Skip to main content

Effects of Omega-3 Fatty Acids on Genetic Expressions

  • Chapter
  • First Online:
Omega-6/3 Fatty Acids

Abstract

Recent studies indicate that the optimal ratio of ω-6 and ω-3 fatty acids may vary within the pathogenesis of a disease under consideration. This is consistent with the fact that noncommunicable diseases (NCDs) are polygenic and multifactorial. It seems likely that the therapeutic dose of omega-3 fatty acids will depend on the risk factor of the disease as well as on degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the NCDs of high prevalence in Western societies, as well as in the developing countries that are rapidly adopting Western dietary habits (1–3). It has been proposed that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of ∼1, whereas in Western diets the ratio is 15/1 to 16.7/1 and in Asia the ratio may be 1/50. Modern diets are deficient in omega-3 fatty acids and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today’s modern diets, promote the pathogenesis of NCDs, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio) exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2–3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. It is possible that the intake of wild foods rich in ω-3 and low in ω-6 fatty acids may also be protective, whereas Western diet and lifestyle may enhance the expression of genes related to NCDs. Our genes or pathways are most likely regulated by microRNA (2–4). It is difficult to tell which miRNA sequences might be responsible. It is possible now to apply a simple and accurate real-time PCR technique to identify miRNA expression patterns that correlate with biological phenotypes of the disease. Cardiovascular diseases (CVD), diabetes, obesity, and cancer are polygenic in nature, and their prevalences and mortality vary depending upon genetic susceptibility and presence of phenotype risk factors (1–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://projects.tcag.ca/variation

  2. 2.

    www.columbus-concept.com

References

  1. Berdanier CD, Hargrove JL. Nutrition and gene expression. Boca Raton, FL: CRC; 1993. p. 10–20.

    Google Scholar 

  2. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology in to clinical applications. Can Med Asso J. 2006;174:341–8.

    Article  Google Scholar 

  3. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed  CAS  Google Scholar 

  4. Trojer P, Reinberg D. Histone, lysine, demethylases and their impact on epigenetics. Cell. 2006;125:213–7.

    Article  PubMed  CAS  Google Scholar 

  5. Drury SS, Theall K, Gleasom MM, Smyke AT, De Vivo I, Wong JYY, et al. Telomere length and early severe social deprivation: linking early adversity and cellular ageing. Mol Psychiatry. 2012;17(7):719–27. doi:10.1038/mp.2011.53.

    Article  PubMed  CAS  Google Scholar 

  6. Masuzaki H, Paterson J, Shinayama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.

    Article  PubMed  CAS  Google Scholar 

  7. Bensatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr. 2004;23:281–302.

    Article  Google Scholar 

  8. Singh RB, Niaz MA. Genetic variation and nutrition, in relation to coronary artery disease. J Assoc Physicians India. 1999;47:1185–90.

    PubMed  CAS  Google Scholar 

  9. Isles AR, Wilkilson LS. Epigenetics: what is it and why it is important to mental diseases. BMJ. 2008;85:35–45.

    CAS  Google Scholar 

  10. Simopoulos AP. Geneic variants in the metabolism of w-6 and w-3 fatty acids: their role in the nutritional requirements and chronic disease risk. Exp Biol Med. 2010;235:785–95.

    Article  CAS  Google Scholar 

  11. Dolgin E, Keegan K, Allada R. Unlocking the clock. Science. 2008;22:27.

    Google Scholar 

  12. Mishra S, Singh RB, Dwivedi SP, De Meester F, Rubar R, Pella D, et al. Effects of nutraceuticals on gene expression. The Open Nutra J. 2009;2:70–80.

    Article  CAS  Google Scholar 

  13. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    Article  PubMed  CAS  Google Scholar 

  14. Lu Y, Feskens EJ, Dolle ME, Imholz S, Verschuren M, Muller M, et al. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL cholesterol concentrations in the Doetinchem cohort study. Am J Clin Nutr. 2010;92:258–65.

    Article  PubMed  CAS  Google Scholar 

  15. Molto-Puigmarti C, Plat J, Mensink RP, Muller A, Jansen E, Zeegers MP, et al. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91:1368–76.

    Article  PubMed  CAS  Google Scholar 

  16. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43:289–99.

    Article  PubMed  CAS  Google Scholar 

  17. Lattka E, Illiq T, Heinrich J, Koletzko B. Do FADS genotype enhance our knowledge about fatty acid related phenotypes? Clin Nutr. 2010;29:277–87.

    Article  PubMed  CAS  Google Scholar 

  18. Glaser C, Heinrich J, Koletzko B. Role of FADS1 FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2010;59:993–9.

    Article  PubMed  CAS  Google Scholar 

  19. Nakayama K, Bayasgalan T, Tazoe F, Yanagisawas Y, Gotoh T, Yamanaka K, et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum Genet. 2010;127:685–90.

    Article  PubMed  CAS  Google Scholar 

  20. Ohashi K, Ouchi N, Kihara S, Funahashi T, Nakamura T, Sumitsuji S, et al. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol. 2004;43:1195–200.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all cause, cardiovascular and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–67. doi:10.1161/CIRCULATIONAHA.107.739714.

    Article  PubMed  Google Scholar 

  22. Harris WS, Reid KJ, Sands SA, Spertus JA. Blood omega-3 and trans fatty acids in middle aged acute coronary syndrome patients. Am J Cardiol. 2007;99:154–8.

    Article  PubMed  CAS  Google Scholar 

  23. Singh RB, Niaz MA, Kartik C. Can omega-3 fatty acids provide myocardial protection by decreasing infarct size and inhibiting atherothrombosis? Eur Heart J. 2001;3(Suppl):D62–9.

    CAS  Google Scholar 

  24. Harper CR, Jacobson TA. Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. Am J Cardiol. 2005;96:1521–9.

    Article  PubMed  CAS  Google Scholar 

  25. Mozaffarian D, Geelan A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB. Effect of fish oil on heart rate in humans, a metaanalysis of randomized, controlled trials. Circulation. 2005;112:1945–52.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang Z, Sim JS. Consumption of polyunsaturated fatty acid eggs and changes in plasma lipids of human subjects. Nutrition. 2003;9:513–8.

    Google Scholar 

  27. Sumbalova Z, Kucharaska J, Kasparova S, Mlynarik V, Bystricky P, Bozek P, et al. Brain energy metabolism in experimental chronic diabetes: effect of long term administration of coenzyme Q10 and w-3 polyunsaturated fatty acids. Biologia. 2005;11:1–13.

    Google Scholar 

  28. Zarranga IGE, Schwartz ER. Impact of dietary patterns and interventions on cardiovascular health. Circulation. 2006;114:961–73.

    Article  Google Scholar 

  29. Lacoix FCM, De Meester F. The return to wild types fats in the diet. Br Nutr Found Bull. 2007;32:168–72.

    Article  Google Scholar 

  30. Koide M, Kawahara Y, Tsuda T, Nakayama I, Yokoyama M. Expression of nitric oxide synthase by cytokines in vascular smooth muscle cells. Hypertension. 1994;23 Suppl 1:145–8.

    Google Scholar 

  31. Kang JX, Wank J, Wu I, Kang ZB. Fat 1 mice convert n-6 to n-3 fatty acids. Nature. 2004;427:304.

    Article  Google Scholar 

  32. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, et al. Generation of cloned transgenic pigs rich in n-3 fatty acids. Nat Biotechnol. 2006;4:433–6.

    Google Scholar 

  33. Jump DB, Clarke SD, Theten A, Liimatta M, Ren B, Badin M. Dietary polyunsaturated regulation of gene transcription. Prog Lipid Res. 1996;35:227–41.

    Article  PubMed  CAS  Google Scholar 

  34. Takada R, Saitoh M, Mori T. Dietary gamma-linolenic acid enriched oil reduces body fat content and induces liver enzyme activities relating to fatty acid beta-oxidation in rats. J Nutr. 1994;124:469–74.

    PubMed  CAS  Google Scholar 

  35. Power GW, Newsholme EA. Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle. J Nutr. 1997;127:2142–50.

    PubMed  CAS  Google Scholar 

  36. Miller CC, Ziboh VA. Induction of epidermal hyperproliferation by topical n-3 polyunsaturated fatty acids on guinea pig skin linked to decreased levels of 13-hydroxyoctadecadienoic acid (13-HODE). J Invest Dermatol. 1990;94:353–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kidweel WR. Fatty acid growth requirements of normal and neoplastic mammary epithelium. Prog Clin Biol Res. 1986;222:699–707.

    Google Scholar 

  38. Lambe KG, Tugwood JD. A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drug. Eur J Biochem. 1996;239:83–98.

    Article  Google Scholar 

  39. Jump DB, Clarke SD, MacDougald OA, Thelen A. Polyunsaturated fatty acids inhibit S14 gene transcription in rat liver and cultured hepatocytes. Proc Natl Acad Sci U S A. 1993;90:8454–8.

    Article  PubMed  CAS  Google Scholar 

  40. Jump DB, Clarke SD, Thelen AT, Liimatta M. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acid. J Lipid Res. 1994;35:1076–84.

    PubMed  CAS  Google Scholar 

  41. Clarke SD, Jump DB. Fatty acid regulation of gene expression; a unique role for polyunsaturated fats. In: Berdanier CD, Hargrove JL, editors. Nutrition and gene expression. Boca Raton, FL: CRC Reviews; 1992. p. 227–45.

    Google Scholar 

  42. Desvergne B, Wahil W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez JC, Gil-Gomez B, Hegradt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutary-CoA synthase gene by fatty acids. J Biol Chem. 1994;269:18767–72.

    PubMed  CAS  Google Scholar 

  44. Varanasi U, Chu R, Huang Q, Castellon R, Yeldandi AV, Reddy JK. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl CoA oxidase gene. J Biol Chem. 1996;271:2147–55.

    Article  PubMed  CAS  Google Scholar 

  45. Aubert J, Champigny O, Saint-Marc P, Negrel R, Collins S, Ricquier D, et al. Upregulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells. Biochem Biophys Res Commun. 1997;238:606–11.

    Article  PubMed  CAS  Google Scholar 

  46. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem. 1998;273:8560–3.

    Article  PubMed  CAS  Google Scholar 

  47. Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EWW. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipid and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes. 2001;50:411–7.

    Article  PubMed  CAS  Google Scholar 

  48. Guerre-Millo M, Gervois P, Raspe E, Madsen E, Poulain P, Derudas B, et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem. 2000;275:16638–42.

    Article  PubMed  CAS  Google Scholar 

  49. Storlien L, Hulbert AJ, Else PL. Polyunsaturated fatty acids, memberane function and metabolic diseases such as diabetes and obesity. Curr Opin Clin Nutr Metab Care. 1998;1:559–63.

    Article  PubMed  CAS  Google Scholar 

  50. Duplus E, Glorian M, Forest C. Fatty acids regulation of gene transcription. J Biol Chem. 2000;275:30749–52.

    Article  PubMed  CAS  Google Scholar 

  51. De Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000;290:2140–4.

    Article  PubMed  Google Scholar 

  52. Hertz R, Magenheim J, Berman I, Bar-Tana J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4 alpha. Nature. 1997;392:512–6.

    Google Scholar 

  53. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c(SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci U S A. 2000;98:6027–32.

    Article  Google Scholar 

  54. Xu J, Nakamura MT, Cho HP, Clarke S. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. J Biol Chem. 1999;274:23577–83.

    Article  PubMed  CAS  Google Scholar 

  55. Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS. Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem. 2001;276:4365–72.

    Article  PubMed  CAS  Google Scholar 

  56. DeBose-Boyd RA, Ou J, Goldstein JL, Brown MS. Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc Natl Acad Sci U S A. 2001;98:1477–82.

    Article  PubMed  CAS  Google Scholar 

  57. Osborne TF. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem. 2000;275:32379–82.

    Article  PubMed  CAS  Google Scholar 

  58. Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alfa. J Biol Chem. 1997;272:26827–32.

    Article  PubMed  CAS  Google Scholar 

  59. Kim HJ, Takahashi M, Ezaki O. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. J Biol Chem. 1999;274:25892–8.

    Article  PubMed  CAS  Google Scholar 

  60. Mater MK, Thelen AP, Pan DA, Jump DB. Sterol response element-binding protein 1c (SREBP 1c) is involved in the poly-unsaturated fatty acid suppression of hepatic S14 gene transcription. J Biol Chem. 1999;274:32725–32.

    Article  PubMed  CAS  Google Scholar 

  61. Hertz R, Magenheim J, Berman I, Bar-Tana J. Fatty acid-CoA esters are ligands of hepatic nuclear factor-4. Nature. 1998;392:512–6.

    Article  PubMed  CAS  Google Scholar 

  62. Liimatta M, Towle HC, Clarke SD, Jump DB. Dietary polyunsaturated fatty acids interfere with the insulin/glucose activation of L-type pyruvate kinase gene transcription. Mol Endocrinol. 1999;8:1147–53.

    Article  Google Scholar 

  63. Van der Kils FR, Schmidt ED, van Beeren HC, Wiersinga WM. Competitive inhibition of T3 binding to alpha 1 and beta 1 thyrroid hormone receptors by fatty acids. Biochem Biophys Res Commun. 1991;179:1011–6.

    Article  Google Scholar 

  64. Juge-Aubry CE, Gorla-Bajsczak A, Pernin A, Lemberger T, Wahli W, Burger AG, Meier CA. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J Biol Chem. 1995;270:18117–22.

    Article  PubMed  CAS  Google Scholar 

  65. Ander BP, Hurtado C, Raposo CS, Maddaford TG, Deniset JF, Hryshko LV, et al. Differential sensitivities of the NCX1.1 and NCX1.3 isoforms of the Na+–Ca2+ exchanger to á-linolenic acid. Cardiovasc Res. 2007;73:395–403.

    Article  PubMed  CAS  Google Scholar 

  66. Doria A, Wojcik J, Xu R, Gervino EV, Hauser TH, Johnstone MT, et al. Poor glycemic control modifies 9p21 varient coronary artery disease risk association. JAMA. 2008;300:2389–97.

    Article  PubMed  CAS  Google Scholar 

  67. Singh RB, Singh V, Kulshrestha SK, Singh S, Gupta P, Kumar R, et al. Social class and all cause mortality in an urban population of North India. Acta Cardiol. 2005;60:611–7.

    Article  PubMed  Google Scholar 

  68. Alam SE, Singh RB,Gupta S,Dherange P, De Meester F, Wilczynska A, Dharwadkar S, Wilson D, Hungin P. Nutritional aspects of epigenetic inheritance. Can J Physiol Pharmacol 2012;90:989–994.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge International College of Nutrition, International College of Cardiology, and The Tsim Tsoum Institute for their support in the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bahadur Singh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R.B. et al. (2013). Effects of Omega-3 Fatty Acids on Genetic Expressions. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics