Prospects for a Sustainable Increase in the Availability of Long Chain Omega 3s: Lessons from the Antarctic Krill Fishery

  • Simeon L. HillEmail author
Part of the Nutrition and Health book series (NH)


The Global Summit on Nutrition, Health and Human Behaviour (GSNHHB) identified a target intake of long chain omega-3 (LC-omega-3) of around 1 g/day and therefore a need to “increase the availability of LC-omega-3 (especially DHA) for human consumption in a sustainable, environmentally responsible way” (1). Papers elsewhere in this volume make the case for increased consumption of LC-omega-3. The issue of a sustainable increase in availability also merits serious consideration. Marine fish are the main source of the two key LC-omega-3s for human consumption: docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (2). Any increase in demand for of LC-omega-3 is likely to increase pressure on marine living resources. Historically, increases in demand for marine living resources have often resulted in the degradation of marine ecosystems’ ability to supply the relevant product. The GSNHHB’s commitment to sustainability and environmental responsibility indicates an intention to avoid exacerbating this situation, but it also presents a considerable challenge in terms of both defining and achieving sustainability.

Key words

Antarctic krill Euphausia superba Soupfin shark Antarctic fur seal Black-browed albatross Whale Penguin Flagship species Docosahexaenoic acid Vitamin A Sustainable Environmentally responsible Marine Fisheries Rational use Exploitation Harvesting Conservation Conservation principles Sustainability Reference point Environmental responsibility Sustainability criteria Ecosystem Ecosystem services Fisheries management Ecosystem approach to fisheries Precautionary approach Precautionary catch limit Trigger level Uncertainty Risk Evidence Standards of evidence Trade-offs Governance Decision making Stakeholders Stakeholder engagement Cooperation Monitoring Continuous pumping system Patent Nutraceutical Aquaculture Funding Marine Stewardship Council (MSC) Aker Biomarine High Seas Food and Agriculture Organisation of the United Nations (FAO) Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) World Commission on Environment and Development (WCED) World Summit on Sustainable Development Antarctic and Southern Ocean Coalition (ASOC) Whole Foods 



This chapter is a contribution to the British Antarctic Survey’s core funded Ecosystems programme. I would like to thank the many colleagues and friends that I have discussed these ideas with over the years, in particular: David Agnew, Angus Atkinson, Bas Beekmans, Andrew Constable, Andrew Jackson, Eugene Murphy, Keith Reid, Phil Trathan, George Watters, Jose Xavier, and members of the CCAMLR Working Group on Ecosystem Management & Monitoring. Thanks also to Phil for checking my language, Howard Roscoe for comments, and Angus, Peter Fretwell, Janet Silk, and Norman Ratcliffe for help with the figures, and finally to Adam Ismail and Ignace Debruyne for inviting me to speak at omega-3 conferences and encouraging a cross-disciplinary approach.


  1. 1.
    Global Omega-3 Summit Unanimously Signs Consensus Statements.∼tpm12374/omega3summit/pdf/PressRelease4March2011.pdf. Accessed 19 Oct 2011.
  2. 2.
    Omega-3 supply options. Availability in food products and supplements. Accessed 19 Oct 2011.
  3. 3.
    Text of the convention on the conservation of Antarctic marine living resources. Accessed 19 Oct 2011.
  4. 4.
    Report of the world commission on environment and development: our common future. Accessed 19 Oct 2011.
  5. 5.
    Hilborn R. The dark side of reference points. Bull Mar Sci. 2002;70:403–8. John Shepherd quoted in.Google Scholar
  6. 6.
    Hill SL, Watters GM, Punt AE, et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 2007;8:315–33.CrossRefGoogle Scholar
  7. 7.
    Lawton JH. Are there general laws in ecology? Oikos. 1999;84:117–92.CrossRefGoogle Scholar
  8. 8.
    Regan HM, Colyvan MK, Burgman MA. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol Appl. 2002;12:618–28.CrossRefGoogle Scholar
  9. 9.
    Garcia SM. The precautionary approach to fisheries and its implications for fishery research, technology and management: an updated review. In: FAO. Precautionary approach to fisheries. Part 2: scientific papers. Rome: FAO Fisheries Technical Paper. 1996;350 Part 2. p. 210.Google Scholar
  10. 10.
    Ward T, Tarte D, Hegerl E, et al. Ecosystem-based management of marine capture fisheries. Australia: World Wide Fund for Nature; 2002. p. 80.Google Scholar
  11. 11.
    Garcia SM, Zerbi A, Aliaume C, et al. The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook. Rome: FAO Fisheries Technical Paper; 2003; 443. p. 71.Google Scholar
  12. 12.
    Scientific consensus statement on marine ecosystem-based management. Accessed 19 Oct 2011.
  13. 13.
    Plan of implementation of the World Summit on sustainable development. Accessed 19 Oct 2011.
  14. 14.
    FAO. The state of world fisheries and aquaculture 2010. Rome: FAO; 2010. p. 197.Google Scholar
  15. 15.
    Pauly D, Christensen W, Guénette S, et al. Towards sustainability in world fisheries. Nature. 2002;418:689–95.PubMedCrossRefGoogle Scholar
  16. 16.
    TH Huxley Inaugural address Fisheries Exhibition, London (1883). Accessed 19 Oct 2011.
  17. 17.
    Hardin G. The tragedy of the commons. Science. 1968;162:1243–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Larkin PA. An epitaph for the concept of maximum sustainable yield. Trans Am Fish Soc. 1977;106:1–11.CrossRefGoogle Scholar
  19. 19.
    Schechter MG, Leonard NJ, Taylor WM. Preface. In: Schechter MG, Leonard NJ, Taylor WM, editors. International governance of fisheries ecosystems: learning from the past, finding solutions for the future. Bethesda, MD: American Fisheries Society; 2008. p. xiv–xx.Google Scholar
  20. 20.
    FAO. Review of the state of world fishery resources: marine resources. Rome: FAO Fisheries Circular; 1997. p. 920.Google Scholar
  21. 21.
    FAO. Review of the state of world marine fishery resources. Rome: FAO Fisheries Technical Paper; 2005;457. p. 235.Google Scholar
  22. 22.
    Wagner MH. Shark fishing gear: a historical review. Washington DC: US Fish & Wildlife Service Circular; 1966. p. 238.Google Scholar
  23. 23.
    FAO. A fishery Manager’s guidebook—management measures and their application. Rome: FAO Fisheries Technical Paper. 2002;424. p. 231.Google Scholar
  24. 24.
    Nicol S, Siegel V. Population parameters. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 40–79.Google Scholar
  25. 25.
    Ross R, Quetin L. Reproduction in Euphausiacea. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 150–81.Google Scholar
  26. 26.
    Everson I. Distribution and standing stock: the Southern Ocean. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 63–79.Google Scholar
  27. 27.
    Watkins JI. Aggregation and vertical migration. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 80–102.Google Scholar
  28. 28.
    Everson I. Role of krill in marine food webs: The Southern Ocean. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 194–201.Google Scholar
  29. 29.
    Atkinson A, Whitehouse MJ, Priddle J, et al. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser. 2001;216:279–308.CrossRefGoogle Scholar
  30. 30.
    Hill SL, Murphy EJ, Reid K, et al. Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of fishing. Biol Rev. 2006;81:581–608.PubMedCrossRefGoogle Scholar
  31. 31.
    Murphy EM, Watkins JL, Trathan PN, et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc Lond B Biol Sci. 2007;362:113–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Hill SL, Reid K, Thorpe SE, et al. A compilation of parameters for ecosystem dynamics models of the Scotia Sea- Antarctic Peninsula region. CCAMLR Sci. 2007;14:1–25.Google Scholar
  33. 33.
    Miller D, Agnew D. Management of krill fisheries in the Southern Ocean. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 300–37.Google Scholar
  34. 34.
    Constable AJ, De La Mare WK, Agnew DJ, et al. Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the convention on the conservation of Antarctic marine living resources (CCAMLR). ICES J Mar Sci. 2000;57:778–91.CrossRefGoogle Scholar
  35. 35.
    Constable AJ. Lessons from CCAMLR on the implementation of the ecosystem approach to managing fisheries. Fish Fish. 2011;12:138–51.CrossRefGoogle Scholar
  36. 36.
    Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 372.Google Scholar
  37. 37.
    Kemp S. Discovery investigations: objects. Equipment and methods. Part I. The objects of the investigations. Discov Rep. 1929;1:143–50.Google Scholar
  38. 38.
    Griffiths HJ, Danis B, Clarke A. Quantifying Antarctic marine biodiversity: the SCAR-MarBIN data portal. Deep Sea Res Part 2 Top Stud Oceanogr. 2011;58:18–29.CrossRefGoogle Scholar
  39. 39.
    Atkinson A, Siegel V, Pakhomov EA, et al. Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser. 2008;362:1–23.CrossRefGoogle Scholar
  40. 40.
    Hill SL, Trathan PN, Agnew DJ. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J Mar Sci. 2009;66:2148–54.CrossRefGoogle Scholar
  41. 41.
    Clarke A, Tyler PA. Adult Antarctic krill feeding at abyssal depths. Curr Biol. 2008;18:282–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Daly K. Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnol Oceanogr. 1990;35:1564–76.CrossRefGoogle Scholar
  43. 43.
    Schmidt K, Atkinson A, Steigenberger S, et al. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling and the vertical transfer of iron. Limnol Oceanogr. 2011;56:1411–28.CrossRefGoogle Scholar
  44. 44.
    Siegel V. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol. 2005;29:1–22.CrossRefGoogle Scholar
  45. 45.
    Huntley ME, Niiler PP. Physical control of population-dynamics in the Southern-Ocean. ICES J Mar Sci. 1995;52:457–68.CrossRefGoogle Scholar
  46. 46.
    Hill SL, Keeble K, Atkinson A, et al. A foodweb model to explore uncertainties in the South Georgia shelf pelagic ecosystem. Deep Sea Res Part 2 Top Stud Oceanogr. 2012;59–60:237–52.CrossRefGoogle Scholar
  47. 47.
    Croxall JP, Reid K, Prince PA. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser. 1999;177:115–31.CrossRefGoogle Scholar
  48. 48.
    Lea MA, Cherel Y, Guinet C, Nichols PD. Antarctic fur seals foraging in the Polar Frontal Zone: inter-annual shifts in diet as shown from fecal and fatty acid analyses. Mar Ecol Prog Ser. 2002;245:281–97.CrossRefGoogle Scholar
  49. 49.
    Whitehouse MJ, Atkinson A, Ward P. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar Ecol Prog Ser. 2009;393:69–82.CrossRefGoogle Scholar
  50. 50.
    Whitehouse MJ, Atkinson A, Rees AP. Close coupling between ammonium uptake by phytoplankton and excretion by Antarctic krill, Euphausia superba. Deep Sea Res Part 1 Oceanogr Res Pap. 2011;58:725–32.CrossRefGoogle Scholar
  51. 51.
    Ruiz-Halpern S, Duarte CM, Tovar-Sanchez A. Antarctic krill as a source of dissolved organic carbon to the Antarctic ecosystem. Limnol Oceanogr. 2011;56:521–8.CrossRefGoogle Scholar
  52. 52.
    Hill SL, Reid K, North AW. Recruitment of mackerel icefish (Champsocephalus gunnari) at South Georgia indicated by predator diets and its relationship with sea surface temperature. Can J Fish Aquat Sci. 2005;62:2530–7.CrossRefGoogle Scholar
  53. 53.
    Meredith MP, Murphy EJ, Hawker EJ, et al. On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: forcing by El Niño/Southern Oscillation and the Southern Annular Mode. Deep Sea Res Part 2 Top Stud Oceanogr. 2008;55:2007–22.CrossRefGoogle Scholar
  54. 54.
    Croxall JP, Nicol S. Management of Southern Ocean fisheries: global forces and future sustainability. Antarct Sci. 2004;16:569–84.CrossRefGoogle Scholar
  55. 55.
    Boyd IL. Pup production and distribution of breeding Antarctic fur seals (Arctocephalus gazella) at South Georgia. Antarct Sci. 1993;5:17–24.CrossRefGoogle Scholar
  56. 56.
    Mori M, Butterworth DS. Consideration of multispecies interactions in the Antarctic: a preliminary model of the Minke whale—Blue whale—krill interaction. Afr J Mar Sci. 2004;26:245–59.CrossRefGoogle Scholar
  57. 57.
    Laws RM. Seals and whales of the Southern Ocean. Philos Trans R Soc Lond B Biol Sci. 1977;279:81–96.CrossRefGoogle Scholar
  58. 58.
    Trivelpiece WZ, Hinke JT, Miller AK. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci. 2011;108:7625–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Kock K-H. Antarctic fish and fisheries. Cambridge: Cambridge University Press; 1992. p. 359.Google Scholar
  60. 60.
    Kock K-H, Belchier M, Jones CD. Is the attempt to estimate the biomass of Antarctic fish from a multi-species survey appropriate for all targeted species? Notothenia rossii in the Atlantic Ocean sector—revisited. CCAMLR Sci. 2004;11:141–53.Google Scholar
  61. 61.
    Reid K, Hill SL, Diniz TCD, et al. Mackerel icefish Champsocephalus gunnari in the diet of upper trophic level predators at South Georgia: implications for fisheries management. Mar Ecol Prog Ser. 2005;305:153–61.CrossRefGoogle Scholar
  62. 62.
    Atkinson A, Siegel V, Pakhomov E, et al. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature. 2004;432:100–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Loeb V, Seigel V, Holm-Hansen O. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature. 1997;387:897–900.CrossRefGoogle Scholar
  64. 64.
    Quetin LB, Ross RM, Frazer TK, et al. Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. Antarct Res Ser. 1996;70:357–71.CrossRefGoogle Scholar
  65. 65.
    Constable AJS, Nicol S, Strutton PG. Southern Ocean productivity in relation to spatial and temporal variation in the physical environment. J Geophys Res. 2003;108:8079. doi: 10.1029/2001JC001270.CrossRefGoogle Scholar
  66. 66.
    Murphy EJ, Trathan PN, Watkins J, et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc R Soc B. 2007;1629:3057–67.CrossRefGoogle Scholar
  67. 67.
    Mackey AP, Atkinson A, Hill SL, et al. Antarctic macrozooplankton of the southwest Atlantic sector and Bellingshausen Sea: baseline historical distributions (Discovery Investigations, 1928–1935) related to temperature and food, with projections for subsequent ocean warming. Deep Sea Res Part 2 Top Stud Oceanogr. 2012;59–60:130–46.CrossRefGoogle Scholar
  68. 68.
    Hofmann EE, Capella JE, Ross RM, et al. Models of the early life-history of Euphausia superba. 1. Time and temperature-dependence during the descent ascent cycle. Deep Sea Res Part 1 Oceanogr Res Pap. 1992;39:1177–200.CrossRefGoogle Scholar
  69. 69.
    Turner J, Comiso JC, Marshall G, et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett. 2009;36:L08502. doi: 10.1029/2009GL037524.CrossRefGoogle Scholar
  70. 70.
    Whitehouse MJ, Meredith MP, Rothery P, et al. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: forcings, characteristics and implications for lower trophic levels. Deep Sea Res Part 1 Oceanogr Res Pap. 2008;55:1218–28.CrossRefGoogle Scholar
  71. 71.
    Bracegirdle TJ, Connolley WM, Turner J. Antarctic climate change over the twenty first century. J Geophys Res. 2008;113:D03103. doi: 10.1029/2007JD008933.CrossRefGoogle Scholar
  72. 72.
    CCAMLR. Statistical bulletin Vol. 23 (2001–2010). Hobart: CCAMLR; 2011. p. 263.Google Scholar
  73. 73.
    Nicol S, Forster I, Spence J. Products derived from krill. In: Everson I, editor. Krill biology, ecology and fisheries. Oxford: Blackwell; 2000. p. 262–83.Google Scholar
  74. 74.
    Foster J, Nicol S, Kawaguchi S. The use of patent databases to predict trends in the krill fishery. CCAMLR Sci. 2011;18:135–44.Google Scholar
  75. 75.
    Tou JC, Jaczynski J, Chen YC. Krill for human consumption: nutritional value and potential health benefits. Nutr Rev. 2007;65:63–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Kawaguchi S, Nicol S. Learning about Antarctic krill from the fishery. Antarctic Sci. 2007;19:219–30.CrossRefGoogle Scholar
  77. 77.
    Hooper J, Clark JM, Charman C, Agnew D. Seal mitigation measures on trawl vessels fishing for krill in CCAMNLR subarea 48.3. CCAMLR Sci. 2005;12:195–205.Google Scholar
  78. 78.
    Official member contacts. Accessed Oct 28 2011.
  79. 79.
    General introduction. Accessed Oct 28 2011.
  80. 80.
    Hewitt RP, Watters G, Trathan PN, et al. Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci. 2004;11:81–97.Google Scholar
  81. 81.
    Schedule of conservation measures in force 2010/11. Accessed Oct 28 2011.
  82. 82.
    Trathan PN, Everson I, Miller DGM. Krill biomass in the Atlantic. Nature. 1995;373:201–2.CrossRefGoogle Scholar
  83. 83.
    Godlewska M, Klusek Z. Vertical distribution and diurnal migrations of krill—Euphausia superba Dana—from hydroacoustical observations, SIBEX, December 1983/January 1984. Polar Biol. 1987;8:17–22.CrossRefGoogle Scholar
  84. 84.
    Hewitt RP, Watkins J, Naganobu M. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Res Part 2 Top Stud Oceanogr. 2004;51:1215–36.Google Scholar
  85. 85.
    Nicol S, Brierley AS. Through a glass less darkly—new approaches for studying the distribution, abundance and biology of Euphausiids. Deep Sea Res Part 2 Top Stud Oceanogr. 2010;57(7–8):496–507.CrossRefGoogle Scholar
  86. 86.
    Demer DA, Conti SG. New target-strength model indicates more krill in the Southern Ocean. ICES J Mar Sci. 2005;62:25–32.CrossRefGoogle Scholar
  87. 87.
    SC-CAMLR. Report of the nineteenth meeting of the Scientific Committee. Hobart: CCAMLR; 2000.Google Scholar
  88. 88.
    SC-CAMLR. Report of the twenty ninth meeting of the Scientific Committee. Hobart: CCAMLR; 2010.Google Scholar
  89. 89.
    Atkinson A, Siegel V, Pakhomov EA, et al. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res Part 1 Oceanogr Res Pap. 2009;56:727–40.CrossRefGoogle Scholar
  90. 90.
    Smith AD, Brown CJ, Bulman CM, et al. Impacts of fishing low-trophic level species on marine ecosystems. Science. 2011;333:1147–50.PubMedCrossRefGoogle Scholar
  91. 91.
    SC-CAMLR. Report of the thirtieth meeting of the Scientific Committee. Hobart: CCAMLR; 2011.Google Scholar
  92. 92.
    Brierley AS, Watkins JL, Goss C. Acoustic estimates of krill density at South Georgia, 1981 to 1998. CCAMLR Sci. 1999;6:47–57.Google Scholar
  93. 93.
    Observer logbook information. Accessed Oct 28 2011.
  94. 94.
    Beddington JR, Agnew DJ, Clark CW. Current problems in the management of marine fisheries. Science. 2007;316:1713–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Crain CM, Kroeker K, Halpern BS. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett. 2008;11:1304–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Walther G-R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature. 2002;416:389–95.PubMedCrossRefGoogle Scholar
  97. 97.
    Harley CDG, Hughes AR, Hultgren KM. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9:228–41.PubMedCrossRefGoogle Scholar
  98. 98.
    My beef isn’t with beef: why I stopped being a vegetarian. Accessed Oct 31 2011.
  99. 99.
    Whole foods says no to krill oil sales, aker confirms MSC Certification Accessed Oct 31 2011.
  100. 100.
    Pew faults Marine Stewardship Council’s decision. Accessed Oct 31 2011.
  101. 101.
    Jacquet JD, Pauly D, Ainley P, et al. Seafood stewardship in crisis. Nature. 2010;467:28–9.PubMedCrossRefGoogle Scholar
  102. 102.
    MSC environmental standard for sustainable fishing. Accessed Oct 31 2011.
  103. 103.
    Gambling with Krill Fisheries in the Antarctic: large uncertainties equate with high risks. Greenpeace Research Laboratories Technical Note 01/2009. Accessed Oct 31 2011.
  104. 104.
    Years of krill fisheries management—challenges remain. Accessed Nov 17 2011.
  105. 105.
    ASOC council and supporting organisations. Accessed Oct 31 2011.
  106. 106.
    Krill availability explains shifts in penguin abundance. Accessed Oct 31 2011.
  107. 107.
    Zacharias MA, Roff JC. Use of focal species in marine conservation and management: a review and critique. Aquat Conserv. 2001;11:59–76.CrossRefGoogle Scholar
  108. 108.
    Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine foodwebs. Science. 1998;279:860–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Garcia SM, Grainger RJR. Gloom and doom? The future of marine capture fisheries. Philos Trans R Soc Lond B Biol Sci. 2005;360:21–46.PubMedCrossRefGoogle Scholar
  110. 110.
    People and possibilities in a World of 7 Billion Accessed Oct 31 2011.
  111. 111.
    America’s living oceans: charting a course for sea change. Accessed Oct 31 2011.
  112. 112.
    The ecosystem approach—protecting marine life in all its forms. Accessed Oct 31 2001.
  113. 113.
    Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish Oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.PubMedCrossRefGoogle Scholar
  114. 114.
    FAO. Conversion factors live weight to landed weight. Rome: FAO Fisheries Circular 847 Revision 1. 2000. p. 176.Google Scholar
  115. 115.
    Global production statistics 1950–2009. Online query. Accessed Sept 30 2011.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations