Skip to main content

Carotenoids and Bone Health

  • Chapter
  • First Online:
Carotenoids and Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The role of vitamin A in bone health remains controversial. Some human studies associate higher concentrations of specific carotenoids with improved bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chrischilles EA, Butler CD, Davis CS, Wallace RB. A model of lifetime osteoporosis impact. Arch Intern Med. 1990;151:2026–32.

    Article  Google Scholar 

  2. Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN. Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol. 1996;144:255–63.

    Article  PubMed  CAS  Google Scholar 

  3. Pande I, Scott DL, O’Neill TW, Pritchard C, Woolf AD, Davis MJ. Quality of life, morbidity and mortality after low trauma hip fracture in men. Ann Rheum Dis. 2006;65:87–92.

    Article  PubMed  CAS  Google Scholar 

  4. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jönsson B. Mortality after osteoporotic fractures. Osteoporos Int. 2004;15:38–42.

    Article  PubMed  CAS  Google Scholar 

  5. Lips P. Epidemiology and predictors of fractures associated with osteoporosis. Am J Med. 1997;103:3S–8.

    Article  PubMed  CAS  Google Scholar 

  6. Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, Dooley KC, Don-Wauchope A, Douville P, Hanley DA, Jamal SA, Josse R, Kaiser S, Krahn J, Krause R, Kremer R, Lepage R, Letendre E, Morin S, Ooi DS, Papaioaonnou A, Ste-Marie L-G. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem. 2009;42:929–42.

    Article  PubMed  CAS  Google Scholar 

  7. Report of WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO reference number: WHO/TSR/843. 1994.

    Google Scholar 

  8. Kearns AE, Khosla S, Kosternuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.

    Article  PubMed  CAS  Google Scholar 

  9. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473:139–46.

    Article  PubMed  CAS  Google Scholar 

  10. Gallagher JC. Advances in bone biology and new treatments for bone loss. Maturitas. 2008;60:65–9.

    Article  PubMed  CAS  Google Scholar 

  11. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85:632–9.

    Article  PubMed  CAS  Google Scholar 

  12. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001;288:275–9.

    Article  PubMed  CAS  Google Scholar 

  13. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31:509–16.

    Article  PubMed  CAS  Google Scholar 

  14. Schreck R, Albermann K, Baeuerle PA. Nuclear factor κB: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic Res Commun. 1992;17:221–7.

    Article  PubMed  CAS  Google Scholar 

  15. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 1991;10:2247–58.

    PubMed  CAS  Google Scholar 

  16. Rock CL. Carotenoids: biology and treatment. Pharmacol Ther. 1997;75:185–97.

    Article  PubMed  CAS  Google Scholar 

  17. Terao J. Astaxanthin as a chain-breaking antioxidant in phospholipid peroxidation. In: Yagi K, Kondo M, Niki E, Yoshikawa T, editors. Oxygen radicals. New York: Elsevier Science Publishers; 1992. p. 657–60.

    Google Scholar 

  18. Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol. 2006;163:9–17.

    Article  PubMed  Google Scholar 

  19. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88:1523–7.

    Article  PubMed  CAS  Google Scholar 

  20. Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA. Serum carotenoid concentrations in postmenopausal women from the US with and without osteoporosis. Int J Vitam Nutr Res. 2008;78:105–11.

    Article  PubMed  CAS  Google Scholar 

  21. Maggio D, Polidori MC, Barabani M, Tufi A, Ruggiero C, Cecchetti R, Aisa MC, Stahl W, Cherubini A. Low levels of carotenoids and retinol in involutional osteoporosis. Bone. 2006;38:244–8.

    Article  PubMed  CAS  Google Scholar 

  22. Penniston KL, Weng N, Binkley N, Tanumihardjo SA. Serum retinyl esters are not elevated in postmenopausal women with and without osteoporosis whose preformed vitamin A intakes are high. Am J Clin Nutr. 2006;84:1350–6.

    PubMed  CAS  Google Scholar 

  23. Melhus H, Michaelsson K, Kindmark A, Bergström R, Holmberg L, Mallmin H, Wolk A, Ljunghall S. Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med. 1998;129:770–8.

    PubMed  CAS  Google Scholar 

  24. Promislow JHE, Goodman-Gruen D, Slymen DJ, Barrett-Connor E. Retinol intake and bone mineral density in the elderly: the Rancho Bernardo study. J Bone Miner Res. 2002;17:1349–58.

    Article  PubMed  CAS  Google Scholar 

  25. Feskanich D, Singh V, Willett WC, Colditz GA. Vitamin A intake and hip fractures among postmenopausal women. JAMA. 2002;287:47–54.

    Article  PubMed  CAS  Google Scholar 

  26. Park H-M, Heo J, Park Y. Calcium from plant sources is beneficial to lowering the risk of osteoporosis in postmenopausal Korean women. Nutr Res. 2011;31:27–31.

    Article  PubMed  CAS  Google Scholar 

  27. DiMascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532–8.

    Article  CAS  Google Scholar 

  28. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res. 2009;24:1086–94.

    Article  PubMed  CAS  Google Scholar 

  29. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr. 2009;89:416–24.

    Article  PubMed  CAS  Google Scholar 

  30. Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22:1091–101.

    Article  PubMed  CAS  Google Scholar 

  31. Mackinnon ES, Rao AV, Rao LG. Dietary restriction of lycopene for a period of one month resulted in significantly increased biomarkers of oxidative stress and bone resorption in postmenopausal women. J Nutr Health Aging. 2011;15:133–8.

    Article  PubMed  CAS  Google Scholar 

  32. Uchiyama S, Yamaguchi M. Inhibitory effect of β-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol. 2004;67:1297–305.

    Article  PubMed  CAS  Google Scholar 

  33. Uchiyama S, Yamaguchi M. β-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. Int J Mol Med. 2005;15:675–81.

    PubMed  CAS  Google Scholar 

  34. Yamaguchi M, Uchiyama S. Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: the unique anabolic effect of β-cryptoxanthin. Biol Pharm Bull. 2003;26:1188–91.

    Article  PubMed  CAS  Google Scholar 

  35. Yamaguchi M, Uchiyama S. β-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem. 2004;258:137–44.

    Article  PubMed  CAS  Google Scholar 

  36. Uchiyama S, Sumida T, Yamaguchi M. Oral administration of β-cryptoxanthin induces anabolic effects on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull. 2004;27:232–5.

    Article  PubMed  CAS  Google Scholar 

  37. Uchiyama S, Sumida T, Yamaguchi M. Anabolic effect of β-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro. J Health Sci. 2004;50:491–6.

    Article  CAS  Google Scholar 

  38. Uchiyama S, Yamaguchi M. Oral administration of β-cryptoxanthin prevents bone loss in ovariectomized rats. Int J Mol Med. 2006;17:15–20.

    PubMed  CAS  Google Scholar 

  39. Yamaguchi M, Igarashi A, Uchiyama S, Morita S, Sugawara K, Sumida T. Prolonged intake of juice (Citrus unshiu) reinforced with β-cryptoxanthin has an effect on circulating bone biochemical markers in normal individuals. J Health Sci. 2004;50:619–24.

    Article  CAS  Google Scholar 

  40. Yamaguchi M, Igarashi A, Morita S, Sumida T, Sugawara K. Relationship between serum β-cryptoxanthin and circulating bone metabolic markers in healthy individuals with the intake of juice (Citrus unshiu) containing β-cryptoxanthin. J Health Sci. 2005;51:738–43.

    Article  CAS  Google Scholar 

  41. Yamaguchi M, Igarashi A, Uchiyama S, Sugawara K, Sumida T, Morita S, Ogawa H, Nishitani M, Kajimoto Y. Effect of β-cryptoxanthin on circulating bone metabolic markers: intake of juice (Citrus unshiu) supplemented with β-cryptoxanthin has an effect in menopausal women. J Health Sci. 2006;52:758–68.

    Article  CAS  Google Scholar 

  42. Uchiyama S. β-Cryptoxanthin and bone metabolism: the preventive role in osteoporosis. J Health Sci. 2008;54:356–69.

    Article  Google Scholar 

  43. Wattanapenpaiboon N, Lukito W, Wahlqvist ML, Strauss BJ. Dietary carotenoid intake as a predictor of bone mineral density. Asia Pac J Clin Nutr. 2003;12:467–73.

    PubMed  CAS  Google Scholar 

  44. De Roos AJ, Arab L, Renner JB, Craft N, Luta G, Helmick CG, Hochberg MC, Jordan JM. Serum carotenoids and radiographic knee osteoarthritis: the Johnston County Osteoarthritis Project. Public Health Nutr. 2001;4:935–42.

    Article  PubMed  Google Scholar 

  45. Wang Y, Hodge AM, Wluka AE, English DR, Giles GG, O’Sullivan R, Forbes A, Cicuttini FM. Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: a cross-sectional study. Arthritis Res Ther. 2007;9:R66.

    Article  PubMed  Google Scholar 

  46. Seki T, Hasegawa Y, Yamaguchi J, Kanoh T, Ishiguro N, Tsuboi M, Ito Y, Hamajima N, Suzuki K. Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J Orthop Sci. 2010;15:477–84.

    Article  PubMed  CAS  Google Scholar 

  47. Imagama S, Hasegawa Y, Seki T, Matsuyama Y, Sakai Y, Ito Z, Ishiguro N, Ito Y, Hamajima N, Suzuki K. The effect of β-carotene on lumbar osteophyte formation. Spine (Phila Pa 1976). 2011;36(26):2293–8.

    Article  Google Scholar 

  48. Tanumihardjo SA. Food-based approaches for ensuring adequate vitamin A nutrition. Compr Rev Food Sci Food Saf. 2008;7:373–81.

    Google Scholar 

  49. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2010. 7th ed. Washington, DC: U.S. Government Printing Office; December 2010.

    Google Scholar 

  50. USDA National Nutrient Database for Standard Reference, Release 21. Composition of foods raw, processed, prepared. 2008. Available from: http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed Nov 2011.

  51. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001. p. 65–126.

    Google Scholar 

  52. Tanumihardjo SA, Palacios N, Pixley KV. Provitamin A carotenoid bioavailability: what really matters? Int J Vitam Nutr Res. 2010;80:336–50.

    PubMed  CAS  Google Scholar 

  53. Penniston KL, Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr. 2006;83:191–201.

    PubMed  CAS  Google Scholar 

  54. Binkley N, Krueger D. Hypervitaminosis A and bone. Nutr Rev. 2000;58:138–44.

    Article  PubMed  CAS  Google Scholar 

  55. Lim LS, Harnack LJ, Lazovich D, Folsom AR. Vitamin A intake and the risk of hip fracture in postmenopausal women: the Iowa Women’s Health Study. Osteoporos Int. 2004;15:552–9.

    Article  PubMed  CAS  Google Scholar 

  56. Michaelsson K, Lithell H, Vessby B, Melhus H. Serum retinol levels and the risk of fracture. N Engl J Med. 2003;348:287–94.

    Article  PubMed  CAS  Google Scholar 

  57. Penniston KL, Tanumihardjo SA. Vitamin A in dietary supplements and fortified foods: too much of a good thing? J Am Diet Assoc. 2003;103:1185–7.

    Article  PubMed  Google Scholar 

  58. Expert Group on Vitamins and Minerals. Risk assessment: vitamin A (retinol). In: Safe upper levels for vitamins and minerals. May 2003. p. 110–26. Internet: http://www.food.gov.uk/multimedia/pdfs/vitmin2003.pdf. Accessed 1 Dec 2011.

  59. Walker A, Zimmerman MR, Leakey REF. A possible case of hypervitaminosis A in Homo erectus. Nature. 1982;296:248–50.

    Article  PubMed  CAS  Google Scholar 

  60. Zimmerman MR. The paleopathology of the liver. Ann Clin Lab Sci. 1990;20:301–6.

    PubMed  CAS  Google Scholar 

  61. Landy D. Pibloktoq (hysteria) and Inuit nutrition: possible implication of hypervitaminosis A. Soc Sci Med. 1985;21:173–85.

    Article  PubMed  CAS  Google Scholar 

  62. Frame B, Jackson CE, Reynolds WA, Umphrey JE. Hypercalcemia and skeletal effects in chronic hypervitaminosis A. Ann Intern Med. 1974;80:44–8.

    PubMed  CAS  Google Scholar 

  63. Coghlan D, Cranswick NE. Complementary medicine and vitamin A toxicity in children. Med J Aust. 2001;175:223–4.

    PubMed  CAS  Google Scholar 

  64. Gamble JG, Ip SC. Hypervitaminosis A in a child from megadosing. J Pediatr Orthop. 1985;5:219–21.

    PubMed  CAS  Google Scholar 

  65. Bush ME, Dahms BB. Fatal hypervitaminosis A in a neonate. Arch Pathol Lab Med. 1984;108:838–42.

    PubMed  CAS  Google Scholar 

  66. Scherl S, Goldberg NS, Volpe L, Juster F. Overdosage of vitamin A supplements in a child. Cutis. 1992;50:209–10.

    PubMed  CAS  Google Scholar 

  67. Grissom LE, Griffin GC, Mandell GA. Hypervitaminosis A as a complication of treatment for neuroblastoma. Pediatr Radiol. 1996;26:200–2.

    Article  PubMed  CAS  Google Scholar 

  68. Saltzman MD, King EC. Central physeal arrests as a manifestation of hypervitaminosis A. J Pediatr Orthop. 2007;27:351–3.

    Article  PubMed  Google Scholar 

  69. Nesher G, Zuckner J. Rheumatologic complications of vitamin A and retinoids. Semin Arthritis Rheum. 1995;24:291–6.

    Article  PubMed  CAS  Google Scholar 

  70. Tanumihardjo SA. Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr. 2011;94:658S–65.

    Article  PubMed  Google Scholar 

  71. Penniston KL, Tanumihardjo SA. Subtoxic hepatic vitamin A concentrations in captive rhesus monkeys (Macaca mulatta). J Nutr. 2001;131:2904–9.

    PubMed  CAS  Google Scholar 

  72. Escaron AL, Green MH, Howe JA, Tanumihardjo SA. Mathematical modeling of serum 13C-retinol in captive rhesus monkeys provides new insights on hypervitaminosis A. J Nutr. 2009;139:2000–6.

    Article  PubMed  CAS  Google Scholar 

  73. Myhre AM, Carlsen MH, Bohn SK, Wold HL, Laake P, Blomhoff R. Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am J Clin Nutr. 2003;78:1152–9.

    PubMed  CAS  Google Scholar 

  74. Ang ES, Yang X, Chen H, Liu Q, Zheng MH, Xu J. Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Lett. 2011;585:2755–62.

    Article  PubMed  CAS  Google Scholar 

  75. Horcajada MN, Offord E. Naturally plant-derived compounds: role in bone anabolism. Curr Mol Pharmacol. 2012;5(2):205–18.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry A. Tanumihardjo M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanumihardjo, S.A., Binkley, N. (2013). Carotenoids and Bone Health. In: Tanumihardjo, S. (eds) Carotenoids and Human Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-203-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-203-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-202-5

  • Online ISBN: 978-1-62703-203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics