Skip to main content

Prebiotics and Probiotics: Infant Health and Growth

  • Chapter
  • First Online:
Nutrition in Infancy

Part of the book series: Nutrition and Health ((NH))

Abstract

Human breast milk is always seen as the preferred choice for infant nutrition [1]. It is a wholly nutritious complete food for infants and contains many components that have important bioactive roles [2, 3]. In particular, several glycoprotein and soluble oligasaccharides were found to be selectively stimulatory for bifidobacteria [4, 5]. Gut flora dominated by bifidobacteria account for healthier outcome of breast-milk infants respect to formula-fed ones. Some kinds of oligosaccharides act as soluble receptors of different pathogens at mucosal level, so demonstrating a higher immunological resistance in breast-milk infants [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuthbertson WJF. Evolution of infant nutrition. Br J Nutr. 1999;81:359–71.

    PubMed  CAS  Google Scholar 

  2. Goldman AS, Chheda S, Garofalo R. Spectrum of immunomodulating agents in human milk. Int J Pediatr Hematol Oncol. 1997;4:491–7.

    Google Scholar 

  3. Garofalo RP, Goldman AS. Expression of functional immunomodulatory and anti-inflammatory factors in human milk. Clin Perinatol. 1999;26:361–77.

    PubMed  CAS  Google Scholar 

  4. Gauhe A, Gyorgy P, Hoover JR, et al. Bifidus factor—preparation obtained from human milk. Arch Biochem Biophys. 1954;49:214–24.

    Article  Google Scholar 

  5. Petschow BW, Talbott RD. Response of bifidobacterium species to growth promoters in human and cow milk. Pediatr Res. 1991;29:208–13.

    Article  PubMed  CAS  Google Scholar 

  6. Kunz C, Rudloff S, Baier W, et al. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.

    Article  PubMed  CAS  Google Scholar 

  7. Holzapfel WH, Haberer P, Snel J, et al. Overview of gut flora and probiotics. Int J Food Microbiol. 1998;41:85–101.

    Article  PubMed  CAS  Google Scholar 

  8. Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr. 1999;69:1052S–7.

    PubMed  CAS  Google Scholar 

  9. Gibson GR, McCartney AL. Modification of the gut flora by dietary means. Biochem Soc Trans. 1998;26:222–8.

    PubMed  CAS  Google Scholar 

  10. Dunne C, O’Mahony L, Murphy L, et al. In vitro selection criteria for probioticbacteria of human origin: correlation with in vivo findings. Am J Clin Nutr. 2001;73:386S–92.

    PubMed  CAS  Google Scholar 

  11. Bennet R, Nord CE, Zetterstrom R. Transient colonisation of the gut of newborn infants by orally administered bifidobacteria and lactobacilli. Acta Paediatr. 1992;81:784–7.

    Article  PubMed  CAS  Google Scholar 

  12. Millar MR, Bacon C, Smith SL, et al. Enteral feeding of premature infants with Lactobacillus GG. Arch Dis Child. 1993;69:483–7.

    Article  PubMed  CAS  Google Scholar 

  13. Langhendries JP, Detry J, Van Hees J, et al. Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. J Pediatr Gastroenterol Nutr. 1995;2:177–81.

    Article  Google Scholar 

  14. Isolauri E, Juntunen M, Rautanen T, et al. A human Lactobacillus strain (Lactobacillus casei strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991;88:90–7.

    PubMed  CAS  Google Scholar 

  15. Saavedra JM, Bauman NA, Oung I, et al. Feeding of Bifidobacteriumbifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet. 1994;44:1046–9.

    Article  Google Scholar 

  16. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microflora introducing the concept of probiotics. J Nutr. 1995;125:1401–12.

    PubMed  CAS  Google Scholar 

  17. National Institutes of Health. The NIH roadmap for medical research: the human microbiome project. http://nihroadmap.nih.gov/hmp/. Accessed 1 Nov 2010.

  18. Hattori M, Taylor TD. The human intestinal microbiome: anew frontier of human biology. DNA Res. 2009;16:1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449:804–10.

    Article  PubMed  CAS  Google Scholar 

  20. Verdu EF, Collins SM. Microbial-gut interactions in health and disease. Irritable bowel syndrome. Best Pract Res Clin Gastroenterol. 2004;18:315–21.

    Article  PubMed  Google Scholar 

  21. Perrier C, Corthésy B. Gut permeability and food allergies. Clin Exp Allergy. 2011;41:20–8.

    Article  PubMed  CAS  Google Scholar 

  22. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics or stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek. 1996;70:347–58.

    Article  PubMed  CAS  Google Scholar 

  23. Rhee KJ, Sethupathi P, Driks A, et al. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004;172:1118–24.

    PubMed  CAS  Google Scholar 

  24. Suzuki K, Kawamoto S, Maruya M, et al. GALT: organization and dynamics leading to IgA synthesis. Adv Immunol. 2010;107:153–85.

    Article  PubMed  CAS  Google Scholar 

  25. Severson KM, Mallozzi M, Driks A, et al. B cell development in GALT: role of bacterial superantigen-like molecules. J Immunol. 2010;184:6782–9.

    Article  PubMed  CAS  Google Scholar 

  26. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–44.

    Article  PubMed  CAS  Google Scholar 

  27. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136:2003–14.

    Article  PubMed  Google Scholar 

  28. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23:187–92.

    Article  PubMed  CAS  Google Scholar 

  29. Lin HC. Small intestinal bacterial overgrowth: a framework forunderstanding irritable bowel syndrome. JAMA. 2004;292:852–8.

    Article  PubMed  CAS  Google Scholar 

  30. Maukonen J, Satokari R, Matto J, Soderlund H, Mattila-Sandholm T, Saarela M. Prevalence and temporal stability of selected clostridialgroups in irritable bowel syndrome in relation to predominantfaecal bacteria. J Med Microbiol. 2006;55:625–33.

    Article  PubMed  CAS  Google Scholar 

  31. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–70.

    Article  PubMed  CAS  Google Scholar 

  32. Mshvildadze M, Neu J, Mai V. Intestinal microbiota development in the premature neonate: establishment of a lastingcommensal relationship. Nutr Rev. 2008;66:658–63.

    Article  PubMed  Google Scholar 

  33. New J. Perinatal and neonatal manipulation of the intestinalmicrobiome: a note of caution. Nutr Rev. 2007;1:282–5.

    Google Scholar 

  34. Kirjavainen P, Gibson GR. Heathy gut microflors and allergy: factors influencing development of the microbiots. Ann Med. 1999;31:288–92.

    Article  PubMed  CAS  Google Scholar 

  35. Domiguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.

    Article  Google Scholar 

  36. Saavedra JM. Use of probiotics in pediatrics: rationale, mechanisms of action, and practical aspects. Nutr Clin Pract. 2007;22:351–65.

    Article  PubMed  Google Scholar 

  37. Boeckxstaens GE. Neuroimmune interaction in the gut: from bench to bedside. Verh K Acad Geneeskd Belg. 2006;68:329–55.

    PubMed  CAS  Google Scholar 

  38. Gewolb IH, Schwalbe RS, Taciak VL, et al. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 1999;80:F167–73.

    Article  PubMed  CAS  Google Scholar 

  39. Stark PL, Lee A. The bacterial colonization of the large bowelof pre-term low birth weight neonates. J Hygiene. 1982;89:59–67.

    Article  CAS  Google Scholar 

  40. Buchen L. The new germ theory. Nature. 2010;468:492–5.

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-basedanalysis of fecal microbiota from preterm infants with andwithout necrotizing enterocolitis. ISME J. 2009;3:944–54.

    Article  PubMed  CAS  Google Scholar 

  42. Morowitz MJ, Poroyko V, Caplan M, et al. Redefining the role of intestinal microbes in the pathogenesisof necrotizing enterocolitis. Pediatrics. 2010;125:777–85.

    Article  PubMed  Google Scholar 

  43. Berseth CL. Gastrointestinal motility in the neonate. Clin Perinatol. 1996;23:179–90.

    PubMed  CAS  Google Scholar 

  44. Lucas A, Cole TJ, Morley R, et al. Factors associated with maternal choice to provide breast milk for low birthweight infants. Arch Dis Child. 1988;63:48–52.

    Article  PubMed  CAS  Google Scholar 

  45. Dumont RC, Rudolph CD. Development of gastrointestinal motility in the infant and child. Gastroenterol Clin North Am. 1994;23:655–71.

    PubMed  CAS  Google Scholar 

  46. Piena-Spoel M, Albers MJ, Ten Kate J, Tibboel D. Intestinal permeability in newborns with necrotizing enterocolitis and controls: does the sugar absorption test provide guidelines to (re-)introduce enteral nutrition? J Pediatr Surg. 2001;36:587–92.

    Article  PubMed  CAS  Google Scholar 

  47. Neu J. Gastrointestinal development and meeting the nutritional needs of premature infants. Am J Clin Nutr. 2007;85(suppl):629S–34.

    PubMed  CAS  Google Scholar 

  48. Lebenthal A, Lebenthal E. The ontogeny of the small intestinal epithelium. JPEN J Parenter Enteral Nutr. 1999;23:S3–6.

    Article  PubMed  CAS  Google Scholar 

  49. Berseth CL, Nordyke CK, Valdes MG, et al. Responses of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res. 1992;31:587–90.

    Article  PubMed  CAS  Google Scholar 

  50. Newburg DS. Neonatal protection by innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci. 2009;87:26–34.

    Article  PubMed  CAS  Google Scholar 

  51. Martin R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.

    Article  PubMed  CAS  Google Scholar 

  52. Bruzzese E, Volpicelli M, Salvini F, et al. Early administration of GOS/FOS prevent intestinal and respiratory infections in infants. J Pediatr Gastroenterol Nutr. 2006;42:2–18.

    Article  Google Scholar 

  53. Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr. 2005;93 Suppl 1:S41–8.

    Article  PubMed  CAS  Google Scholar 

  54. Labayen I, Forga L, Gonzalez A, et al. Relationship between lactose digestion, gastrointestinal transit time and symptoms in lactose 30 malabsorbers after dairy consumption. Aliment Pharmacol Ther. 2001;15:543–9.

    Article  PubMed  CAS  Google Scholar 

  55. Clark DA, Miller MJ. Intraluminal pathogenesis of necrotizing enterocolitis. J Pediatr. 1990;117:64–7.

    Article  Google Scholar 

  56. Savilahti E, Kuitunen M, Vaarala O. Pre and probiotics in the prevention and treatment of food allergy. Curr Opin Allergy Clin Immunol. 2008;8:243–8.

    Article  PubMed  Google Scholar 

  57. Furrie E, Macfarlane S, Kennedy A, et al. Symbiotic therapy (bifidobacteriumlongum/Sinergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomized controlled pilot trial. Gut. 2005;54:242–9.

    Article  PubMed  CAS  Google Scholar 

  58. Lu L, Walker WA. Pathogenic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr. 2001;73:1124S–30.

    PubMed  CAS  Google Scholar 

  59. Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol. 2010;37:565–79.

    Article  PubMed  Google Scholar 

  60. Madsen K, Cornish A, Soper P, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121:580–91.

    Article  PubMed  CAS  Google Scholar 

  61. Wehkamp J, Harder J, Wehkamp K, et al. Nf-kB and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun. 2004;72:5750–8.

    Article  PubMed  CAS  Google Scholar 

  62. Arslanoglu S, Moro GE, Schmitt J, et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr. 2008;138:1091–5.

    PubMed  CAS  Google Scholar 

  63. Sherman PM, Cabana M, Gibson GR, et al. Potential roles and clinical utility of prebiotics in newborns, infants, and children: proceedings from a global prebiotic summit meeting, New York City, June 27–28, 2008. J Pediatr. 2009;155:S61–70.

    Article  PubMed  Google Scholar 

  64. Schauber J, Svanholm C, Termen S, et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut. 2003;52:735–41.

    Article  PubMed  CAS  Google Scholar 

  65. Raqib R, Sarker P, Bergman P, et al. Improved outcome in shigellosis asociated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci U S A. 2006;103:9178–83.

    Article  PubMed  CAS  Google Scholar 

  66. Weizman Z, Alsheikh A. Safety and tolerance of a prebiotic formula in early infancy comparing two probiotic agents: a pilot study. J Am Coll Nutr. 2006;25:415–9.

    PubMed  CAS  Google Scholar 

  67. Schwartz GJ, Moran TH. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rats. Am J Physiol. 1998;274:R1236–42.

    PubMed  CAS  Google Scholar 

  68. Bouin M, Savoye G, Maillot C, et al. How do fiber-supplemented formulas affect antroduodenal motility during enteral nutrition? A comparative study between mixed and insoluble fibers. Am J Clin Nutr. 2000;72:1040–6.

    PubMed  CAS  Google Scholar 

  69. McManus CM, Michel KE, Simon DM, et al. Effect of short chain fatty acids on contraction of smooth muscle in the canine colon. Am J Vet Res. 2002;63:295–300.

    Article  PubMed  CAS  Google Scholar 

  70. Cherbut C. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc. 2003;62:95–9.

    Article  PubMed  CAS  Google Scholar 

  71. Longo WE, Ballantyne GH, Savoca PE, et al. Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. Scand J Gastroenterol. 1991;26:442–8.

    Article  PubMed  CAS  Google Scholar 

  72. Ravelli AM, Tobanelli P, Volpi S, et al. Vomiting and gastric motility in infants with cow’s milk allergy. J Pediatr Gastroenterol Nutr. 2001;32:59–64.

    Article  PubMed  CAS  Google Scholar 

  73. Clark DA, Miller MJ. Intraluminal pathogenesis of necrotizing enterocolitis. J Pediatr. 1990;117:s64–7.

    Article  PubMed  CAS  Google Scholar 

  74. Guerrini S, Barbara G, Stanghellini V, et al. Inflamatory neuropathies of the enteric nervous system. Gastroenterology. 2004;126:1872–83.

    Article  PubMed  Google Scholar 

  75. Wang XY, Berezin I, Mikkelsen HB, et al. Pathology of interstitial cells of Cajal in relation to inflammation reveald by ultrastructure but not immunochemistry. Am J Pathol. 2002;160:1529–40.

    Article  PubMed  Google Scholar 

  76. Verdue E, Bergonzelli G, Bercik P, Lopes L, Fürholz A, Rochat F, Corthésy-theulaz I, Collins S. Lactobacillus paracaseii normalizes postinfectivedismotility in vivo- Potential mechanism involved. J Pediatr Gastroenterol Nutr. 2006;42:E96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Indrio M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Indrio, F., Riezzo, G. (2013). Prebiotics and Probiotics: Infant Health and Growth. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-254-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-254-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-253-7

  • Online ISBN: 978-1-62703-254-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics