Skip to main content

Stone Migration Devices

  • Chapter
  • First Online:
Book cover Ureteroscopy

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Cephalad stone migration during ureteroscopic lithotripsy can be problematic as it may lead to increased operative times, increased cost, and increased numbers of additional procedures required to treat clinically significant fragments which have migrated to the upper ureter or kidney. Since the early 2000s, a number of devices have been devised specifically for the purpose of prevention of stone migration. These devices have been shown to significantly limit the incidence of stone migration, and some urologists have found these to be a valuable tool in their arsenal when treating ureteral stones. Herein we review the currently available devices designed to prevent stone migration and the body of literature that has come from their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preminger GM, et al. 2007 Guideline for the management of ureteral calculi. Eur Urol. 2007;52(6):1610–31.

    Article  PubMed  Google Scholar 

  2. Dretler SP. The stone cone: a new generation of basketry. J Urol. 2001;165(5):1593–6.

    Article  PubMed  CAS  Google Scholar 

  3. Finley DS, et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J Endourol. 2005;19(8):1041–4.

    Article  PubMed  Google Scholar 

  4. Lee H, et al. Stone retropulsion during holmium:YAG lithotripsy. J Urol. 2003;169(3):881–5.

    Article  PubMed  Google Scholar 

  5. Marguet CG, et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. J Urol. 2005;173(5):1797–800.

    Article  PubMed  Google Scholar 

  6. Eisner BH, Pengune W, Stoller ML. Use of an antiretropulsion device to prevent stone retropulsion significantly increases the efficiency of pneumatic lithotripsy: an in vitro study. BJU Int. 2009;104(6):858–61.

    Article  PubMed  Google Scholar 

  7. Lee HJ, et al. In vitro evaluation of nitinol urological retrieval coil and ureteral occlusion device: retropulsion and holmium laser fragmentation efficiency. J Urol. 2008;180(3):969–73.

    Article  PubMed  Google Scholar 

  8. Chow GK, et al. Ureteroscopy: effect of technology and technique on clinical practice. J Urol. 2003;170(1):99–102.

    Article  PubMed  Google Scholar 

  9. Wang CJ, Huang SW, Chang CH. Randomized trial of NTrap for proximal ureteral stones. Urology. 2011;77(3):553–7.

    Article  PubMed  Google Scholar 

  10. Dretler SP. Ureteroscopy for proximal ureteral calculi: prevention of stone migration. J Endourol. 2000;14(7):565–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hendlin K, Weiland D, Monga M. Impact of irrigation systems on stone migration. J Endourol. 2008;22(3):453–8.

    Article  PubMed  Google Scholar 

  12. Holley PG, et al. Assessment of novel ureteral occlusion device and comparison with stone cone in prevention of stone fragment migration during lithotripsy. J Endourol. 2005;19(2):200–3.

    Article  PubMed  Google Scholar 

  13. Elashry OM, et al. Intracorporeal electrohydraulic lithotripsy of ureteral and renal calculi using small caliber (1.9F) electrohydraulic lithotripsy probes. J Urol. 1996;156(5):1581–5.

    Article  PubMed  CAS  Google Scholar 

  14. Teichman JM, et al. Ureteroscopic management of ureteral calculi: electrohydraulic versus holmium:YAG lithotripsy. J Urol. 1997;158(4):1357–61.

    Article  PubMed  CAS  Google Scholar 

  15. Knispel HH, et al. Pneumatic lithotripsy applied through deflected working channel of miniureteroscope: results in 143 patients. J Endourol. 1998;12(6):513–5.

    Article  PubMed  CAS  Google Scholar 

  16. Yang SS, Hong JS. Electrohydraulic lithotripsy of upper ureteral calculi with semirigid ureteroscope. J Endourol. 1996;10(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  17. Bapat SS, et al. Comparison of holmium laser and pneumatic lithotripsy in managing upper-ureteral stones. J Endourol. 2007;21(12):1425–7.

    Article  PubMed  Google Scholar 

  18. Tipu SA, et al. Treatment of ureteric calculi—use of Holmium:YAG laser lithotripsy versus pneumatic lithoclast. J Pak Med Assoc. 2007;57(9):440–3.

    PubMed  Google Scholar 

  19. Kang HW, et al. Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Lasers Surg Med. 2006;38(8):762–72.

    Article  PubMed  Google Scholar 

  20. White MD, et al. Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibers. J Endourol. 1998;12(2):183–6.

    Article  PubMed  CAS  Google Scholar 

  21. Maislos SD, et al. Efficacy of the Stone Cone for treatment of proximal ureteral stones. J Endourol. 2004;18(9):862–4.

    Article  PubMed  CAS  Google Scholar 

  22. Vejdani K, et al. Effect of laser insult on devices used to prevent stone retropulsion during ureteroscopic lithotripsy. J Endourol. 2009;23(2):249–51.

    PubMed  Google Scholar 

  23. Desai MR, et al. The Dretler stone cone: a device to prevent ureteral stone migration-the initial clinical experience. J Urol. 2002;167(5):1985–8.

    Article  PubMed  Google Scholar 

  24. Pardalidis NP, Papatsoris AG, Kosmaoglou EV. Prevention of retrograde calculus migration with the Stone Cone. Urol Res. 2005;33(1):61–4.

    Article  PubMed  CAS  Google Scholar 

  25. Eisner BH, Dretler SP. Use of the Stone Cone for prevention of calculus retropulsion during holmium:YAG laser lithotripsy: case series and review of the literature. Urol Int. 2009;82(3):356–60.

    Article  PubMed  Google Scholar 

  26. Lee MJ, Lee ST, Min SK. Use of NTrap(R) during ureteroscopic lithotripsy for upper ureteral stones. Korean J Urol. 2010;51(10):719–23.

    Article  PubMed  Google Scholar 

  27. Ding H, et al. NTrap in prevention of stone migration during ureteroscopic lithotripsy for proximal ureteral stones: a meta-analysis. J Endourol. 2011;26(2):130–4.

    Article  Google Scholar 

  28. Chew BH, Gotto G, Teichman JM. The Accordion: a new device to prevent stone migration during ureteroscopic lithotripsy. J Endourol. 2007;21 Suppl 1:A108.

    Google Scholar 

  29. Ditrolio JV, Balla R. Limiting stone retropulsion during laser lithotripsy with a novel ureteral occluding device. J Endourol. 2007;21 Suppl 1:A285.

    Google Scholar 

  30. Rane A, et al. The use of a novel reverse thermosensitive polymer to prevent ureteral stone retropulsion during intracorporeal lithotripsy: a randomized, controlled trial. J Urol. 2010;183(4):1417–21.

    Article  PubMed  Google Scholar 

  31. Sacco D, McDougal WS, Schwarz A. Preventing migration of stones during fragmentation with thermosensitive polymer. J Endourol. 2007;21(5):504–7.

    Article  PubMed  Google Scholar 

  32. Ali AA, et al. A novel method to prevent retrograde displacement of ureteric calculi during intracorporeal lithotripsy. BJU Int. 2004;94(3):441–2.

    Article  PubMed  Google Scholar 

  33. Zehri AA, et al. A randomized clinical trial of lidocaine jelly for prevention of inadvertent retrograde stone migration during pneumatic lithotripsy of ureteral stone. J Urol. 2008;180(3):966–8.

    Article  PubMed  CAS  Google Scholar 

  34. Bastawisy M, et al. A comparison of Stone Cone versus lidocaine jelly in the prevention of ureteral stone migration during ureteroscopic lithotripsy. Ther Adv Urol. 2011;3(5):203–10.

    Article  PubMed  CAS  Google Scholar 

  35. Eisner BH, et al. Differences in stone size and ureteral dilation between obstructing proximal and distal ureteral calculi. Urology. 2008;72(3):517–20.

    Article  PubMed  Google Scholar 

  36. Ahmed M, et al. Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology. 2009;73(5):976–80.

    Article  PubMed  Google Scholar 

  37. Adam C. Maximum force generated to retract three stone-trapping devices around a stone in a ureter model with a stricture. J Endourol. 2007;21 Suppl 1:A3.

    Google Scholar 

  38. Tarin TV, Shinghal R. Ureteral anti-retropulsive devices decrease renal pelvic pressure. J Urol. 2009;181(4 Suppl):661–2.

    Article  Google Scholar 

  39. Geavlete P, et al. Complications of 2735 retrograde semirigid ureteroscopy procedures: a single-center experience. J Endourol. 2006;20(3):179–85.

    Article  PubMed  Google Scholar 

  40. Olweny E, Eisner BH, Stoller ML. Cost-effectiveness of anti-retropulsion devices for ureteroscopic pneumatic lithotripsy. J Endourol. 2009;23 Suppl 1:A 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Eisner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kreydin, E., Eisner, B. (2013). Stone Migration Devices. In: Monga, M. (eds) Ureteroscopy. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-206-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-206-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-205-6

  • Online ISBN: 978-1-62703-206-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics