000;89:629–35.

    PubMed  CAS  Google Scholar 

  96. Davies CT, Few JD. Effects of exercise on adrenocortical function. J Appl Physiol. 1973;35:887–91.

    PubMed  CAS  Google Scholar 

  97. Nieman D, Miller A, Henson D, Warren B, Gusewitch G, Johnson R, et al. Effect of high-intensity versus moderate-intensity exercise on lymphocyte subpopulations and proliferative response. Int J Sports Med. 1994;15:199–206.

    Article  PubMed  CAS  Google Scholar 

  98. Tvede N, Kappel M, Halkjaer-Kristensen J, Galbo H, Pedersen BK. The effect of light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine activated killer cells, lymphocyte proliferative response and interleukin 2 production. Int J Sports Med. 1993;14:275–82.

    Article  PubMed  CAS  Google Scholar 

  99. Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol. 2005;95:514–21.

    Article  PubMed  CAS  Google Scholar 

  100. Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. Effect of exercise intensity in the cytokine response to an acute bout of running. Med Sci Sports Exerc. 2011;43:2297–306.

    Article  PubMed  CAS  Google Scholar 

  101. Del Corral P, Howley ET, Hartsell M, Ashraf M, Younger MS. Metabolic effects of low cortisol during exercise in humans. J Appl Physiol. 1998;84:939–47.

    PubMed  Google Scholar 

  102. Bishop N, Blannin A, Robson P, Walsh N, Gleeson M. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci. 1999;17:787–96.

    Article  PubMed  CAS  Google Scholar 

  103. Henson D, Nieman D, Nehlsen-Cannarella S, Fagoaga O, Shannon M, Bolton M, et al. Influence of carbohydrate on cytokine and phagocytic responses to 2 h of rowing. Med Sci Sports Exerc. 2000;32:1384–9.

    Article  PubMed  CAS  Google Scholar 

  104. Peake J, Wilson G, Mackinnon L, Coombes JS. Carbohydrate supplementation and alterations in neutrophils, and plasma cortisol and myoglobin concentration after intense exercise. Eur J Appl Physiol. 2005;93:672–8.

    Article  PubMed  CAS  Google Scholar 

  105. Nieman DC, Henson DA, Davis JM, Dumke CL, Utter AC, Murphy EA, et al. Blood leukocyte mRNA expression for IL-10, IL-1Ra, and IL-8, but not IL-6, increases after exercise. J Interferon Cytokine Res. 2006;26:668–74.

    Article  PubMed  CAS  Google Scholar 

  106. Starkie RL, Angus DJ, Rolland J, Hargreaves M, Febbraio MA. Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J Physiol. 2000;528:647–55.

    Article  PubMed  CAS  Google Scholar 

  107. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 1998;84:1252–9.

    PubMed  CAS  Google Scholar 

  108. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc. 1998;30:671–8.

    Article  PubMed  CAS  Google Scholar 

  109. Bishop NC, Gleeson M, Nicholas CW, Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab. 2002;12:145–56.

    PubMed  CAS  Google Scholar 

  110. Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, Utter AC, et al. Muscle cytokine mRNA changes after 2.5 h of cycling: influence of carbohydrate. Med Sci Sports Exerc. 2005;37:1283–90.

    Article  PubMed  CAS  Google Scholar 

  111. Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol. 2003;94:1917–25.

    PubMed  CAS  Google Scholar 

  112. Nieman DC, Henson DA, Smith LL, Utter AC, Vinci DM, Davis JM, et al. Cytokine changes after a marathon race. J Appl Physiol. 2001;91:109–14.

    PubMed  CAS  Google Scholar 

  113. Nieman D, Fagoaga O, Butterworth D, Warren B, Utter A, Davis J, et al. Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function following 2.5 hours of running. Am J Clin Nutr. 1997;66:153–9.

    PubMed  CAS  Google Scholar 

  114. Henson DA, Nieman DC, Pistilli EE, Schilling B, Colacino A, Utter AC, et al. Influence of carbohydrate and age on lymphocyte function following a marathon. Int J Sport Nutr Exerc Metab. 2004;14:308–22.

    PubMed  CAS  Google Scholar 

  115. Lancaster GI, Khan Q, Drysdale PT, Wallace F, Jeukendrup AE, Drayson MT, et al. Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 T lymphocyte distribution and intracellular cytokine production in humans. J Appl Physiol. 2005;98:565–71.

    Article  PubMed  CAS  Google Scholar 

  116. McFarlin BK, Flynn MG, Hampton T. Carbohydrate consumption during cycling increases in vitro NK cell responses to IL-2 and IFN-gamma. Brain Behav Immun. 2007;21:202–8.

    Article  PubMed  CAS  Google Scholar 

  117. McFarlin BK, Flynn MG, Stewart LK, Timmerman KL. Carbohydrate intake during endurance exercise increases natural killer cell responsiveness to IL-2. J Appl Physiol. 2004;96:271–5.

    Article  PubMed  CAS  Google Scholar 

  118. Nieman DC, Henson DA, Gojanovich G, Davis JM, Murphy EA, Mayer EP, et al. Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med. 2006;14:225–37.

    Article  PubMed  Google Scholar 

  119. Bishop NC, Blannin AK, Walsh NP, Gleeson M. Carbohydrate beverage ingestion and neutrophil degranulation responses following cycling to fatigue at 75% VO2 max. Int J Sports Med. 2001;22:226–31.

    Article  PubMed  CAS  Google Scholar 

  120. Koch AJ, Potteiger JA, Chan MA, Benedict SH, Frey BB. Minimal influence of carbohydrate ingestion on the immune response following acute resistance exercise. Int J Sport Nutr Exerc Metab. 2001;11:149–61.

    PubMed  CAS  Google Scholar 

  121. Bishop NC, Walsh NP, Haines DL, Richards EE, Gleeson M. Pre-exercise carbohydrate status and immune responses to prolonged cycling: I. Effect on neutrophil degranulation. Int J Sport Nutr Exerc Metab. 2001;11:490–502.

    PubMed  CAS  Google Scholar 

  122. Mitchell JB, Dugas JP, McFarlin BK, Nelson MJ. Effect of exercise, heat stress, and hydration on immune cell number and function. Med Sci Sports Exerc. 2002;34:1941–50.

    Article  PubMed  CAS  Google Scholar 

  123. Nieman DC, Henson DA, Fagoaga OR, Utter AC, Vinci DM, Davis JM, et al. Change in salivary IgA following a competitive marathon race. Int J Sports Med. 2002;23:69–75.

    Article  PubMed  CAS  Google Scholar 

  124. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol. 2003;549:607–12.

    Article  PubMed  CAS  Google Scholar 

  125. Starkie RL, Arkinstall MJ, Koukoulas I, Hawley JA, Febbraio MA. Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol. 2001;533:585–91.

    Article  PubMed  CAS  Google Scholar 

  126. Bishop NC, Fitzgerald C, Porter PJ, Scanlon GA, Smith AC. Effect of caffeine ingestion on lymphocyte counts and subset activation in vivo following strenuous cycling. Eur J Appl Physiol. 2005;93:606–13.

    Article  PubMed  CAS  Google Scholar 

  127. Bishop NC, Walker GJ, Scanlon GA, Richards S, Rogers E. Salivary IgA responses to prolonged intensive exercise following caffeine ingestion. Med Sci Sports Exerc. 2006;38:513–9.

    Article  PubMed  CAS  Google Scholar 

  128. Whitham M, Walker GJ, Bishop NC. Effect of caffeine supplementation on the extracellular heat shock protein 72 response to exercise. J Appl Physiol. 2006;101:1222–7.

    Article  PubMed  CAS  Google Scholar 

  129. Walker GJ, Dziubak A, Houghton L, Prendergast C, Lim L, Bishop NC. The effect of caffeine ingestion on human neutrophil oxidative burst responses following time-trial cycling. J Sports Sci. 2008;26:611–9.

    Article  PubMed  Google Scholar 

  130. Walker GJ, Caudwell P, Dixon N, Bishop NC. The effect of caffeine ingestion on neutrophil oxidative burst responses following prolonged cycling. Int J Sport Nutr Exerc Metab. 2006;16:24–35.

    PubMed  CAS  Google Scholar 

  131. Fletcher DK, Bishop NC. Effect of a single and repeated dose of caffeine on antigen-stimulated human natural killer cell CD69 expression after high-intensity intermittent exercise. Eur J Appl Physiol. 2011;111:1329–39.

    Article  PubMed  CAS  Google Scholar 

  132. Fletcher DK, Bishop NC. Effect of a high and low dose of caffeine on antigen-stimulated activation of human natural killer cells after prolonged cycling. Int J Sport Nutr Exerc Metab. 2011;21:155–65.

    PubMed  CAS  Google Scholar 

  133. Brenner IK, Zamecnik J, Shek PN, Shephard RJ. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol. 1997;76:445–54.

    Article  CAS  Google Scholar 

  134. Niess AM, Fehrenbach E, Lehmann R, Opavsky L, Jesse M, Northoff H, et al. Impact of elevated ambient temperatures on the acute immune response to intensive endurance exercise. Eur J Appl Physiol. 2003;89:344–51.

    Article  PubMed  CAS  Google Scholar 

  135. Severs Y, Brenner I, Shek PN, Shephard RJ. Effects of heat and intermittent exercise on leukocyte and sub-population cell counts. Eur J Appl Physiol. 1996;74:234–45.

    Article  CAS  Google Scholar 

  136. Starkie RL, Hargreaves M, Rolland J, Febbraio M. Heat stress, cytokines and the immune response to exercise. Brain Behav Immun. 2005;19:404–12.

    Article  PubMed  CAS  Google Scholar 

  137. Laing SJ, Jackson AR, Walters R, Lloyd-Jones E, Whitham M, Maassen N, et al. Human blood ­neutrophil responses to prolonged exercise with and without a thermal clamp. J Appl Physiol. 2008;104:20–6.

    Article  PubMed  CAS  Google Scholar 

  138. Peake J, Peiffer J, Abbiss C, Nosaka K, Laursen P, Suzuki K. Body temperature and its effect on leukocyte mobilisation, cytokines and markers of neutrophil activation. Eur J Appl Physiol. 2007;102:391–401.

    Article  PubMed  CAS  Google Scholar 

  139. Brenner IK, Severs YD, Shek PN, Shephard RJ. Impact of heat exposure and moderate, intermittent exercise on cytolytic cells. Eur J Appl Physiol. 1996;74:162–71.

    Article  CAS  Google Scholar 

  140. Murray DR, Irwin M, Rearden CA, Ziegler M, Motulsky H, Maisel AS. Sympathetic and immune interactions during dynamic exercise. Mediation via a beta 2-adrenergic-dependent mechanism. Circulation. 1992;86:203–13.

    Article  PubMed  CAS  Google Scholar 

  141. Kruger K, Lechtermann A, Fobker M, Volker K, Mooren FC. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav Immun. 2008;22:324–38.

    Article  PubMed  CAS  Google Scholar 

  142. Starkie RL, Rolland J, Febbraio MA. Effect of adrenergic blockade on lymphocyte cytokine production at rest and during exercise. Am J Physiol Cell Physiol. 2001;281:C1233–40.

    PubMed  CAS  Google Scholar 

  143. Mazzeo R, Donovan D, Fleshner M, Butterfield G, Zamudio S, Wolfel E, et al. Interleukin-6 response to exercise and high-altitude exposure: influence of alpha-adrenergic blockade. J Appl Physiol. 2001;91:2143–9.

    PubMed  CAS  Google Scholar 

  144. Carmichael MD, Davis JM, Murphy EA, Carson JA, Van Rooijen N, Mayer E, et al. Role of brain macrophages on IL-1beta and fatigue following eccentric exercise-induced muscle damage. Brain Behav Immun. 2010;24:564–8.

    Article  PubMed  CAS  Google Scholar 

  145. Carmichael MD, Davis JM, Murphy EA, Brown AS, Carson JA, Mayer E, et al. Recovery of running performance following muscle-damaging exercise: relationship to brain IL-1beta. Brain Behav Immun. 2005;19:445–52.

    Article  PubMed  CAS  Google Scholar 

  146. Carmichael MD, Davis JM, Murphy EA, Brown AS, Carson JA, Mayer EP, et al. Role of brain IL-1beta on fatigue after exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1344–8.

    Article  PubMed  CAS  Google Scholar 

  147. Steensberg A, Dalsgaard MK, Secher NH, Pedersen BK. Cerebrospinal fluid IL-6, HSP72, and TNF-alpha in exercising humans. Brain Behav Immun. 2006;20:585–9.

    Article  PubMed  CAS  Google Scholar 

  148. Nybo L, Nielsen B, Pedersen BK, Moller K, Secher NH. Interleukin-6 release from the human brain during prolonged exercise. J Physiol. 2002;542:991–5.

    Article  PubMed  CAS  Google Scholar 

  149. Dressendorfer RH, Petersen SR, Moss Lovshin SE, Hannon JL, Lee SF, Bell GJ. Performance enhancement with maintenance of resting immune status after intensified cycle training. Clin J Sport Med. 2002;12:301–7.

    Article  PubMed  Google Scholar 

  150. Imrich R, Tibenska E, Koska J, Ksinantova L, Kvetnansky R, Bergendiova-Sedlackova K, et al. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution. Ann N Y Acad Sci. 2004;1018:266–72.

    Article  PubMed  CAS  Google Scholar 

  151. Mackinnon LT, Hooper SL, Jones S, Gordon RD, Bachmann AW. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med Sci Sports Exerc. 1997;29:1637–45.

    Article  PubMed  CAS  Google Scholar 

  152. Ndon JA, Snyder AC, Foster C, Wehrenberg WB. Effects of chronic intense exercise training on the leukocyte response to acute exercise. Int J Sports Med. 1992;13:176–82.

    Article  PubMed  CAS  Google Scholar 

  153. Mujika I, Chatard JC, Geyssant A. Effects of training and taper on blood leucocyte populations in ­competitive swimmers: relationships with cortisol and performance. Int J Sports Med. 1996;17:213–7.

    Article  PubMed  CAS  Google Scholar 

  154. Robson-Ansley PJ, Blannin A, Gleeson M. Elevated plasma interleukin-6 levels in trained male ­triathletes following an acute period of intense interval training. Eur J Appl Physiol. 2006;99:353–60.

    Article  PubMed  CAS  Google Scholar 

  155. Fry RW, Morton AR, Garcia-Webb P, Crawford GP, Keast D. Biological responses to overload training in endurance sports. Eur J Appl Physiol. 1992;64:335–44.

    Article  CAS  Google Scholar 

  156. Smith C, Myburgh KH. Are the relationships between early activation of lymphocytes and cortisol or testosterone influenced by intensified cycling training in men? Appl Physiol Nutr Metab. 2006;31:226–34.

    Article  PubMed  CAS  Google Scholar 

  157. Makras P, Koukoulis GN, Bourikas G, Papatheodorou G, Bedevis K, Menounos P, et al. Effect of 4 weeks of basic military training on peripheral blood leucocytes and urinary excretion of catecholamines and cortisol. J Sports Sci. 2005;23:825–34.

    Article  PubMed  Google Scholar 

  158. Ortega E, Barriga C, De la Fuente M. Study of the phagocytic process in neutrophils from elite sportswomen. Eur J Appl Physiol. 1993;66:37–42.

    Article  CAS  Google Scholar 

  159. Cunniffe B, Griffiths H, Proctor W, Davies B, Baker JS, Jones KP. Mucosal immunity and illness incidence in elite rugby union players across a season. Med Sci Sports Exerc. 2011;43:388–97.

    PubMed  Google Scholar 

  160. Verde T, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained distance runners. Br J Sports Med. 1992;26:167–75.

    Article  PubMed  CAS  Google Scholar 

  161. Lancaster G, Halson S, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, et al. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev. 2004;10:91–106.

    PubMed  Google Scholar 

  162. McDowell SL, Hughes RA, Hughes RJ, Housh TJ, Johnson GO. The effect of exercise training on salivary immunoglobulin A and cortisol responses to maximal exercise. Int J Sports Med. 1992;13:577–80.

    Article  PubMed  CAS  Google Scholar 

  163. Hooper SL, Mackinnon LT, Howard A, Gordon RD, Bachmann AW. Markers for monitoring overtraining and recovery. Med Sci Sports Exerc. 1995;27:106–12.

    PubMed  CAS  Google Scholar 

  164. Edwards KM, Burns VE, Reynolds T, Carroll D, Drayson M, Ring C. Acute stress exposure prior to influenza vaccination enhances antibody response in women. Brain Behav Immun. 2006;20:159–68.

    Article  PubMed  Google Scholar 

  165. Woods JA, Keylock KT, Lowder T, Vieira VJ, Zelkovich W, Dumich S, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc. 2009;57:2183–91.

    Article  PubMed  Google Scholar 

  166. Keylock KT, Lowder T, Leifheit KA, Cook M, Mariani RA, Ross K, et al. Higher antibody, but not cell-mediated, responses to vaccination in high physically fit elderly. J Appl Physiol. 2007;102:1090–8.

    Article  PubMed  CAS  Google Scholar 

  167. Keylock KT, Vieira VJ, Wallig MA, DiPietro LA, Schrementi M, Woods JA. Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. Am J Physiol Regul Integr Comp Physiol. 2008;294:R179–84.

    Article  PubMed  CAS  Google Scholar 

  168. Nieman DC. Is infection risk linked to exercise workload? Med Sci Sports Exerc. 2000;32:S406–11.

    Article  PubMed  CAS  Google Scholar 

  169. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;16 Suppl 1:3–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Peake PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peake, J. (2013). Interrelations Between Acute and Chronic Exercise Stress and the Immune and Endocrine Systems. In: Constantini, N., Hackney, A. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-314-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-314-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-313-8

  • Online ISBN: 978-1-62703-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics