Skip to main content

Ion Channels and Neurology

  • Chapter
  • First Online:
Applications of Biotechnology in Neurology
  • 1344 Accesses

Abstract

Ion channels are protein pores in the cell membrane that allow the passage of ions down their respective electrochemical gradients. Ion pumps are specialized membrane proteins that serve to convert metabolic energy into the work of moving ions across membranes against their electrochemical gradient. Ion channels are classified according to the ion passing through them (e.g. sodium, potassium, calcium, or chloride), and the mechanisms by which they are opened or closed. Acetylcholine, for example, opens chloride channels. Channel blockers are molecules that can enter the pores and physically plug them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 2010;107:11981–6.

    Article  PubMed  CAS  Google Scholar 

  • Attal N, Bouhassira D. Translating basic research on sodium channels in human neuropathic pain. J Pain 2006;7(1 Suppl 1):S31–7.

    PubMed  CAS  Google Scholar 

  • Bargiotas P, Krenz A, Hormuzdi SG, et al. Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A 2011;108:20772–7.

    Article  PubMed  CAS  Google Scholar 

  • Buffington SA, Rasband MN. The axon initial segment in nervous system disease and injury. Eur J Neurosci 2011;34:1609–19.

    Article  PubMed  Google Scholar 

  • Cannon SC. Physiologic principles underlying ion channelopathies. Neurotherapeutics 2007;4:174–83.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci 2008;28:11768–77.

    Article  PubMed  CAS  Google Scholar 

  • Chang BS, Lowenstein DH. Epilepsy. N Engl J Med 2003;349:1257–66.

    Article  PubMed  Google Scholar 

  • Chung JM, Chung K. Sodium channels and neuropathic pain. Novartis Found Symp 2004;261:19–27; discussion 27–31, 47–54.

    Google Scholar 

  • Cooper EC, Jan LY. M-channels: neurological diseases, neuromodulation, and drug development. Arch Neurol 2003;60:496–500.

    Article  PubMed  Google Scholar 

  • Gao L. An update on peptide drugs for voltage-gated calcium channels. Recent Pat CNS Drug Discov 2010;5:14–22.

    Article  PubMed  CAS  Google Scholar 

  • Hains BC, Klein JP, Saab CY, et al. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003;23:8881–92.

    PubMed  CAS  Google Scholar 

  • Hanna MG. Genetic neurological channelopathies. Nat Clin Pract Neurol 2006;2:252–63.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings HC Jr, Akabas MH, Goldstein PA, et al. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 2005;26:503–10.

    Article  PubMed  CAS  Google Scholar 

  • Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007b;62:560–8.

    Article  PubMed  CAS  Google Scholar 

  • Heron SE, Scheffer IE, Berkovic SF, Dibbens LM, Mulley JC. Channelopathies in idiopathic epilepsy. Neurotherapeutics 2007a;4:295–304.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 1952;117:500–44.

    CAS  Google Scholar 

  • Huang CW, Hwang WJ. The borderland between epilepsy and movement disorders. Acta Neurol Taiwan 2009;18:42–55.

    PubMed  Google Scholar 

  • Jarecki BW, Piekarz AD, Jackson JO 2nd, Cummins TR. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 2010;120:369–78.

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 2010;25:31–8.

    Article  PubMed  CAS  Google Scholar 

  • Judge SI, Bever CT Jr. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006;111:224–59.

    Article  PubMed  CAS  Google Scholar 

  • Kahlig KM, Rhodes TH, Pusch M, et al. Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci U S A 2008;105:9799–804.

    Article  PubMed  CAS  Google Scholar 

  • Katz B. The release of neural transmitter substances. Liverpool: Liverpool University Press, 1969.

    Google Scholar 

  • Lerche H, Weber YG, Jurkat-Rott K, Lehmann-Horn F. Ion channel defects in idiopathic epilepsies. Curr Pharm Des 2005;11:2737–52.

    Article  PubMed  CAS  Google Scholar 

  • Lewis AS, Chetkovich DM. HCN channels in behavior and neurological disease: too hyper or not active enough? Mol Cell Neurosci 2011;46:357–67.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ. Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet 1994;3:941–6.

    Article  PubMed  CAS  Google Scholar 

  • Meola G, Hanna MG, Fontaine B. Diagnosis and new treatment in muscle channelopathies. J Neurol Neurosurg Psychiatry 2009;80:360–5.

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B. Single channel current recorded from membrane of denervated frog muscle fibers. Nature 1976;260:799–802.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Kayano T, et al. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 1986;320:188–92.

    Article  PubMed  CAS  Google Scholar 

  • Purohit P, Mitra A, Auerbach A. A stepwise mechanism for acetylcholine receptor channel gating. Nature 2007;446:930–3.

    Article  PubMed  CAS  Google Scholar 

  • Raffa RB, Pergolizzi JV Jr. The evolving understanding of the analgesic mechanism of action of flupirtine. J Clin Pharm Ther 2012;37:4–6.

    Article  PubMed  CAS  Google Scholar 

  • Raouf R, Quick K, Wood JN. Pain as a channelopathy. J Clin Inves 2010;120:3745–52.

    Article  CAS  Google Scholar 

  • Rus H, Pardo CA, Hu L, et al. The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A 2005;102:11094–9.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Aslam M, Kalluri SR, et al. Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis. N Engl J Med 2012;367:115–23.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science 2006;312:924–7.

    Article  PubMed  CAS  Google Scholar 

  • Vernino S. Autoimmune and paraneoplastic channelopathies. Neurotherapeutics 2007;4:305–14.

    Article  PubMed  CAS  Google Scholar 

  • Vincent A, Dalton P, Clover L, Palace J, Lang B. Antibodies to neuronal targets in neurological and psychiatric diseases. Ann N Y Acad Sci 2003;992:48–55.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Woolf CJ. Pain TRPs. Neuron 2005;46:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Pyrski M, Jacobi E, et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 2011;472:186–90.

    Article  PubMed  CAS  Google Scholar 

  • Yang KC, Jin GZ, Wu J. Mysterious alpha6-containing nAChRs: function, pharmacology, and pathophysiology. Acta Pharmacol Sin 2009;30:740–51.

    Article  PubMed  Google Scholar 

  • Zhan XQ, He YL, Yao JJ, Zhuang JL, Mei YA. The antidepressant citalopram inhibits delayed rectifier outward K+ current in mouse cortical neurons. J Neurosci Res 2012;90:324–36.

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Sun X, Liu L, Wang X, Liu K. Increased expression of aquaporin-1 in the anterior temporal neocortex of patients with intractable epilepsy. Neurol Res 2008;30:400–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2013). Ion Channels and Neurology. In: Applications of Biotechnology in Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-272-8_7

Download citation

Publish with us

Policies and ethics