Advertisement

Biofortification of Maize with Provitamin A Carotenoids

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Biofortification, or the breeding of staple food crops to increase their micronutrient density, is widely viewed as a valuable strategy for sustainably improving the nutritional status of some malnourished populations.

Keywords

Vitamin A Maize Corn Biofortification Provitamin A carotenoids Vitamin A deficiency Agriculture Nutrition and health 

References

  1. 1.
    WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency. World Health Organization, Geneva. http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/. Accessed 4 Nov 2011.
  2. 2.
    Nuss ET, Tanumihardjo SA. Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf. 2010;9:417–36.CrossRefGoogle Scholar
  3. 3.
    Atlin GN, Palacios N, Babu R, Das B, Twumasi-Afriyie S, Friesen DK, DeGroote H, Vivek B, Pixley KV. Quality protein maize: progress and prospects. Plant Breed Rev. 2011;34:83–130.CrossRefGoogle Scholar
  4. 4.
    Pfeiffer WH, McClafferty B. HarvestPlus: breeding crops for better nutrition. Crop Sci. 2007;47:S88–105.CrossRefGoogle Scholar
  5. 5.
    Graham RD, Welch RM, Bouis HE. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron. 2001;70:77–142.CrossRefGoogle Scholar
  6. 6.
    Hotz C, McClafferty B. From harvest to health: challenges for developing biofortified staple foods and determining their impacts on micronutrient status. Food Nutr Bull. 2007;28:S271–9.PubMedGoogle Scholar
  7. 7.
    Bouis HE, Welch RM. Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 2010;50:S20–32.CrossRefGoogle Scholar
  8. 8.
    Qaim M, Stein AJ, Meenakshi JV. Economics of biofortification. Agric Econ. 2007;37(S1):119–33.CrossRefGoogle Scholar
  9. 9.
    Copenhagen Consensus. 2008. www.copenhagenconsensus.com/Home.aspx. Accessed 5 Nov 2011.
  10. 10.
    Bhagwati J, Bourgignon F, Kydland FE, Mundell R, North DC, Schelling TC, Smith VL, Stokey NL. Expert panel ranking. In: Lomborg B, editor. Global crises, global solutions. 2nd ed. New York: Cambridge University Press; 2009. p. 605–8.Google Scholar
  11. 11.
    Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Peña RJ. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci. 2007;46:293–307.CrossRefGoogle Scholar
  12. 12.
    Harjes C, Rocheford T, Bai L, Brutnell T, Bermudez-Kandiannis C, Sowinski S, Stapleton A, Vallabhaneni R, Williams M, Wurtzel E, Yan J, Buckler E. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008;319:330–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan J, Bermudez-Kandianis CB, Harjes CE, Bai L, Kim E, Yang X, Skinner D, Fu Z, Mitchell S, Li Q, Salas-Fernandez M, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, DellaPenna D, Brutnell T, Buckler E, Warburton M, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet. 2010;42:322–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurilich A, Juvik J. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem. 1999;47:1948–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Menkir A, Liu W, White W, Maziya-Dixon B, Rocheford T. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 2008;109:521–9.CrossRefGoogle Scholar
  16. 16.
    Kimura M, Rodriguez-Amaya DB. Sources of errors in the quantitative analysis of food carotenoids by HPLC. Arch Latinoam Nutr. 1999;49:58S–66.PubMedGoogle Scholar
  17. 17.
    Lozano-Alejo N, Vazquez-Carrillo G, Pixley K, Palacios-Rojas N. Effects of snack preparation by nixtamalization and frying on carotenoid profiles of Mexican maize landraces and hybrids. Innov Food Sci Emerg Technol. 2007;8:385–9.CrossRefGoogle Scholar
  18. 18.
    Berardo N, Mazzinelli G, Valotti P, Lagianna P, Redaelli R. Characterization of maize germplasm for the chemical composition of the grain. J Agric Food Chem. 2009;57:2378–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Howe JA, Tanumihardjo SA. Carotenoid-biofortified maize maintains adequate vitamin A status in Mongolian gerbils. J Nutr. 2006;136:2562–7.PubMedGoogle Scholar
  20. 20.
    Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 2008;26:139–45.PubMedCrossRefGoogle Scholar
  21. 21.
    FAOSTAT. CountrySTAT. An integrated system for national food and agriculture statistics. http://www.countrystat.org. Accessed 3 May 2011.
  22. 22.
    Bechoff A, Dhuique-Mayer C, Dornier M, Tomlins K, Boulanger R, Dufour D, Westby A. Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chem. 2010;121:348–57.CrossRefGoogle Scholar
  23. 23.
    Rodriguez-Amaya D, Nutti M, de Carvalho JL. Carotenoids of sweet potato, cassava and maize and their use in bread and flour fortification. In: Patel VB, Preedy VR, Watson RR, editors. Flour and breads and their fortification in health and disease prevention. London: Academic Press, Elsevier; 2011. p. 301–11.CrossRefGoogle Scholar
  24. 24.
    Bechoff A, Westby A, Owori C, Menya G, Dhuique-Mayer C, Dofour D, Tomlins K. Effect of drying and storage on the degradation of total carotenoids in orange-fleshed sweet potato cultivars. J Sci Food Agric. 2010;90:622–9.PubMedGoogle Scholar
  25. 25.
    Goldman M, Horev B, Saguy I. Decolorization of β-carotene in model systems simulating dehydrated foods. Mechanism and kinetic principles. J Food Sci. 1983;48:751–4.CrossRefGoogle Scholar
  26. 26.
    Aman R, Schieber A, Carle R. Effects of heating and illumination on trans-cis isomerization and degradation of β-carotene and lutein in isolated spinach chloroplasts. J Agric Food Chem. 2005;53:9512–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 2009;276:736–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Burt A, Grainger C, Young C, Shelp B, Lee E. Impact of postharvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L.) kernels. J Agric Food Chem. 2010;58:8286–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Li S, Tayie F, Young M, Rocheford T, White W. Retention of provitamin A carotenoids in high β-carotene maize (Zea mays) during traditional African household processing. J Agric Food Chem. 2007;55:10744–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez-Amaya DB. Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared, processed, and stored foods. Arlington: Opportunities for Micronutrient Intervention (OMNI); 1997.Google Scholar
  31. 31.
    Muzhingi T, Langyintuo A, Malaba L, Banziger M. Consumer acceptability of yellow maize products in Zimbabwe. Food Policy. 2008;33:352–61.CrossRefGoogle Scholar
  32. 32.
    Tayie FA, White WS. Effects of traditional African maize processing on the carotenoid contents of beta-carotene-rich yellow maize. Fam Consum Sci Res J. 2005;34:180–96.CrossRefGoogle Scholar
  33. 33.
    Kean EG, Hamaker BR, Ferruzzi MG. Carotenoid bioaccesibility from whole grain and degermed maize meal products. J Agric Food Chem. 2008;56:9918–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Olson JA. Absorption, transport and metabolism of carotenoids in humans. Pure Appl Chem. 1994;66:1011–6.CrossRefGoogle Scholar
  35. 35.
    Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001. p. 65–126.Google Scholar
  36. 36.
    Tanumihardjo SA, Palacios N, Pixley KV. Provitamin A carotenoid bioavailability: what really matters? Int J Vitam Nutr Res. 2010;80:336–50.PubMedGoogle Scholar
  37. 37.
    Lee CM, Lederman JD, Hofmann NE, Erdman Jr JW. The Mongolian gerbil (Meriones unguiculatus) is an appropriate animal for evaluation of the conversion of carotene to vitamin A. J Nutr. 1998;128:280–6.PubMedGoogle Scholar
  38. 38.
    Howe JA, Tanumihardjo SA. Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays sp.). J Agric Food Chem. 2006;54:7992–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Li S, Nugroho A, Rocheford T, White WS. Vitamin A equivalence of the β-carotene in β-carotene biofortified maize porridge consumed by women. Am J Clin Nutr. 2010;92:1105–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Muzhingi T, Gadaga TH, Siwela AH, Grusak MA, Russell RM, Tang G. Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am J Clin Nutr. 2011;94:510–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Davis CR, Howe JA, Rocheford TR, Tanumihardjo SA. The xanthophyll composition of biofortified maize (Zea mays sp.) does not influence the bioefficacy of provitamin A carotenoids in Mongolian gerbils (Meriones unguiculatus). J Agric Food Chem. 2008;56:6745–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Munoz EC, Rosado JL, Lopez P, Furr HC, Allen LH. Iron and zinc supplementation improves indicators of vitamin A status of Mexican preschoolers. Am J Clin Nutr. 2000;71:789–94.PubMedGoogle Scholar
  43. 43.
    Garcia-Casal MN. Carotenoids increase iron absorption from cereal-based food in the human. Nutr Res. 2006;26:340–4.CrossRefGoogle Scholar
  44. 44.
    Cauvain SP, Young LS. The ICC handbook of cereals, flour, dough and product testing. Lancaster, PA: DEStech Publications, Inc.; 2009.Google Scholar
  45. 45.
    Brown IL. High amylose starches-new development in human nutrition. Nutr Soc Aust. 1994;18:33–9.Google Scholar
  46. 46.
    Morris ML. Assessing the benefits of international maize breeding research: an overview of the global maize impacts study. In: Pingali PL, editor. CIMMYT 1999-2000 world maize facts and trends. Meeting world maize needs: technological opportunities and priorities for the public sector. Mexico, DF: CIMMYT; 2001. p. 25–34.Google Scholar
  47. 47.
    Pixley K, Fuentes M, Badstue L, Bergvinson D. Participatory plant breeding: science or dogma? Chapter 15. In: Chopra VL, Sharma RP, Bhat SR, Prasanna BM, editors. Search for new genes. New Delhi: Academic Foundation; 2007.Google Scholar
  48. 48.
    Snapp S. Mother and baby trials: a novel trial design being tried out in Malawi. In: TARGET, the Newsletter of the Soil Fertility Research Network for Maize-Based Cropping Systems in Malawi and Zimbabwe. 1999 Jan;17:8Google Scholar
  49. 49.
    Bänziger M, De Meyer J. Collaborative maize variety development for stress-prone environments in southern Africa. In: Cleveland DA, Soleri D, editors. Farmers, scientists and plant breeding. Wallingford, UK: CAB International; 2002. p. 269–96.CrossRefGoogle Scholar
  50. 50.
    Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D. Ensuring the supply of and creating demand for a biofortified crop with a visible trait: lessons learned from the introduction of orange-fleshed sweet potato in drought-prone areas of Mozambique. Food Nutr Bull. 2007;28:S258–70.PubMedGoogle Scholar
  51. 51.
    Tschirley DL, Santos AP. Who eats yellow maize? Preliminary results of a survey of consumer maize preferences in Maputo, Mozambique. In: International Development Working Paper 53. Michigan, USA: Michigan State University; 1995.Google Scholar
  52. 52.
    Rubey LR, Ward W, Tschirley D. Maize research priorities: the role of consumer preferences. In: Byerlee D, Eicher C, editors. Africa’s Emerging maize revolution. Colorado: Lynne Eienner Publishers; 1997. p. 145–56.Google Scholar
  53. 53.
    De Groote H, Chege Kimenju S. Comparing consumer preferences for color and nutritional quality in maize: application of a semi-double-bound logistic model on urban consumers in Kenya. Food Policy. 2008;33:362–70.CrossRefGoogle Scholar
  54. 54.
    Stevens R, Winter-Nelson A. Consumer acceptance of pro-vitamin A biofortified maize in Maputo, Mozambique. Food Policy. 2008;33:341–51.CrossRefGoogle Scholar
  55. 55.
    Meenakshi JV, Banerji A, Manyong V, Tomlins K, Hamukwala P, Zulu R, Mungoma C. Consumer acceptance of provitamin A orange maize in rural Zambia. HarvestPlus Working Paper No. 4. 2010. http://www.dfid.gov.uk/r4d/PDF/Outputs/Misc_Crop/HarvestPlus_Working_paper_4.pdf. Accessed 4 Aug 2011.
  56. 56.
    Burke WJ, Hichaambwa M, Banda D, Jayne TS. The cost of maize production by small scale farmers in Zambia. Working Paper No. 50. http://www.aec.msu.edu/fs2/zambia/wp50.pdf. Accessed 31 Mar 2011.
  57. 57.
    Kuteya A, Kabwe S, Beaver M, Chapoto A, Burke B, Mason N, Weber M. Statistical report on categorization of rural cropping households in Zambia: Section III. Household-Level Demographics and Population Location. Working Paper No.51-3. Food Security Research Project Lusaka, Zambia Draft, Mar 2011. http://www.aec.msu.edu/fs2/zambia/wp51/wp51_Section_III.pdf. Accessed 4 Aug 2011.
  58. 58.
    Langyintuo AS, Mwangi W, Diallo AO, MacRobert J, Dixon J, Bänziger M. An analysis of the bottlenecks affecting the production and deployment of maize seed in eastern and southern Africa. 2008. http://ageconsearch.umn.edu/bitstream/51713/2/Seeds-paper-2009-uploaded.pdf. Accessed 4 Aug 2011.
  59. 59.
    La Rovere R, Kostandini G, Abdoulaye T, Dixon J, Mwangi W, Guo Z, Bänziger M. Potential impact of investments in drought tolerant maize in Africa. 2010. http://www.mtnforum.org/en/content/potential-impact-investments-drought-tolerant-maize-africa. Accessed 4 Aug 2011.
  60. 60.
    Simfukwe M. FANRPAN: relief seed trade study-Zambia. Mwalimu Simfukwe. 2006 Sep 1. Discussion Document. Food Agriculture, and Natural Resources Policy Analysis Network. http://www.fanrpan.org/documents/d00202/Zambia_Seed_Trade_Simfukwe_Sept2006.pdf. Accessed 4 Nov 2011.
  61. 61.
    DellaPenna D, Pogson B. Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol. 2006;57:711–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Hirschberg J, Cohen M, Harker M, Lotan T, Mann V, Pecker I. Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl Chem. 1997;69:2151–8.CrossRefGoogle Scholar
  63. 63.
    Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet. 2007;114:693–704.PubMedCrossRefGoogle Scholar
  64. 64.
    Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol. 2005;23:482–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Pixley KV. Hybrid and open-pollinated varieties in modern agriculture. Chapter 17. In: Lamkey KR, Lee M, editors. Plant breeding: the Arnel R. Hallauer international symposium. IA, USA: Blackwell Publishing Professional; 2006. p. 234–50.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Genetic Resources ProgramInternational Maize and Wheat Improvement Center, CIMMYTTexcocoMexico
  2. 2.Department of AgronomyUniversity of WisconsinMadisonUSA
  3. 3.Global Maize ProgramInternational Maize and Wheat Improvement Center, CIMMYTTexcocoMexico
  4. 4.HarvestPlus, Department of Crop Developmentc/o World Fish CentreLusakaZambia
  5. 5.HarvestPlus, Zambia Country Programc/o World Fish CentreRidgeway, LusakaZambia

Personalised recommendations