Skip to main content

Carotenoid Metabolism and Enzymology

  • Chapter
  • First Online:
Carotenoids and Human Health

Abstract

Carotenoids are plant-derived lipophilic compounds with a common chemical structure of eight isoprenoid units. The major carotenoids that are present in human tissues are primarily the polyunsaturated hydrocarbon carotenes β-carotene and lycopene and the oxygen-containing xanthophylls β-cryptoxanthin, lutein, and zeaxanthin. These carotenoids function in the body as retinoid (vitamin A) precursors and antioxidants.

Shmarakov and Yuen contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ACO:

apocarotenoid-15,15′-oxygenase

Apo:

apolipoprotein

BCMO1:

β-carotene-15,15′-monooxygenase

BCMO2:

β-carotene-9′,10′-monooxygenase

CD36:

cluster of differentiation 36

CR:

chylomicron remnant

CRBP-II:

cellular retinol binding protein type II

EZ:

ezetimibe

HDL:

high-density lipoprotein

HSC:

hepatic stellate cell

ISX:

intestine specific homeobox

LDL:

low-density lipoprotein

LPL:

lipoprotein lipase

LRAT:

lecithin-retinol acyltransferase

MEF2:

myocyte enhancer factor 2

NPC1L1:

Niemann-Pick C1-like 1

PPAR:

peroxisome proliferator-activated receptor

PPRE:

peroxisome proliferator response element

RAR:

retinoic acid receptor

RPE65:

retinal pigment epithelium-specific protein 65 kDa

RXR:

retinoid X receptor

SR-BI:

scavenger receptor class B type I

T3 :

triiodothyronine

TR:

thyroid hormone receptor

TRE:

thyroid hormone response element

UCP1:

uncoupling protein 1

VLDL:

very low density lipoprotein

References

  1. Chatterjee M, Janarthan M. Biological activity of carotenoids: its implications in cancer risk and prevention. Curr Pharm Biotechnol. 2012;13(1):180–90.

    PubMed  CAS  Google Scholar 

  2. Riccioni G, D’Orazio N, Speranza L, et al. Carotenoids and asymptomatic carotid atherosclerosis. J Biol Regul Homeost Agents. 2010;24(4):447–52.

    PubMed  CAS  Google Scholar 

  3. Villaca Chaves G, Goncalves de Souza G, Cardoso de Matos A, et al. Serum retinol and beta-carotene levels and risk factors for cardiovascular disease in morbid obesity. Int J Vitam Nutr Res. 2010;80(3):159–67.

    PubMed  Google Scholar 

  4. Wegner A, Khoramnia R. Cataract is a self-defence reaction to protect the retina from oxidative damage. Med Hypotheses. 2011;76(5):741–4.

    PubMed  CAS  Google Scholar 

  5. Zhou H, Zhao X, Johnson EJ, et al. Serum carotenoids and risk of age-related macular degeneration in a Chinese population sample. Invest Ophthalmol Vis Sci. 2011;52(7):4338–44.

    PubMed  CAS  Google Scholar 

  6. Stahl W, Ale-Agha N, Polidori MC. Non-antioxidant properties of carotenoids. Biol Chem. 2002;383(3–4):553–8.

    PubMed  CAS  Google Scholar 

  7. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta. 2005;1740(2):101–7.

    PubMed  CAS  Google Scholar 

  8. Nagao A. Absorption and metabolism of dietary carotenoids. Biofactors. 2011;37(2):83–7.

    PubMed  CAS  Google Scholar 

  9. Bendich A, Olson JA. Biological actions of carotenoids. FASEB J. 1989;3(8):1927–32.

    PubMed  CAS  Google Scholar 

  10. Asai A, Yonekura L, Nagao A. Low bioavailability of dietary epoxyxanthophylls in humans. Br J Nutr. 2008;100(2):273–7.

    PubMed  CAS  Google Scholar 

  11. Sugawara T, Kushiro M, Zhang H, Nara E, Ono H, Nagao A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J Nutr. 2001;131(11):2921–7.

    PubMed  CAS  Google Scholar 

  12. Baskaran V, Sugawara T, Nagao A. Phospholipids affect the intestinal absorption of carotenoids in mice. Lipids. 2003;38(7):705–11.

    PubMed  CAS  Google Scholar 

  13. Tyssandier V, Reboul E, Dumas JF, et al. Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol. 2003;284(6):G913–23.

    PubMed  CAS  Google Scholar 

  14. Rock CL, Lovalvo JL, Emenhiser C, Ruffin MT, Flatt SW, Schwartz SJ. Bioavailability of beta-carotene is lower in raw than in processed carrots and spinach in women. J Nutr. 1998;128(5):913–6.

    PubMed  CAS  Google Scholar 

  15. Gartner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr. 1997;66(1):116–22.

    PubMed  CAS  Google Scholar 

  16. Stahl W, Sies H. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr. 1992;122(11):2161–6.

    PubMed  CAS  Google Scholar 

  17. van het Hof KH, de Boer BC, Tijburg LB, et al. Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J Nutr. 2000;130(5):1189–96.

    Google Scholar 

  18. van Het Hof KH, West CE, Weststrate JA, Hautvast JG. Dietary factors that affect the bioavailability of carotenoids. J Nutr. 2000;130(3):503–6.

    Google Scholar 

  19. Rich GT, Bailey AL, Faulks RM, Parker ML, Wickham MS, Fillery-Travis A. Solubilization of carotenoids from carrot juice and spinach in lipid phases: I. Modeling the gastric lumen. Lipids. 2003;38(9):933–45.

    PubMed  CAS  Google Scholar 

  20. Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res. 2007;51(1):107–15.

    PubMed  CAS  Google Scholar 

  21. Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J Nutr. 2009;139(5):876–83.

    PubMed  CAS  Google Scholar 

  22. Huo T, Ferruzzi MG, Schwartz SJ, Failla ML. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. J Agric Food Chem. 2007;55(22):8950–7.

    PubMed  CAS  Google Scholar 

  23. Roodenburg AJ, Leenen R, van het Hof KH, Weststrate JA, Tijburg LB. Amount of fat in the diet affects bioavailability of lutein esters but not of alpha-carotene, beta-carotene, and vitamin E in humans. Am J Clin Nutr. 2000;71(5):1187–93.

    PubMed  CAS  Google Scholar 

  24. Unlu NZ, Bohn T, Clinton SK, Schwartz SJ. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr. 2005;135(3):431–6.

    PubMed  CAS  Google Scholar 

  25. Borel P, Tyssandier V, Mekki N, et al. Chylomicron beta-carotene and retinyl palmitate responses are dramatically diminished when men ingest beta-carotene with medium-chain rather than long-chain triglycerides. J Nutr. 1998;128(8):1361–7.

    PubMed  CAS  Google Scholar 

  26. O’Connell O, Ryan L, O’Sullivan L, Aherne-Bruce SA, O’Brien NM. Carotenoid micellarization varies greatly between individual and mixed vegetables with or without the addition of fat or fiber. Int J Vitam Nutr Res. 2008;78(4–5):238–46.

    PubMed  Google Scholar 

  27. van den Berg H. Carotenoid interactions. Nutr Rev. 1999;57(1):1–10.

    PubMed  Google Scholar 

  28. Wang Y, Illingworth DR, Connor SL, Barton Duell P, Connor WE. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene. Eur J Nutr. 2010;49(6):327–36.

    PubMed  CAS  Google Scholar 

  29. During A, Hussain MM, Morel DW, Harrison EH. Carotenoid uptake and secretion by CaCo-2 cells: beta-carotene isomer selectivity and carotenoid interactions. J Lipid Res. 2002;43(7):1086–95.

    PubMed  CAS  Google Scholar 

  30. Johnson EJ, Qin J, Krinsky NI, Russell RM. Beta-carotene isomers in human serum, breast milk and buccal mucosa cells after continuous oral doses of all-trans and 9-cis beta-carotene. J Nutr. 1997;127(10):1993–9.

    PubMed  CAS  Google Scholar 

  31. van den Berg H, van Vliet T. Effect of simultaneous, single oral doses of beta-carotene with lutein or lycopene on the beta-carotene and retinyl ester responses in the triacylglycerol-rich lipoprotein fraction of men. Am J Clin Nutr. 1998;68(1):82–9.

    PubMed  Google Scholar 

  32. Kostic D, White WS, Olson JA. Intestinal absorption, serum clearance, and interactions between lutein and beta-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr. 1995;62(3):604–10.

    PubMed  CAS  Google Scholar 

  33. Harrison EH. Mechanisms of digestion and absorption of dietary vitamin A. Annu Rev Nutr. 2005;25:87–103.

    PubMed  CAS  Google Scholar 

  34. Scita G, Aponte GW, Wolf G. Uptake and cleavage of beta-carotene by cultures of rat small intestinal cells and human lung fibroblasts. Methods Enzymol. 1993;214:21–32.

    PubMed  CAS  Google Scholar 

  35. Hollander D, Ruble Jr PE. beta-carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. Am J Physiol. 1978;235(6):E686–91.

    PubMed  CAS  Google Scholar 

  36. Slifka KA, Bowen PE, Stacewicz-Sapuntzakis M, Crissey SD. A survey of serum and dietary carotenoids in captive wild animals. J Nutr. 1999;129(2):380–90.

    PubMed  CAS  Google Scholar 

  37. Asai A, Terasaki M, Nagao A. An epoxide-furanoid rearrangement of spinach neoxanthin occurs in the gastrointestinal tract of mice and in vitro: formation and cytostatic activity of neochrome stereoisomers. J Nutr. 2004;134(9):2237–43.

    PubMed  CAS  Google Scholar 

  38. Borel P, Grolier P, Mekki N, et al. Low and high responders to pharmacological doses of beta-carotene: proportion in the population, mechanisms involved and consequences on beta-carotene metabolism. J Lipid Res. 1998;39(11):2250–60.

    PubMed  CAS  Google Scholar 

  39. van Bennekum A, Werder M, Thuahnai ST, et al. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry. 2005;44(11):4517–25.

    PubMed  Google Scholar 

  40. Reboul E, Abou L, Mikail C, et al. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochem J. 2005;387(Pt 2):455–61.

    PubMed  CAS  Google Scholar 

  41. During A, Dawson HD, Harrison EH. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J Nutr. 2005;135(10):2305–12.

    PubMed  CAS  Google Scholar 

  42. Moussa M, Landrier JF, Reboul E, et al. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J Nutr. 2008;138(8):1432–6.

    PubMed  CAS  Google Scholar 

  43. Rigotti A, Miettinen HE, Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev. 2003;24(3):357–87.

    PubMed  CAS  Google Scholar 

  44. Yancey PG, Kawashiri MA, Moore R, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J Lipid Res. 2004;45(2):337–46.

    PubMed  CAS  Google Scholar 

  45. Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002;109(10):1381–9.

    PubMed  CAS  Google Scholar 

  46. Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem. 1999;274(27):19055–62.

    PubMed  CAS  Google Scholar 

  47. Coburn CT, Knapp Jr FF, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000;275(42):32523–9.

    PubMed  CAS  Google Scholar 

  48. Werder M, Han CH, Wehrli E, Bimmler D, Schulthess G, Hauser H. Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine. Biochemistry. 2001;40(38):11643–50.

    PubMed  CAS  Google Scholar 

  49. Lobo MV, Huerta L, Ruiz-Velasco N, et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. J Histochem Cytochem. 2001;49(10):1253–60.

    PubMed  CAS  Google Scholar 

  50. Richelle M, Enslen M, Hager C, et al. Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of beta-carotene and alpha-tocopherol in normocholesterolemic humans. Am J Clin Nutr. 2004;80(1):171–7.

    PubMed  CAS  Google Scholar 

  51. Nicolle C, Cardinault N, Aprikian O, et al. Effect of carrot intake on cholesterol metabolism and on antioxidant status in cholesterol-fed rat. Eur J Nutr. 2003;42(5):254–61.

    PubMed  Google Scholar 

  52. Hajri T, Abumrad NA. Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu Rev Nutr. 2002;22:383–415.

    PubMed  CAS  Google Scholar 

  53. Brown MJ, Ferruzzi MG, Nguyen ML, et al. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr. 2004;80(2):396–403.

    PubMed  CAS  Google Scholar 

  54. Drover VA, Nguyen DV, Bastie CC, et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem. 2008;283(19):13108–15.

    PubMed  CAS  Google Scholar 

  55. Drover VA, Ajmal M, Nassir F, et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest. 2005;115(5):1290–7.

    PubMed  CAS  Google Scholar 

  56. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282(27):19493–501.

    PubMed  CAS  Google Scholar 

  57. Thuahnai ST, Lund-Katz S, Williams DL, Phillips MC. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J Biol Chem. 2001;276(47):43801–8.

    PubMed  CAS  Google Scholar 

  58. Urban S, Zieseniss S, Werder M, Hauser H, Budzinski R, Engelmann B. Scavenger receptor BI transfers major lipoprotein-associated phospholipids into the cells. J Biol Chem. 2000;275(43):33409–15.

    PubMed  CAS  Google Scholar 

  59. Hauser H, Dyer JH, Nandy A, et al. Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry. 1998;37(51):17843–50.

    PubMed  CAS  Google Scholar 

  60. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol. 2003;23(5):712–9.

    PubMed  CAS  Google Scholar 

  61. Thuahnai ST, Lund-Katz S, Dhanasekaran P, et al. Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure. J Biol Chem. 2004;279(13):12448–55.

    PubMed  CAS  Google Scholar 

  62. Connelly MA, de la Llera-Moya M, Monzo P, et al. Analysis of chimeric receptors shows that multiple distinct functional activities of scavenger receptor, class B, type I (SR-BI), are localized to the extracellular receptor domain. Biochemistry. 2001;40(17):5249–59.

    PubMed  CAS  Google Scholar 

  63. Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA. 2005;102(23):8132–7.

    PubMed  CAS  Google Scholar 

  64. Davis Jr HR, Zhu LJ, Hoos LM, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279(32):33586–92.

    PubMed  CAS  Google Scholar 

  65. Sane AT, Sinnett D, Delvin E, et al. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res. 2006;47(10):2112–20.

    PubMed  CAS  Google Scholar 

  66. Lietz G, Lange J, Rimbach G. Molecular and dietary regulation of beta, beta-carotene 15,15′-monooxygenase 1 (BCMO1). Arch Biochem Biophys. 2010;502(1):8–16.

    PubMed  CAS  Google Scholar 

  67. Herr FM, Wardlaw SA, Kakkad B, Albrecht A, Quick TC, Ong DE. Intestinal vitamin A metabolism: coordinate distribution of enzymes and CRBP(II). J Lipid Res. 1993;34(9):1545–54.

    PubMed  CAS  Google Scholar 

  68. Grune T, Lietz G, Palou A, et al. Beta-carotene is an important vitamin A source for humans. J Nutr. 2010;140(12):2268S–85.

    PubMed  CAS  Google Scholar 

  69. Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis. 2000;148(1):1–15.

    PubMed  CAS  Google Scholar 

  70. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296(6):E1183–94.

    PubMed  CAS  Google Scholar 

  71. Lu S, Yao Y, Meng S, Cheng X, Black DD. Overexpression of apolipoprotein A-IV enhances lipid transport in newborn swine intestinal epithelial cells. J Biol Chem. 2002;277(35):31929–37.

    PubMed  CAS  Google Scholar 

  72. Lu S, Yao Y, Cheng X, et al. Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by increasing chylomicron size. J Biol Chem. 2006;281(6):3473–83.

    PubMed  CAS  Google Scholar 

  73. Carriere V, Vidal R, Lazou K, et al. HNF-4-dependent induction of apolipoprotein A-IV gene transcription by an apical supply of lipid micelles in intestinal cells. J Biol Chem. 2005;280(7):5406–13.

    PubMed  CAS  Google Scholar 

  74. Mansbach 2nd CM, Parthasarathy S. A re-examination of the fate of glyceride-glycerol in neutral lipid absorption and transport. J Lipid Res. 1982;23(7):1009–19.

    PubMed  CAS  Google Scholar 

  75. You CS, Parker RS, Goodman KJ, Swanson JE, Corso TN. Evidence of cis-trans isomerization of 9-cis-beta-carotene during absorption in humans. Am J Clin Nutr. 1996;64(2):177–83.

    PubMed  CAS  Google Scholar 

  76. Richelle M, Sanchez B, Tavazzi I, Lambelet P, Bortlik K, Williamson G. Lycopene isomerisation takes place within enterocytes during absorption in human subjects. Br J Nutr. 2010;103(12):1800–7.

    PubMed  CAS  Google Scholar 

  77. Ross AB, Vuong LT, Ruckle J, et al. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr. 2011;93(6):1263–73.

    PubMed  CAS  Google Scholar 

  78. Lu K, Lee MH, Patel SB. Dietary cholesterol absorption; more than just bile. Trends Endocrinol Metab. 2001;12(7):314–20.

    PubMed  CAS  Google Scholar 

  79. Plat J, Nichols JA, Mensink RP. Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J Lipid Res. 2005;46(11):2468–76.

    PubMed  CAS  Google Scholar 

  80. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.

    PubMed  CAS  Google Scholar 

  81. Plat J, Kerckhoffs DA, Mensink RP. Therapeutic potential of plant sterols and stanols. Curr Opin Lipidol. 2000;11(6):571–6.

    PubMed  CAS  Google Scholar 

  82. Plat J, Mensink RP. Effects of diets enriched with two different plant stanol ester mixtures on plasma ubiquinol-10 and fat-soluble antioxidant concentrations. Metabolism. 2001;50(5):520–9.

    PubMed  CAS  Google Scholar 

  83. Leo MA, Ahmed S, Aleynik SI, Siegel JH, Kasmin F, Lieber CS. Carotenoids and tocopherols in various hepatobiliary conditions. J Hepatol. 1995;23(5):550–6.

    PubMed  CAS  Google Scholar 

  84. O’Driscoll CM. Anatomy and physiology of lymphatics. In: Charman WN, Stella VJ, editors. Lymphatic transport of drugs. Boca Raton, FL: CRC Press, Inc; 1992. p. 1–35.

    Google Scholar 

  85. van Bennekum AM, Kako Y, Weinstock PH, et al. Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. J Lipid Res. 1999;40(3):565–74.

    PubMed  Google Scholar 

  86. Blaner WS, Obunike JC, Kurlandsky SB, et al. Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J Biol Chem. 1994;269(24):16559–65.

    PubMed  CAS  Google Scholar 

  87. Novotny JA, Kurilich AC, Britz SJ, Clevidence BA. Plasma appearance of labeled beta-carotene, lutein, and retinol in humans after consumption of isotopically labeled kale. J Lipid Res. 2005;46(9):1896–903.

    PubMed  CAS  Google Scholar 

  88. Bierer TL, Merchen NR, Erdman Jr JW. Comparative absorption and transport of five common carotenoids in preruminant calves. J Nutr. 1995;125(6):1569–77.

    PubMed  CAS  Google Scholar 

  89. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology. 1985;5(4):683–92.

    PubMed  CAS  Google Scholar 

  90. Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997;38(11):2173–92.

    PubMed  CAS  Google Scholar 

  91. Clevidence BA, Bieri JG. Association of carotenoids with human plasma lipoproteins. Methods Enzymol. 1993;214:33–46.

    PubMed  CAS  Google Scholar 

  92. Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26(6):459–516.

    PubMed  CAS  Google Scholar 

  93. Tyssandier V, Choubert G, Grolier P, Borel P. Carotenoids, mostly the xanthophylls, exchange between plasma lipoproteins. Int J Vitam Nutr Res. 2002;72(5):300–8.

    PubMed  CAS  Google Scholar 

  94. Ziouzenkova O, Winklhofer-Roob BM, Puhl H, Roob JM, Esterbauer H. Lack of correlation between the alpha-tocopherol content of plasma and LDL, but high correlations for gamma-tocopherol and carotenoids. J Lipid Res. 1996;37(9):1936–46.

    PubMed  CAS  Google Scholar 

  95. During A, Doraiswamy S, Harrison EH. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism. J Lipid Res. 2008;49(8):1715–24.

    PubMed  CAS  Google Scholar 

  96. Moussa M, Gouranton E, Gleize B, et al. CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Mol Nutr Food Res. 2011;55(4):578–84.

    PubMed  CAS  Google Scholar 

  97. Borel P, Moussa M, Reboul E, et al. Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J Nutr. 2007;137(12):2653–9.

    PubMed  CAS  Google Scholar 

  98. Borel P, Moussa M, Reboul E, et al. Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. Br J Nutr. 2009;101(5):680–7.

    PubMed  CAS  Google Scholar 

  99. Lietz G, Hesketh J. A network approach to micronutrient genetics: interactions with lipid metabolism. Curr Opin Lipidol. 2009;20(2):112–20.

    PubMed  CAS  Google Scholar 

  100. Chung HY, Ferreira AL, Epstein S, Paiva SA, Castaneda-Sceppa C, Johnson EJ. Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults. Am J Clin Nutr. 2009;90(3):533–9.

    PubMed  CAS  Google Scholar 

  101. Lakshman MR, Asher KA, Attlesey MG, Satchithanandam S, Mychkovsky I, Coutlakis PJ. Absorption, storage, and distribution of beta-carotene in normal and beta-carotene-fed rats: roles of parenchymal and stellate cells. J Lipid Res. 1989;30(10):1545–50.

    PubMed  CAS  Google Scholar 

  102. Shmarakov I, Fleshman MK, D’Ambrosio DN, et al. Hepatic stellate cells are an important cellular site for beta-carotene conversion to retinoid. Arch Biochem Biophys. 2010;504(1):3–10.

    PubMed  CAS  Google Scholar 

  103. Teodoro AJ, Perrone D, Martucci RB, Borojevic R. Lycopene isomerisation and storage in an in vitro model of murine hepatic stellate cells. Eur J Nutr. 2009;48(5):261–8.

    PubMed  CAS  Google Scholar 

  104. Borel P, de Edelenyi FS, Vincent-Baudry S, et al. Genetic variants in BCMO1 and CD36 are associated with plasma lutein concentrations and macular pigment optical density in humans. Ann Med. 2011;43(1):47–59.

    PubMed  CAS  Google Scholar 

  105. Li B, Vachali P, Bernstein PS. Human ocular carotenoid-binding proteins. Photochem Photobiol Sci. 2010;9(11):1418–25.

    PubMed  CAS  Google Scholar 

  106. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem. 2004;279(47):49447–54.

    PubMed  CAS  Google Scholar 

  107. Li B, Vachali P, Frederick JM, Bernstein PS. Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry. 2011;50(13):2541–9.

    PubMed  CAS  Google Scholar 

  108. Bhosale P, Li B, Sharifzadeh M, et al. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry. 2009;48(22):4798–807.

    PubMed  CAS  Google Scholar 

  109. Lademann J, Meinke MC, Sterry W, Darvin ME. Carotenoids in human skin. Exp Dermatol. 2011;20(5):377–82.

    PubMed  CAS  Google Scholar 

  110. Terao J, Minami Y, Bando N. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. J Clin Biochem Nutr. 2011;48(1):57–62.

    PubMed  CAS  Google Scholar 

  111. Antille C, Tran C, Sorg O, Saurat JH. Topical beta-carotene is converted to retinyl esters in human skin ex vivo and mouse skin in vivo. Exp Dermatol. 2004;13(9):558–61.

    PubMed  CAS  Google Scholar 

  112. Lademann J, Schanzer S, Meinke M, Sterry W, Darvin ME. Interaction between carotenoids and free radicals in human skin. Skin Pharmacol Physiol. 2011;24(5):238–44.

    PubMed  CAS  Google Scholar 

  113. Krinsky NI. The antioxidant and biological properties of the carotenoids. Ann N Y Acad Sci. 1998;854:443–7.

    PubMed  CAS  Google Scholar 

  114. Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9(15):1551–8.

    PubMed  CAS  Google Scholar 

  115. Nagao A. Oxidative conversion of carotenoids to retinoids and other products. J Nutr. 2004;134(1):237S–40.

    PubMed  CAS  Google Scholar 

  116. Siems W, Salerno C, Crifo C, Sommerburg O, Wiswedel I. Beta-carotene degradation products—formation, toxicity and prevention of toxicity. Forum Nutr. 2009;61:75–86.

    PubMed  CAS  Google Scholar 

  117. Sommerburg O, Karius N, Siems W, et al. Proteasomal degradation of beta-carotene metabolite–modified proteins. Biofactors. 2009;35(5):449–59.

    PubMed  CAS  Google Scholar 

  118. Moore T. Vitamin A and carotene: the absence of the liver oil vitamin A from carotene. VI. The conversion of carotene to vitamin A in vivo. Biochem J. 1930;24(3):692–702.

    PubMed  CAS  Google Scholar 

  119. Goodman DS, Huang HS. Biosynthesis of vitamin A with rat intestinal enzymes. Science. 1965;149:879–80.

    PubMed  CAS  Google Scholar 

  120. Olson JA, Hayaishi O. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine. Proc Natl Acad Sci USA. 1965;54(5):1364–70.

    PubMed  CAS  Google Scholar 

  121. Glover J. The conversion of beta-carotene into vitamin A. Vitam Horm. 1960;18:371–86.

    PubMed  CAS  Google Scholar 

  122. Wyss A. Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr. 2004;134(1):246S–50.

    PubMed  CAS  Google Scholar 

  123. von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr. 2010;30:35–56.

    Google Scholar 

  124. Cai X, Conley SM, Naash MI. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009;30(2):57–62.

    PubMed  CAS  Google Scholar 

  125. Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proc Natl Acad Sci USA. 2009;106(41):17325–30.

    PubMed  CAS  Google Scholar 

  126. Moiseyev G, Takahashi Y, Chen Y, et al. RPE65 is an iron(II)-dependent isomerohydrolase in the retinoid visual cycle. J Biol Chem. 2006;281(5):2835–40.

    PubMed  CAS  Google Scholar 

  127. Khachik F, Beecher GR, Goli MB, Lusby WR, Smith Jr JC. Separation and identification of carotenoids and their oxidation products in the extracts of human plasma. Anal Chem. 1992;64(18):2111–22.

    PubMed  CAS  Google Scholar 

  128. Etoh H, Utsunomiya Y, Komori A, Murakami Y, Oshima S, Inakuma T. Carotenoids in human blood plasma after ingesting paprika juice. Biosci Biotechnol Biochem. 2000;64(5):1096–8.

    PubMed  CAS  Google Scholar 

  129. Yonekura L, Kobayashi M, Terasaki M, Nagao A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr. 2010;140(10):1824–31.

    PubMed  CAS  Google Scholar 

  130. Khachik F, de Moura FF, Chew EY, et al. The effect of lutein and zeaxanthin supplementation on metabolites of these carotenoids in the serum of persons aged 60 or older. Invest Ophthalmol Vis Sci. 2006;47(12):5234–42.

    PubMed  Google Scholar 

  131. Murakami A, Takahashi D, Kinoshita T, et al. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha, beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis. 2002;23(5):795–802.

    PubMed  CAS  Google Scholar 

  132. Leuenberger MG, Engeloch-Jarret C, Woggon W-D. The reaction mechanism of the enzyme catalyzed central cleavage of b-carotene to retinal. Angew Chem Int Ed. 2001;40(14):2613–7.

    PubMed  Google Scholar 

  133. Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci. 2006;63(19–20):2291–303.

    PubMed  CAS  Google Scholar 

  134. Poliakov E, Gentleman S, Chander P, et al. Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse beta-carotene 15, 15′-monooxygenase. BMC Biochem. 2009;10:31.

    PubMed  Google Scholar 

  135. von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000;275(16):11915–20.

    Google Scholar 

  136. Wyss A, Wirtz G, Woggon W, et al. Cloning and expression of beta, beta-carotene 15,15′-dioxygenase. Biochem Biophys Res Commun. 2000;271(2):334–6.

    PubMed  CAS  Google Scholar 

  137. Paik J, During A, Harrison EH, Mendelsohn CL, Lai K, Blaner WS. Expression and characterization of a murine enzyme able to cleave beta-carotene. The formation of retinoids. J Biol Chem. 2001;276(34):32160–8.

    PubMed  CAS  Google Scholar 

  138. Wyss A, Wirtz GM, Woggon WD, et al. Expression pattern and localization of beta, beta-carotene 15,15′-dioxygenase in different tissues. Biochem J. 2001;354(Pt 3):521–9.

    PubMed  CAS  Google Scholar 

  139. Redmond TM, Gentleman S, Duncan T, et al. Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15′-dioxygenase. J Biol Chem. 2001;276(9):6560–5.

    PubMed  CAS  Google Scholar 

  140. Morales A, Rosas A, Gonzalez A, et al. Cloning of the bovine beta-carotene-15,15′-oxygenase and expression in gonadal tissues. Int J Vitam Nutr Res. 2006;76(1):9–17.

    PubMed  CAS  Google Scholar 

  141. Lampert JM, Holzschuh J, Hessel S, Driever W, Vogt K, von Lintig J. Provitamin A conversion to retinal via the beta, beta-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development. 2003;130(10):2173–86.

    PubMed  CAS  Google Scholar 

  142. Yan W, Jang GF, Haeseleer F, et al. Cloning and characterization of a human beta, beta-carotene-15,15′-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics. 2001;72(2):193–202.

    PubMed  CAS  Google Scholar 

  143. Lindqvist A, Andersson S. Biochemical properties of purified recombinant human beta-carotene 15,15′-monooxygenase. J Biol Chem. 2002;277(26):23942–8.

    PubMed  CAS  Google Scholar 

  144. Kim YS, Oh DK. Substrate specificity of a recombinant chicken beta-carotene 15,15′-monooxygenase that converts beta-carotene into retinal. Biotechnol Lett. 2009;31(3):403–8.

    PubMed  Google Scholar 

  145. Kim YS, Park CS, Oh DK. Hydrophobicity of residue 108 specifically affects the affinity of human beta-carotene 15,15′-monooxygenase for substrates with two ionone rings. Biotechnol Lett. 2010;32(6):847–53.

    PubMed  CAS  Google Scholar 

  146. Fierce Y, de Morais Vieira M, Piantedosi R, Wyss A, Blaner WS, Paik J. In vitro and in vivo characterization of retinoid synthesis from beta-carotene. Arch Biochem Biophys. 2008;472(2):126–38.

    PubMed  CAS  Google Scholar 

  147. Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE. The structure of a retinal-forming carotenoid oxygenase. Science. 2005;308(5719):267–9.

    PubMed  CAS  Google Scholar 

  148. Lindqvist A, Andersson S. Cell type-specific expression of beta-carotene 15,15′-mono-oxygenase in human tissues. J Histochem Cytochem. 2004;52(4):491–9.

    PubMed  CAS  Google Scholar 

  149. von Lintig J, Hessel S, Isken A, et al. Towards a better understanding of carotenoid metabolism in animals. Biochim Biophys Acta. 2005;1740(2):122–31.

    Google Scholar 

  150. Lindqvist A, Sharvill J, Sharvill DE, Andersson S. Loss-of-function mutation in carotenoid 15,15′-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. J Nutr. 2007;137(11):2346–50.

    PubMed  CAS  Google Scholar 

  151. Ferrucci L, Perry JR, Matteini A, et al. Common variation in the beta-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Hum Genet. 2009;84(2):123–33.

    PubMed  CAS  Google Scholar 

  152. Leung WC, Hessel S, Meplan C, et al. Two common single nucleotide polymorphisms in the gene encoding beta-carotene 15,15′-monoxygenase alter beta-carotene metabolism in female volunteers. FASEB J. 2009;23(4):1041–53.

    PubMed  CAS  Google Scholar 

  153. Takitani K, Zhu CL, Inoue A, Tamai H. Molecular cloning of the rat beta-carotene 15,15′-monooxygenase gene and its regulation by retinoic acid. Eur J Nutr. 2006;45(6):320–6.

    PubMed  CAS  Google Scholar 

  154. Bachmann H, Desbarats A, Pattison P, et al. Feedback regulation of beta, beta-carotene 15,15′-monooxygenase by retinoic acid in rats and chickens. J Nutr. 2002;132(12):3616–22.

    PubMed  CAS  Google Scholar 

  155. Seino Y, Miki T, Kiyonari H, et al. Isx participates in the maintenance of vitamin A metabolism by regulation of beta-carotene 15,15′-monooxygenase (Bcmo1) expression. J Biol Chem. 2008;283(8):4905–11.

    PubMed  CAS  Google Scholar 

  156. Lobo GP, Hessel S, Eichinger A, et al. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. FASEB J. 2010;24(6):1656–66.

    PubMed  CAS  Google Scholar 

  157. Boulanger A, McLemore P, Copeland NG, et al. Identification of beta-carotene 15, 15′-monooxygenase as a peroxisome proliferator-activated receptor target gene. FASEB J. 2003;17(10):1304–6.

    PubMed  CAS  Google Scholar 

  158. Gong X, Tsai SW, Yan B, Rubin LP. Cooperation between MEF2 and PPARgamma in human intestinal beta, beta-carotene 15,15′-monooxygenase gene expression. BMC Mol Biol. 2006;7:7.

    PubMed  Google Scholar 

  159. Takase S, Suruga K, Goda T. Regulation of vitamin A metabolism-related gene expression. Br J Nutr. 2000;84 Suppl 2:S217–21.

    PubMed  CAS  Google Scholar 

  160. Yamaguchi N, Suruga K. Triiodothyronine stimulates CMO1 gene expression in human intestinal Caco-2 BBe cells. Life Sci. 2008;82(13–14):789–96.

    PubMed  CAS  Google Scholar 

  161. Luvizotto RA, Nascimento AF, Veeramachaneni S, Liu C, Wang XD. Chronic alcohol intake upregulates hepatic expression of carotenoid cleavage enzymes and PPAR in rats. J Nutr. 2010;140(10):1808–14.

    PubMed  CAS  Google Scholar 

  162. Zaripheh S, Nara TY, Nakamura MT, Erdman Jr JW. Dietary lycopene downregulates carotenoid 15,15′-monooxygenase and PPAR-gamma in selected rat tissues. J Nutr. 2006;136(4):932–8.

    PubMed  CAS  Google Scholar 

  163. Reynaud E, Aydemir G, Ruhl R, Dangles O, Caris-Veyrat C. Organic synthesis of new putative lycopene metabolites and preliminary investigation of their cell-signaling effects. J Agric Food Chem. 2011;59(4):1457–63.

    PubMed  CAS  Google Scholar 

  164. van Vliet T, van Schaik F, Schreurs WH, van den Berg H. In vitro measurement of beta-carotene cleavage activity: methodological considerations and the effect of other carotenoids on beta-carotene cleavage. Int J Vitam Nutr Res. 1996;66(1):77–85.

    PubMed  Google Scholar 

  165. Nagao A, Maeda M, Lim BP, Kobayashi H, Terao J. Inhibition of beta-carotene-15,15′-dioxygenase activity by dietary flavonoids. J Nutr Biochem. 2000;11(6):348–55.

    PubMed  CAS  Google Scholar 

  166. Bando N, Muraki N, Murota K, Terao J, Yamanishi R. Ingested quercetin but not rutin increases accumulation of hepatic beta-carotene in BALB/c mice. Mol Nutr Food Res. 2010;54 Suppl 2:S261–7.

    PubMed  CAS  Google Scholar 

  167. Hessel S, Eichinger A, Isken A, et al. CMO1 deficiency abolishes vitamin A production from beta-carotene and alters lipid metabolism in mice. J Biol Chem. 2007;282(46):33553–61.

    PubMed  CAS  Google Scholar 

  168. Lindshield BL, King JL, Wyss A, et al. Lycopene biodistribution is altered in 15,15′-carotenoid monooxygenase knockout mice. J Nutr. 2008;138(12):2367–71.

    PubMed  CAS  Google Scholar 

  169. Tourniaire F, Gouranton E, von Lintig J, et al. beta-Carotene conversion products and their effects on adipose tissue. Gene Nutr. 2009;4(3):179–87.

    CAS  Google Scholar 

  170. Reichert B, Yasmeen R, Jeyakumar SM, et al. Concerted action of aldehyde dehydrogenases influences depot-specific fat formation. Mol Endocrinol. 2011;25(5):799–809.

    PubMed  CAS  Google Scholar 

  171. Lobo GP, Amengual J, Palczewski G, Babino D, von Lintig J. Carotenoid-oxygenases: key players for carotenoid function and homeostasis in mammalian biology. Biochim Biophys Acta. 2012;1821(1):78–87.

    PubMed  CAS  Google Scholar 

  172. Ziouzenkova O, Orasanu G, Sharlach M, et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007;13(6):695–702.

    PubMed  CAS  Google Scholar 

  173. Amengual J, Gouranton E, van Helden YG, Hessel S, Ribot J, et al. Beta-carotene reduces body adiposity of mice via BCMO1. PLoS One. 2011;6(6):e20644.

    PubMed  CAS  Google Scholar 

  174. Sanchez J, Fuster A, Oliver P, Palou A, Pico C. Effects of beta-carotene supplementation on adipose tissue thermogenic capacity in ferrets (Mustela putorius furo). Br J Nutr. 2009;102(11):1686–94.

    PubMed  CAS  Google Scholar 

  175. Olmedilla B, Granado F, Southon S, et al. A European multicentre, placebo-controlled supplementation study with alpha-tocopherol, carotene-rich palm oil, lutein or lycopene: analysis of serum responses. Clin Sci (Lond). 2002;102(4):447–56.

    CAS  Google Scholar 

  176. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. 1994;330(15):1029–35.

    Google Scholar 

  177. Omenn GS, Goodman GE, Thornquist MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88(21):1550–9.

    PubMed  CAS  Google Scholar 

  178. Kamangar F, Qiao YL, Yu B, et al. Lung cancer chemoprevention: a randomized, double-blind trial in Linxian, China. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1562–4.

    PubMed  CAS  Google Scholar 

  179. Cui Y, Freedman JH. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression. J Biol Chem. 2009;284(37):24925–32.

    PubMed  CAS  Google Scholar 

  180. Kiefer C, Hessel S, Lampert JM, et al. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem. 2001;276(17):14110–6.

    PubMed  CAS  Google Scholar 

  181. Lindqvist A, He YG, Andersson S. Cell type-specific expression of beta-carotene 9′,10′-monooxygenase in human tissues. J Histochem Cytochem. 2005;53(11):1403–12.

    PubMed  CAS  Google Scholar 

  182. Amengual J, Lobo GP, Golczak M, et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 2011;25(3):948–59.

    PubMed  CAS  Google Scholar 

  183. Hu KQ, Liu C, Ernst H, Krinsky NI, Russell RM, Wang XD. The biochemical characterization of ferret carotene-9′,10′-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo. J Biol Chem. 2006;281(28):19327–38.

    PubMed  CAS  Google Scholar 

  184. Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and beta-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Arch Biochem Biophys. 2011;506(1):109–21.

    PubMed  CAS  Google Scholar 

  185. Wang XD, Russell RM, Liu C, Stickel F, Smith DE, Krinsky NI. Beta-oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis from beta-apocarotenoic acids. J Biol Chem. 1996;271(43):26490–8.

    PubMed  CAS  Google Scholar 

  186. Eriksson J, Larson G, Gunnarsson U, et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 2008;4(2):e1000010.

    PubMed  Google Scholar 

  187. Tian R, Pitchford WS, Morris CA, Cullen NG, Bottema CD. Genetic variation in the beta, beta-carotene-9′, 10′-dioxygenase gene and association with fat colour in bovine adipose tissue and milk. Anim Genet. 2010;41(3):253–9.

    PubMed  CAS  Google Scholar 

  188. Berry SD, Davis SR, Beattie EM, et al. Mutation in bovine beta-carotene oxygenase 2 affects milk color. Genetics. 2009;182(3):923–6.

    PubMed  CAS  Google Scholar 

  189. Vage DI, Boman IA. A nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene is tightly associated with accumulation of carotenoids in adipose tissue in sheep (Ovis aries). BMC Genet. 2010;11:10.

    PubMed  Google Scholar 

  190. Ford NA, Clinton SK, von Lintig J, Wyss A, Erdman Jr JW. Loss of carotene-9′,10′-monooxygenase expression increases serum and tissue lycopene concentrations in lycopene-fed mice. J Nutr. 2010;140(12):2134–8.

    PubMed  CAS  Google Scholar 

  191. Siems W, Wiswedel I, Salerno C, et al. Beta-carotene breakdown products may impair mitochondrial functions–potential side effects of high-dose beta-carotene supplementation. J Nutr Biochem. 2005;16(7):385–97.

    PubMed  CAS  Google Scholar 

  192. van Helden YG, Keijer J, Knaapen AM, et al. Beta-carotene metabolites enhance inflammation-induced oxidative DNA damage in lung epithelial cells. Free Radic Biol Med. 2009;46(2):299–304.

    PubMed  Google Scholar 

  193. Alija AJ, Bresgen N, Sommerburg O, Siems W, Eckl PM. Cytotoxic and genotoxic effects of beta-carotene breakdown products on primary rat hepatocytes. Carcinogenesis. 2004;25(5):827–31.

    PubMed  CAS  Google Scholar 

  194. Lian F, Wang XD. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer. 2008;123(6):1262–8.

    PubMed  CAS  Google Scholar 

  195. Linnewiel K, Ernst H, Caris-Veyrat C, et al. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med. 2009;47(5):659–67.

    PubMed  CAS  Google Scholar 

  196. Ziouzenkova O, Orasanu G, Sukhova G, et al. Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol. 2007;21(1):77–88.

    PubMed  CAS  Google Scholar 

  197. Marsh RS, Yan Y, Reed VM, Hruszkewycz D, Curley RW, Harrison EH. b-Apocarotenoids do not significantly activate retinoic acid receptors a or b. Exp Biol Med (Maywood). 2010;235(3):342–8.

    CAS  Google Scholar 

  198. Eroglu A, Hruszkewycz DP, Curley Jr RW, Harrison EH. The eccentric cleavage product of beta-carotene, beta-apo-13-carotenone, functions as an antagonist of RXRalpha. Arch Biochem Biophys. 2010;504(1):11–6.

    PubMed  CAS  Google Scholar 

  199. Lian F, Smith DE, Ernst H, Russell RM, Wang XD. Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis. 2007;28(7):1567–74.

    PubMed  CAS  Google Scholar 

  200. Edwards AJ, Vinyard BT, Wiley ER, et al. Consumption of watermelon juice increases plasma concentrations of lycopene and beta-carotene in humans. J Nutr. 2003;133(4):1043–50.

    PubMed  CAS  Google Scholar 

  201. Kopec RE, Riedl KM, Harrison EH, et al. Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem. 2010;58(6):3290–6.

    PubMed  CAS  Google Scholar 

  202. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood). 2002;227(10):845–51.

    CAS  Google Scholar 

  203. Kim YS, Yeom SJ, Oh DK. Production of beta-apo-10′-carotenal from beta-carotene by human beta-carotene-9′,10′-oxygenase expressed in E. coli. Biotechnol Lett. 2011;33(6):1195–200.

    PubMed  CAS  Google Scholar 

  204. Ho CC, de Moura FF, Kim SH, Clifford AJ. Excentral cleavage of beta-carotene in vivo in a healthy man. Am J Clin Nutr. 2007;85(3):770–7.

    PubMed  CAS  Google Scholar 

  205. Gajic M, Zaripheh S, Sun F, Erdman Jr JW. Apo-8′-lycopenal and apo-12′-lycopenal are metabolic products of lycopene in rat liver. J Nutr. 2006;136(6):1552–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this chapter that was carried out in the authors’ laboratory was supported by grants R01 DK068437, R01 DK079221, and RC2 AA019413 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Blaner Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shmarakov, I.O., Yuen, J.J., Blaner, W.S. (2013). Carotenoid Metabolism and Enzymology. In: Tanumihardjo, S. (eds) Carotenoids and Human Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-203-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-203-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-202-5

  • Online ISBN: 978-1-62703-203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics