Skip to main content

Impact of Long-Chain Polyunsaturated Fatty Acids on Cognitive and Mental Development

  • Chapter
  • First Online:
Omega-6/3 Fatty Acids

Part of the book series: Nutrition and Health ((NH))

Abstract

The fetal brain grows rapidly, especially from the beginning of the second half of pregnancy, and growth remains high during the first year of life. During this phase, a high quantity of fatty acids (FAs) is integrated into brain and neuronal tissues. FAs are major components of brain tissue accounting for more than 50% of the dry weight in an adult brain. The long-chain polyunsaturated fatty acids (LC-PUFA) of the omega-3 (n-3) and omega-6 (n-6) family, such as docosahexaenoic acid (DHA; 22:6n-3) and arachidonic acid (AA; 20:4n-6), are the most important FAs for infant and childhood brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenna JT. Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life. Matern Child Nutr. 2011;7 Suppl 2:59–79. doi:10.1111/j.1740-8709.2011.00301.x.

    PubMed  Google Scholar 

  2. Hadders-Algra M, Bouwstra H, van Goor SA, Dijck-Brouwer DAJ, Muskiet FAJ. Prenatal and early postnatal fatty acid status and neurodevelopmental outcome. J Perinat Med. 2007;35 Suppl 1:S28–34. doi:10.1515/JPM.2007.034.

    PubMed  CAS  Google Scholar 

  3. Wainwright PE. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002;61(1):61–9.

    PubMed  CAS  Google Scholar 

  4. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120(4 Pt 2):S129–38.

    PubMed  CAS  Google Scholar 

  5. Davis-Bruno K, Tassinari MS. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: a review of the literature. Birth Defects Res B Dev Reprod Toxicol. 2011;92(3):240–50. doi:10.1002/bdrb.20311.

    PubMed  CAS  Google Scholar 

  6. Neuringer M, Connor WE, van Petten C, Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest. 1984;73(1):272–6. doi:10.1172/JCI111202.

    PubMed  CAS  Google Scholar 

  7. Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA. 1986;83(11):4021–5.

    PubMed  CAS  Google Scholar 

  8. Larque E, Demmelmair H, Koletzko B. Perinatal supply and metabolism of long-chain polyunsaturated fatty acids: importance for the early development of the nervous system. Ann N Y Acad Sci. 2002;967:299–310.

    PubMed  CAS  Google Scholar 

  9. Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984;779(1):89–137.

    PubMed  CAS  Google Scholar 

  10. Kamada T, Yamashita T, Baba Y, Kai M, Setoyama S, Chuman Y, et al. Dietary sardine oil increases erythrocyte membrane fluidity in diabetic patients. Diabetes. 1986;35(5):604–11.

    PubMed  CAS  Google Scholar 

  11. Holte LL, Separovic F, Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids. 1996;31(Suppl):S199–203.

    PubMed  CAS  Google Scholar 

  12. Mitchell DC, Litman BJ. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J. 1998;74(2 Pt 1):879–91. doi:10.1016/S0006-3495(98)74011-1.

    PubMed  CAS  Google Scholar 

  13. Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res. 1999;56(6):565–70.

    PubMed  CAS  Google Scholar 

  14. Su H. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem. 2010;21(5):364–73. doi:10.1016/j.jnutbio.2009.11.003.

    PubMed  CAS  Google Scholar 

  15. Dagai L, Peri-Naor R, Birk RZ. Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res. 2009;34(5):867–75. doi:10.1007/s11064-008-9845-z.

    PubMed  CAS  Google Scholar 

  16. Wu H, Ichikawa S, Tani C, Zhu B, Tada M, Shimoishi Y, et al. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta. 2009;1791(1):8–16. doi:10.1016/j.bbalip.2008.10.004.

    PubMed  CAS  Google Scholar 

  17. He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci USA. 2009;106(27):11370–5. doi:10.1073/pnas.0904835106.

    PubMed  CAS  Google Scholar 

  18. Kim H, Spector AA, Xiong Z. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat. 2011;96(1–4):114–20. doi:10.1016/j.prostaglandins.2011.07.002.

    PubMed  CAS  Google Scholar 

  19. Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009;111(2):510–21. doi:10.1111/j.1471-4159.2009.06335.x.

    PubMed  CAS  Google Scholar 

  20. Lee A. Membrane structure. Curr Biol. 2001;11(20):R811–4.

    PubMed  CAS  Google Scholar 

  21. Chalon S, Vancassel S, Zimmer L, Guilloteau D, Durand G. Polyunsaturated fatty acids and cerebral function: focus on monoaminergic neurotransmission. Lipids. 2001;36(9):937–44.

    PubMed  CAS  Google Scholar 

  22. Alessandri J, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev. 2004;44(6):509–38.

    PubMed  CAS  Google Scholar 

  23. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids. 2006;75(4–5):259–69. doi:10.1016/j.plefa.2006.07.005.

    PubMed  CAS  Google Scholar 

  24. Grintal B, Champeil-Potokar G, Lavialle M, Vancassel S, Breton S, Denis I. Inhibition of astroglial glutamate transport by polyunsaturated fatty acids: evidence for a signalling role of docosahexaenoic acid. Neurochem Int. 2009;54(8):535–43. doi:10.1016/j.neuint.2009.02.018.

    PubMed  CAS  Google Scholar 

  25. Delion S, Chalon S, Hérault J, Guilloteau D, Besnard JC, Durand G. Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J Nutr. 1994; 124(12):2466–76.

    PubMed  CAS  Google Scholar 

  26. Delion S, Chalon S, Guilloteau D, Besnard JC, Durand G. alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J Neurochem. 1996;66(4):1582–91.

    PubMed  CAS  Google Scholar 

  27. Chalon S, Delion-Vancassel S, Belzung C, Guilloteau D, Leguisquet AM, Besnard JC, et al. Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr. 1998;128(12):2512–9.

    PubMed  CAS  Google Scholar 

  28. Ahmad SO, Park J, Radel JD, Levant B. Reduced numbers of dopamine neurons in the substantia nigra pars compacta and ventral tegmental area of rats fed an n-3 polyunsaturated fatty acid-deficient diet: a stereological study. Neurosci Lett. 2008;438(3):303–7. doi:10.1016/j.neulet.2008.04.073.

    PubMed  CAS  Google Scholar 

  29. Berger A, Mutch DM, German JB, Roberts MA. Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis. 2002;1:2.

    PubMed  Google Scholar 

  30. Kitajka K, Puskás LG, Zvara A, Hackler Jr L, Barceló-Coblijn G, Yeo YK, et al. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA. 2002;99(5):2619–24. doi:10.1073/pnas.042698699.

    PubMed  CAS  Google Scholar 

  31. Barceló-Coblijn G, Högyes E, Kitajka K, Puskás LG, Zvara A, Hackler Jr L, et al. Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci USA. 2003;100(20):11321–6. doi:10.1073/pnas.1734008100.

    PubMed  Google Scholar 

  32. Barceló-Coblijn G, Kitajka K, Puskás LG, Hogyes E, Zvara A, Hackler Jr L, et al. Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim Biophys Acta. 2003;1632(1–3):72–9.

    PubMed  Google Scholar 

  33. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, et al. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA. 2004;101(30):10931–6. doi:10.1073/pnas.0402342101.

    PubMed  CAS  Google Scholar 

  34. Salvati S, Natali F, Attorri L, Di Benedetto R, Leonardi F, Di Biase A, et al. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res. 2008;86(4):776–84. doi:10.1002/jnr.21537.

    PubMed  CAS  Google Scholar 

  35. Lengqvist J, de Mata Urquiza A, Bergman A, Willson TM, Sjövall J, Perlmann T, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics. 2004;3(7):692–703. doi:10.1074/mcp.M400003-MCP200.

    PubMed  CAS  Google Scholar 

  36. Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137(4):855–9.

    PubMed  CAS  Google Scholar 

  37. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 2008;10(4):219–35. doi:10.1007/s12017-008-8036-z.

    PubMed  CAS  Google Scholar 

  38. Orr SK, Bazinet RP. The emerging role of docosahexaenoic acid in neuroinflammation. Curr Opin Investig Drugs. 2008;9(7):735–43.

    PubMed  CAS  Google Scholar 

  39. Sinclair HM. Essential fatty acids—an historical perspective. Biochem Soc Trans. 1990;18(5):756–61.

    PubMed  CAS  Google Scholar 

  40. Brenna JT, Salem N, Sinclair AJ, Cunnane SC. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2–3):85–91. doi:10.1016/j.plefa.2009.01.004.

    PubMed  CAS  Google Scholar 

  41. Demmelmair H, von Schenck U, Behrendt E, Sauerwald T, Koletzko B. Estimation of arachidonic acid synthesis in full term neonates using natural variation of 13C content. J Pediatr Gastroenterol Nutr. 1995;21(1):31–6.

    PubMed  CAS  Google Scholar 

  42. Carnielli VP, Wattimena DJ, Luijendijk IH, Boerlage A, Degenhart HJ, Sauer PJ. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr Res. 1996;40(1):169–74.

    PubMed  CAS  Google Scholar 

  43. Salem N, Wegher B, Mena P, Uauy R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA. 1996;93(1):49–54.

    PubMed  CAS  Google Scholar 

  44. Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC. Intermediates in endogenous synthesis of C22:6 omega 3 and C20:4 omega 6 by term and preterm infants. Pediatr Res. 1997;41(2):183–7.

    PubMed  CAS  Google Scholar 

  45. Chambaz J, Ravel D, Manier MC, Pepin D, Mulliez N, Bereziat G. Essential fatty acids interconversion in the human fetal liver. Biol Neonate. 1985;47(3):136–40.

    PubMed  CAS  Google Scholar 

  46. Uauy R, Mena P, Wegher B, Nieto S, Salem N. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res. 2000;47(1):127–35.

    PubMed  CAS  Google Scholar 

  47. Lin YH, Llanos A, Mena P, Uauy R, Salem N, Pawlosky RJ. Compartmental analyses of 2 H5-alpha-linolenic acid and C-U-eicosapentaenoic acid toward synthesis of plasma labeled 22:6n-3 in newborn term infants. Am J Clin Nutr. 2010;92(2):284–93. doi:10.3945/ajcn.2009.28779.

    PubMed  CAS  Google Scholar 

  48. Greiner RC, Winter J, Nathanielsz PW, Brenna JT. Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary alpha-linolenic and docosahexaenoic acids. Pediatr Res. 1997;42(6):826–34.

    PubMed  CAS  Google Scholar 

  49. Su HM, Huang MC, Saad NM, Nathanielsz PW, Brenna JT. Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo. A stable isotope tracer study. J Lipid Res. 2001;42(4):581–6.

    PubMed  CAS  Google Scholar 

  50. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994;60(2):189–94.

    PubMed  CAS  Google Scholar 

  51. Farquharson J, Jamieson EC, Abbasi KA, Patrick WJ, Logan RW, Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995;72(3):198–203.

    PubMed  CAS  Google Scholar 

  52. Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5(2):127–32.

    PubMed  CAS  Google Scholar 

  53. Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human ­placenta. Am J Clin Nutr. 2000;71(1 Suppl):315S–22.

    PubMed  CAS  Google Scholar 

  54. Makrides M, Neumann MA, Jeffrey B, Lien EL, Gibson RA. A randomized trial of different ratios of linoleic to alpha-linolenic acid in the diet of term infants: effects on visual function and growth. Am J Clin Nutr. 2000;71(1):120–9.

    PubMed  CAS  Google Scholar 

  55. Fidler N, Sauerwald T, Pohl A, Demmelmair H, Koletzko B. Docosahexaenoic acid transfer into human milk after dietary supplementation: a randomized clinical trial. J Lipid Res. 2000;41(9):1376–83.

    PubMed  CAS  Google Scholar 

  56. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth—a review. Placenta. 2002;23(Suppl A):S28–38. doi:10.1053/plac.2002.0791.

    PubMed  Google Scholar 

  57. Dunstan JA, Roper J, Mitoulas L, Hartmann PE, Simmer K, Prescott SL. The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14, cytokine levels and fatty acid composition. Clin Exp Allergy. 2004;34(8):1237–42. doi:10.1111/j.1365-2222.2004.02028.x.

    PubMed  CAS  Google Scholar 

  58. Boris J, Jensen B, Salvig JD, Secher NJ, Olsen SF. A randomized controlled trial of the effect of fish oil supplementation in late pregnancy and early lactation on the n-3 fatty acid content in human breast milk. Lipids. 2004;39(12):1191–6.

    PubMed  CAS  Google Scholar 

  59. Jensen CL, Voigt RG, Prager TC, Zou YL, Fraley JK, Rozelle JC, et al. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr. 2005;82(1):125–32.

    PubMed  CAS  Google Scholar 

  60. Agostoni C, Galli C, Riva E, Colombo C, Giovannini M, Marangoni F. Reduced docosahexaenoic acid synthesis may contribute to growth restriction in infants born to mothers who smoke. J Pediatr. 2005;147(6):854–6. doi:10.1016/j.jpeds.2005.05.040.

    PubMed  CAS  Google Scholar 

  61. Krauss-Etschmann S, Shadid R, Campoy C, Hoster E, Demmelmair H, Jiménez M, et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am J Clin Nutr. 2007;85(5):1392–400.

    PubMed  CAS  Google Scholar 

  62. Dunstan JA, Mitoulas LR, Dixon G, Doherty DA, Hartmann PE, Simmer K, et al. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: a randomized controlled trial. Pediatr Res. 2007;62(6):689–94. doi:10.1203/PDR.0b013e318159a93a.

    PubMed  CAS  Google Scholar 

  63. Ribeiro P, Carvalho FDF, Abreu AA de, Sant’anna MT de, Lima RJ de, Carvalho PO de. Effect of fish oil supplementation in pregnancy on the fatty acid composition of erythrocyte phospholipids and breast milk lipids. Int J Food Sci Nutr. 2012. doi: 10.3109/09637486.2011.593714.

  64. Imhoff-Kunsch B, Stein AD, Villalpando S, Martorell R, Ramakrishnan U. Docosahexaenoic acid supplementation from mid-pregnancy to parturition influenced breast milk fatty acid concentrations at 1 month postpartum in Mexican women. J Nutr. 2011;141(2):321–6. doi:10.3945/jn.110.126870.

    PubMed  CAS  Google Scholar 

  65. Jensen CL, Lapillonne A. Docosahexaenoic acid and lactation. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2–3):175–8. doi:10.1016/j.plefa.2009.05.006.

    PubMed  CAS  Google Scholar 

  66. Glaser C, Lattka E, Rzehak P, Steer C, Koletzko B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern Child Nutr. 2011;7 Suppl 2:27–40. doi:10.1111/j.1740-8709.2011.00319.x.

    PubMed  Google Scholar 

  67. Hanebutt FL, Demmelmair H, Schiessl B, Larqué E, Koletzko B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr. 2008;27(5):685–93. doi:10.1016/j.clnu.2008.05.010.

    PubMed  CAS  Google Scholar 

  68. Larqué E, Demmelmair H, Gil-Sánchez A, Prieto-Sánchez MT, Blanco JE, Pagán A, et al. Placental transfer of fatty acids and fetal implications. Am J Clin Nutr. 2011;94(6 Suppl):1908S–13. doi:10.3945/ajcn.110.001230.

    PubMed  Google Scholar 

  69. Tobin KAR, Johnsen GM, Staff AC, Duttaroy AK. Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells. Placenta. 2009;30(1):41–7. doi:10.1016/j.placenta.2008.10.007.

    PubMed  CAS  Google Scholar 

  70. Larqué E, Demmelmair H, Berger B, Hasbargen U, Koletzko B. In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans. J Lipid Res. 2003;44(1):49–55.

    PubMed  Google Scholar 

  71. Larqué E, Demmelmair H, Klingler M, de Jonge S, Bondy B, Koletzko B. Expression pattern of fatty acid transport protein-1 (FATP-1), FATP-4 and heart-fatty acid binding protein (H-FABP) genes in human term placenta. Early Hum Dev. 2006;82(10):697–701. doi:10.1016/j.earlhumdev.2006.02.001.

    PubMed  Google Scholar 

  72. Koletzko B, Larqué E, Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med. 2007;35 Suppl 1:S5–11. doi:10.1515/JPM.2007.030.

    PubMed  CAS  Google Scholar 

  73. Cunningham P, McDermott L. Long chain PUFA transport in human term placenta. J Nutr. 2009;139(4):636–9. doi:10.3945/jn.108.098608.

    PubMed  CAS  Google Scholar 

  74. Campbell FM, Gordon MJ, Dutta-Roy AK. Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes. Mol Cell Biochem. 1996;155(1):77–83.

    PubMed  CAS  Google Scholar 

  75. Campbell FM, Gordon MJ, Dutta-Roy AK. Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sci. 1998;63(4):235–40.

    PubMed  CAS  Google Scholar 

  76. Decsi T, Koletzko B. N-3 fatty acids and pregnancy outcomes. Curr Opin Clin Nutr Metab Care. 2005;8(2):161–6.

    PubMed  CAS  Google Scholar 

  77. Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41(9):851–8.

    PubMed  CAS  Google Scholar 

  78. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007; 85(6):1457–64.

    PubMed  CAS  Google Scholar 

  79. Marangoni F, Agostoni C, Lammardo AM, Bonvissuto M, Giovannini M, Galli C, et al. Polyunsaturated fatty acids in maternal plasma and in breast milk. Prostaglandins Leukot Essent Fatty Acids. 2002;66 (5–6):535–40.

    PubMed  CAS  Google Scholar 

  80. Smit EN, Martini IA, Mulder H, Boersma ER, Muskiet FAJ. Estimated biological variation of the mature human milk fatty acid composition. Prostaglandins Leukot Essent Fatty Acids. 2002; 66(5–6):549–55.

    PubMed  CAS  Google Scholar 

  81. Sanders TA, Reddy S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr. 1992;120(4 Pt 2):S71–7.

    PubMed  CAS  Google Scholar 

  82. Agostoni C, Marangoni F, Grandi F, Lammardo AM, Giovannini M, Riva E, et al. Earlier smoking habits are associated with higher serum lipids and lower milk fat and polyunsaturated fatty acid content in the first 6 months of lactation. Eur J Clin Nutr. 2003;57(11):1466–72. doi:10.1038/sj.ejcn.1601711.

    PubMed  CAS  Google Scholar 

  83. Gibson RA, Neumann MA, Makrides M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur J Clin Nutr. 1997;51(9):578–84.

    PubMed  CAS  Google Scholar 

  84. Makrides M, Neumann MA, Gibson RA. Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. Eur J Clin Nutr. 1996;50(6):352–7.

    PubMed  CAS  Google Scholar 

  85. Helland IB, Saugstad OD, Saarem K, van Houwelingen AC, Nylander G, Drevon CA. Supplementation of n-3 fatty acids during pregnancy and lactation reduces maternal plasma lipid levels and provides DHA to the infants. J Matern Fetal Neonatal Med. 2006;19(7):397–406. doi:10.1080/14767050600738396.

    PubMed  CAS  Google Scholar 

  86. Weseler AR, Dirix CEH, Bruins MJ, Hornstra G. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk. J Nutr. 2008;138(11):2190–7. doi:10.3945/jn.108.089318.

    PubMed  CAS  Google Scholar 

  87. van Goor SA, Dijck-Brouwer DAJ, Hadders-Algra M, Doornbos B, Erwich JJ, Schaafsma A, et al. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation. Prostaglandins Leukot Essent Fatty Acids. 2009;80(1):65–9. doi:10.1016/j.plefa.2008.11.002.

    PubMed  Google Scholar 

  88. Smit EN, Koopmann M, Boersma ER, Muskiet FA. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition. Prostaglandins Leukot Essent Fatty Acids. 2000;62(6):335–40. doi:10.1054/plef.2000.0163.

    PubMed  CAS  Google Scholar 

  89. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr. 2008;138(11):2222–8. doi:10.3945/jn.108.096156.

    PubMed  CAS  Google Scholar 

  90. Moltó-Puigmartí C, Plat J, Mensink RP, Müller A, Jansen E, Zeegers MP, et al. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91(5):1368–76. doi:10.3945/ajcn.2009.28789.

    PubMed  Google Scholar 

  91. Koletzko B, Lattka E, Zeilinger S, Illig T, Steer C. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr. 2011;93(1):211–9. doi:10.3945/ajcn.110.006189.

    PubMed  CAS  Google Scholar 

  92. Lattka E, Rzehak P, Szabó É, Jakobik V, Weck M, Weyermann M, et al. Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr. 2011;93(2):382–91. doi:10.3945/ajcn.110.004515.

    PubMed  CAS  Google Scholar 

  93. Weinberg RB, Greenwood AT, Chacon-Angobaldo R. Lactating women with the apolipoprotein A-IV T347S polymorphism display increased secretion of dietary docosahexaenoic acid (DHA) into breast milk. Gastroenterology. 2005;128:A–98.

    Google Scholar 

  94. Cheruku SR, Montgomery-Downs HE, Farkas SL, Thoman EB, Lammi-Keefe CJ. Higher maternal plasma docosahexaenoic acid during pregnancy is associated with more mature neonatal sleep-state patterning. Am J Clin Nutr. 2002;76(3):608–13.

    PubMed  CAS  Google Scholar 

  95. Dijck-Brouwer DAJ, Hadders-Algra M, Bouwstra H, Decsi T, Boehm G, Martini IA, et al. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition. Prostaglandins Leukot Essent Fatty Acids. 2005;72(1):21–8. doi:10.1016/j.plefa.2004.08.002.

    PubMed  CAS  Google Scholar 

  96. Bouwstra H, Dijck-Brouwer J, Decsi T, Boehm G, Boersma ER, Muskiet FA, et al. Neurologic condition of healthy term infants at 18 months: positive association with venous umbilical DHA status and negative association with umbilical trans-fatty acids. Pediatr Res. 2006;60(3):334–9. doi:10.1203/01.pdr.0000233043.16674.1d.

    PubMed  CAS  Google Scholar 

  97. Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatr. 2008;152(3):356–64. doi:10.1016/j.jpeds.2007.07.008.

    PubMed  CAS  Google Scholar 

  98. Kannass KN, Colombo J, Carlson SE. Maternal DHA levels and toddler free-play attention. Dev Neuropsychol. 2009;34(2):159–74. doi:10.1080/87565640802646734.

    PubMed  Google Scholar 

  99. Bakker EC, Hornstra G, Blanco CE, Vles JSH. Relationship between long-chain polyunsaturated fatty acids at birth and motor function at 7 years of age. Eur J Clin Nutr. 2009;63(4):499–504. doi:10.1038/sj.ejcn.1602971.

    PubMed  CAS  Google Scholar 

  100. Bouwstra H, Dijck-Brouwer DJ, Decsi T, Boehm G, Boersma ER, Muskiet FA, et al. Relationship between umbilical cord essential fatty acid content and the quality of general movements of healthy term infants at 3 months. Pediatr Res. 2006;59(5):717–22. doi:10.1203/01.pdr.0000215013.19164.57.

    PubMed  CAS  Google Scholar 

  101. Ghys A, Bakker E, Hornstra G, van den Hout M. Red blood cell and plasma phospholipid arachidonic and docosahexaenoic acid levels at birth and cognitive development at 4 years of age. Early Hum Dev. 2002;69(1–2):83–90.

    PubMed  CAS  Google Scholar 

  102. Bakker EC, Ghys AJA, Kester ADM, Vles JS, Dubas JS, Blanco CE, et al. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 y of age. Eur J Clin Nutr. 2003;57(1):89–95. doi:10.1038/sj.ejcn.1601506.

    PubMed  CAS  Google Scholar 

  103. Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004;15(4):394–402.

    PubMed  Google Scholar 

  104. Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, et al. Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect. 2005;113(10):1376–80.

    PubMed  CAS  Google Scholar 

  105. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369(9561):578–85. doi:10.1016/S0140-6736(07)60277-3.

    PubMed  Google Scholar 

  106. Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, Kleinman KP, et al. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol. 2008;167(10):1171–81. doi:10.1093/aje/kwn034.

    PubMed  Google Scholar 

  107. Mendez MA, Torrent M, Julvez J, Ribas-Fitó N, Kogevinas M, Sunyer J. Maternal fish and other seafood intakes during pregnancy and child neurodevelopment at age 4 years. Public Health Nutr. 2009;12(10):1702–10. doi:10.1017/S1368980008003947.

    PubMed  Google Scholar 

  108. Gale CR, Marriott LD, Martyn CN, Limond J, Inskip HM, Godfrey KM, et al. Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood. Arch Dis Child. 2010;95(3):174–9. doi:10.1136/adc.2009.165050.

    PubMed  Google Scholar 

  109. Dunstan JA, Simmer K, Dixon G, Prescott SL. Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F45–50. doi:10.1136/adc.2006.099085.

    PubMed  CAS  Google Scholar 

  110. Judge MP, Harel O, Lammi-Keefe CJ. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am J Clin Nutr. 2007;85(6):1572–7.

    PubMed  CAS  Google Scholar 

  111. Makrides M, Collins CT, Gibson RA. Impact of fatty acid status on growth and neurobehavioral development in humans. Matern Child Nutr. 2011;7 Suppl 2:80–8. doi:10.1111/j.1740-8709.2011.00304.x.

    PubMed  Google Scholar 

  112. Tofail F, Kabir I, Hamadani JD, Chowdhury F, Yesmin S, Mehreen F, et al. Supplementation of fish-oil and soy-oil during pregnancy and psychomotor development of infants. J Health Popul Nutr. 2006; 24(1):48–56.

    PubMed  Google Scholar 

  113. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83. doi:10.1001/jama.2010.1507.

    PubMed  CAS  Google Scholar 

  114. Campoy C, Escolano-Margarit MV, Ramos R, Parrilla-Roure M, Csábi G, Beyer J, et al. Effects of prenatal fish-oil and 5-methyltetrahydrofolate supplementation on cognitive development of children at 6.5 y of age. Am J Clin Nutr. 2011;94(6 Suppl):1880S–8. doi:10.3945/ajcn.110.001107.

    PubMed  CAS  Google Scholar 

  115. Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K, Ganes T, et al. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics. 2001; 108(5):E82.

    PubMed  CAS  Google Scholar 

  116. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.

    PubMed  Google Scholar 

  117. Helland IB, Smith L, Blomén B, Saarem K, Saugstad OD, Drevon CA. Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics. 2008;122(2):e472–9. doi:10.1542/peds.2007-2762.

    PubMed  Google Scholar 

  118. van Goor SA, Dijck-Brouwer DAJ, Erwich JJHM, Schaafsma A, Hadders-Algra M. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months. Prostaglandins Leukot Essent Fatty Acids. 2011;84(5–6):139–46. doi:10.1016/j.plefa.2011.01.002.

    PubMed  Google Scholar 

  119. Decsi T, Campoy C, Koletzko B. Effect of N-3 polyunsaturated fatty acid supplementation in pregnancy: the Nuheal trial. Adv Exp Med Biol. 2005;569:109–13. doi:10.1007/1-4020-3535-7_15.

    PubMed  Google Scholar 

  120. Lauritzen L, Jørgensen MH, Olsen SF, Straarup EM, Michaelsen KF. Maternal fish oil supplementation in lactation: effect on developmental outcome in breast-fed infants. Reprod Nutr Dev. 2005;45(5):535–47. doi:10.1051/rnd:2005044.

    PubMed  CAS  Google Scholar 

  121. Cheatham CL, Nerhammer AS, Asserhøj M, Michaelsen KF, Lauritzen L. Fish oil supplementation during lactation: effects on cognition and behavior at 7 years of age. Lipids. 2011;46(7):637–45. doi:10.1007/s11745-011-3557-x.

    PubMed  CAS  Google Scholar 

  122. Jensen CL, Voigt RG, Llorente AM, Peters SU, Prager TC, Zou YL, et al. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J Pediatr. 2010;157(6):900–5. doi:10.1016/j.jpeds.2010.06.006.

    PubMed  CAS  Google Scholar 

  123. Dziechciarz P, Horvath A, Szajewska H. Effects of n-3 long-chain polyunsaturated fatty acid supplementation during pregnancy and/or lactation on neurodevelopment and visual function in children: a systematic review of randomized controlled trials. J Am Coll Nutr. 2010;29(5):443–54.

    PubMed  CAS  Google Scholar 

  124. Delgado-Noguera MF, Calvache JA, Bonfill Cosp X. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst Rev. 2010;12:CD007901. doi:10.1002/14651858.CD007901.pub2.

    PubMed  Google Scholar 

  125. Agostoni C, Trojan S, Bellù R, Riva E, Giovannini M. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr Res. 1995;38(2):262–6.

    PubMed  CAS  Google Scholar 

  126. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet. 1998;352(9129):688–91.

    PubMed  CAS  Google Scholar 

  127. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids. 1998;33(10):973–80.

    PubMed  CAS  Google Scholar 

  128. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol. 2000;42(3):174–81.

    PubMed  CAS  Google Scholar 

  129. Bouwstra H, Dijck-Brouwer DAJ, Wildeman JAL, Tjoonk HM, van der Heide JC, Boersma ER, et al. Long-chain polyunsaturated fatty acids have a positive effect on the quality of general movements of healthy term infants. Am J Clin Nutr. 2003;78(2):313–8.

    PubMed  CAS  Google Scholar 

  130. Drover J, Hoffman DR, Castañeda YS, Morale SE, Birch EE. Three randomized controlled trials of early long-chain polyunsaturated Fatty Acid supplementation on means-end problem solving in 9-month-olds. Child Dev. 2009;80(5):1376–84. doi:10.1111/j.1467-8624.2009.01339.x.

    PubMed  Google Scholar 

  131. Agostoni C, Trojan S, Bellù R, Riva E, Bruzzese MG, Giovannini M. Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow up study. Arch Dis Child. 1997;76(5):421–4.

    PubMed  CAS  Google Scholar 

  132. Scott DT, Janowsky JS, Carroll RE, Taylor JA, Auestad N, Montalto MB. Formula supplementation with long-chain polyunsaturated fatty acids: are there developmental benefits? Pediatrics. 1998;102(5):E59.

    PubMed  CAS  Google Scholar 

  133. Lucas A, Stafford M, Morley R, Abbott R, Stephenson T, MacFadyen U, et al. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet. 1999;354(9194):1948–54. doi:10.1016/S0140-6736(99)02314-4.

    PubMed  CAS  Google Scholar 

  134. Makrides M, Neumann MA, Simmer K, Gibson RA. A critical appraisal of the role of dietary long-chain polyunsaturated fatty acids on neural indices of term infants: a randomized, controlled trial. Pediatrics. 2000;105(1 Pt 1):32–8.

    PubMed  CAS  Google Scholar 

  135. Auestad N, Halter R, Hall RT, Blatter M, Bogle ML, Burks W, et al. Growth and development in term infants fed long-chain polyunsaturated fatty acids: a double-masked, randomized, parallel, prospective, multivariate study. Pediatrics. 2001;108(2):372–81.

    PubMed  CAS  Google Scholar 

  136. Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, et al. Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics. 2003;112(3 Pt 1):e177–83.

    PubMed  Google Scholar 

  137. Bouwstra H, Dijck-Brouwer DAJ, Boehm G, Boersma ER, Muskiet FAJ, Hadders-Algra M. Long-chain polyunsaturated fatty acids and neurological developmental outcome at 18 months in healthy term infants. Acta Paediatr. 2005;94(1):26–32.

    PubMed  CAS  Google Scholar 

  138. Birch EE, Garfield S, Castañeda Y, Hughbanks-Wheaton D, Uauy R, Hoffman D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev. 2007;83(5):279–84. doi:10.1016/j.earlhumdev.2006.11.003.

    PubMed  CAS  Google Scholar 

  139. de Jong C, Kikkert HK, Fidler V, Hadders-Algra M. The Groningen LCPUFA study: no effect of postnatal long-chain polyunsaturated fatty acids in healthy term infants on neurological condition at 9 years. Br J Nutr. 2010;104(4):566–72. doi:10.1017/S0007114510000863.

    PubMed  Google Scholar 

  140. Drover JR, Hoffman DR, Castañeda YS, Morale SE, Garfield S, Wheaton DH, et al. Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum Dev. 2011;87(3):223–30. doi:10.1016/j.earlhumdev.2010.12.047.

    PubMed  Google Scholar 

  141. Makrides M, Smithers LG, Gibson RA. Role of long-chain polyunsaturated fatty acids in neurodevelopment and growth. Nestle Nutr Workshop Ser Pediatr Program. 2010;65:123–33. doi:10.1159/000281154. discussion 133–6.

    PubMed  Google Scholar 

  142. Beyerlein A, Hadders-Algra M, Kennedy K, Fewtrell M, Singhal A, Rosenfeld E, et al. Infant formula supplementation with long-chain polyunsaturated fatty acids has no effect on Bayley developmental scores at 18 months of age—IPD meta-analysis of 4 large clinical trials. J Pediatr Gastroenterol Nutr. 2010;50(1):79–84. doi:10.1097/MPG.0b013e3181acae7d.

    PubMed  CAS  Google Scholar 

  143. Simmer K, Patole SK, Rao SC. Longchain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev. 2011;7(12):CD000376.

    Google Scholar 

  144. D-A-CH, German nutrition society (DGE), Austrian nutrition society (ÖGE), Swiss nutrition society (SGE), Swiss nutrition federation (SVE), (2008) Reference values for the nutrient supplies. Frankfurt am Main, Umschau/Braus.

    Google Scholar 

  145. EFSA (European Food Safety Authority). Labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. http://www.efsa.europa.eu/fr/scdocs/doc/1176.pdf. Updated 9 July 2009. Accessed 5 Oct 2011.

  146. NNR (Nordic Nutrition Recommendations 2004). Integrating nutrition and physical activity, 4th edition. http://www.norden.org/fi/julkaisut/julkaisut/2004-013/excerpt. Updated 9 Jan 2005. Accessed 5 Oct 2011.

  147. GR (Gezondheidsraad) HCotN. Dietary reference intakes: energy, proteins, fats and digestible carbohydrates: publication no. 2001/19R. http://www.gezondheidsraad.nl/sites/default/files/01@19ER.PDF. Updated 5 July 2002. Accessed 5 Oct 2011.

  148. GR (Gezondheidsraad) HCotN. Guidelines for a healthy diet 2006: publication no. 2006/21E. http://www.gezondheidsraad.nl/sites/default/files/200621E_0.pdf. Updated 4 Sept 2007. Accessed 5 Oct 2011.

  149. Koletzko B, Lien E, Agostoni C, Böhles H, Campoy C, Cetin I, et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. 2008;36(1):5–14. doi:10.1515/JPM.2008.001.

    PubMed  CAS  Google Scholar 

  150. IOM-FNB IoMaNB. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients), A report of the Panel on Macronutrients, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Washington DC: National Academy Press; 2005.

    Google Scholar 

  151. Lewis NM, Widga AC, Buck JS, Frederick AM. Survey of omega-3 fatty acids in diets of midwest low-income pregnant women. J Agromed. 1995;2:49–56.

    Google Scholar 

  152. Simopoulos AP, Leaf A, Salem N. Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2000;63(3):119–21. doi:10.1054/plef.2000.0176.

    PubMed  CAS  Google Scholar 

  153. Judge MP, Loosemore ED, DeMare CI, Keplinger MR, et al. Dietary docosahexaenoic acid (DHA) intake in pregnant women. J Am Diet Assoc. 2003;103:A82.

    Google Scholar 

  154. Denomme J, Stark KD, Holub BJ. Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr. 2005;135(2):206–11.

    PubMed  CAS  Google Scholar 

  155. DGE, German nutrition society (2004) Diet report 2004. German nutrition society, registered society, Bonn.

    Google Scholar 

  156. Domingo JL, Bocio A, Falcó G, Llobet JM. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007;230(2–3):219–26. doi:10.1016/j.tox.2006.11.054.

    PubMed  CAS  Google Scholar 

  157. Gibson RA, Muhlhausler B, Makrides M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern Child Nutr. 2011;7 Suppl 2:17–26. doi:10.1111/j.1740-8709.2011.00299.x.

    PubMed  Google Scholar 

  158. Koletzko B, Uauy R, Palou A, Kok F, Hornstra G, Eilander A, et al. Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in children—a workshop report. Br J Nutr. 2010;103(6):923–8. doi:10.1017/S0007114509991851.

    PubMed  CAS  Google Scholar 

  159. Schwartz J, Dube K, Alexy U, Kalhoff H, Kersting M. PUFA and LC-PUFA intake during the first year of life: can dietary practice achieve a guideline diet? Eur J Clin Nutr. 2010;64(2):124–30. doi:10.1038/ejcn.2009.123.

    PubMed  CAS  Google Scholar 

  160. McNamara RK, Able J, Jandacek R, Rider T, Tso P, Eliassen JC, et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am J Clin Nutr. 2010;91(4):1060–7. doi:10.3945/ajcn.2009.28549.

    PubMed  CAS  Google Scholar 

  161. Lauritzen L, Carlson SE. Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern Child Nutr. 2011;7 Suppl 2:41–58. doi:10.1111/j.1740-8709.2011.00303.x.

    PubMed  Google Scholar 

  162. Neubronner J, Schuchardt JP, Kressel G, Merkel M, von Schacky C, Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr. 2011;65(2):247–54. doi:10.1038/ejcn.2010.239.

    PubMed  CAS  Google Scholar 

  163. Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids. 2010;83(3):137–41. doi:10.1016/j.plefa.2010.06.007.

    PubMed  CAS  Google Scholar 

  164. Schuchardt JP, Schneider I, Meyer H, Neubronner J, von Schacky C, Hahn A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011;10:145. doi:10.1186/1476-511X-10-145.

    PubMed  CAS  Google Scholar 

  165. Lattka E, Koletzko B, Zeilinger S, Hibbeln JR, Klopp N, Ring SM, Steer CD. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr. 2012;9:1–15.

    Google Scholar 

  166. Meldrum SJ, D’Vaz N, Simmer K, Dunstan JA, Hird K, Prescott SL. Effects of high-dose fish oil supplementation during early infancy on neurodevelopment and language: a randomised controlled trial. Br J Nutr. 2012;21:1–12.

    Google Scholar 

  167. Lo A, Sienna J, Mamak E, Djokanovic N, Westall C, Koren G. The effects of maternal supplementation of polyunsaturated Fatty acids on visual, neurobehavioural, and developmental outcomes of the child: a systematic review of the randomized trials. Obstet Gynecol Int. 2012;2012:591531.

    Google Scholar 

  168. Campoy C, Escolano-Margarit MV, Anjos T, Szajewska H, Uauy R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr. 2012;107 Suppl 2:S85–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Schuchardt MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuchardt, J.P., Hahn, A. (2013). Impact of Long-Chain Polyunsaturated Fatty Acids on Cognitive and Mental Development. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics