Skip to main content

Mesenchymal Stromal Cell Mechanisms of Immunomodulation and Homing

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The identification of therapeutic immunomodulatory mesenchymal stromal cells (MSC) with specific homing capabilities has simultaneously contributed to the potential development of powerful cellular immune therapies, with applications for a variety of inflammatory associated diseases. MSC have the ability to directly abrogate T cell, macrophage, dendritic cell (DC), neutrophil, and B cell pro-inflammatory functions. Specifically, T cell, macrophage, and DC MSC-mediated immunosuppression results in the adoption of phenotypes indicative of type II anti-inflammatory functional cells. These findings collectively suggest that MSC directly combat inflammation by controlling endogenous immune mechanisms. In this chapter, the molecular/cellular mechanisms governing these phenomena are discussed for each MSC-immune cell interaction. Furthermore, MSC homing mechanisms are discussed, highlighting our current understanding of the modes and limitations of MSC direct implantation modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gnecchi M et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368

    Article  PubMed  CAS  Google Scholar 

  2. Parekkadan B et al (2011) Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b(+) splenocytes. Gastroenterology 140(3):966–975 e4

    Article  PubMed  CAS  Google Scholar 

  3. Parekkadan B et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2(9):e941

    Article  PubMed  CAS  Google Scholar 

  4. Kunter U et al (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17(8):2202–2212

    Article  PubMed  CAS  Google Scholar 

  5. Panes J, Benitez-Ribas D, Salas A (2011) Mesenchymal stem cell therapy of Crohn’s disease: are the far-away hills getting closer? Gut 60(6):742–744

    Article  PubMed  Google Scholar 

  6. Galindo LT et al (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089

    PubMed  Google Scholar 

  7. Zappia E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761

    Article  PubMed  CAS  Google Scholar 

  8. Zheng ZH et al (2008) Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology 47(1):22–30

    Article  PubMed  CAS  Google Scholar 

  9. Kassis I et al (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65(6):753–761

    Article  PubMed  Google Scholar 

  10. NIH (2011) Mesenchymal stem cell clinical studies [cited 2011; Available from: www.clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cells]

  11. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  PubMed  CAS  Google Scholar 

  12. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  PubMed  CAS  Google Scholar 

  13. Maitra B et al (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 33(6):597–604

    Article  PubMed  CAS  Google Scholar 

  14. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    Article  PubMed  CAS  Google Scholar 

  15. Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  PubMed  Google Scholar 

  16. Glennie S et al (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827

    Article  PubMed  CAS  Google Scholar 

  17. Constantin G et al (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27(10):2624–2635

    Article  PubMed  CAS  Google Scholar 

  18. Bai L et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203

    Article  PubMed  Google Scholar 

  19. Gordon D et al (2010) Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69(11):1087–1095

    Article  PubMed  Google Scholar 

  20. Gonzalez-Rey E et al (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69(1):241–248

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez MA et al (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136(3):978–989

    Article  PubMed  Google Scholar 

  22. Mougiakakos D et al (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117(18):4826–4835

    Article  PubMed  CAS  Google Scholar 

  23. Maccario R et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90(4):516–525

    PubMed  CAS  Google Scholar 

  24. Prevosto C et al (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92(7):881–888

    Article  PubMed  CAS  Google Scholar 

  25. Najar M et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11(5):570–583

    Article  PubMed  CAS  Google Scholar 

  26. Beyth S et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105(5):2214–2219

    Article  PubMed  CAS  Google Scholar 

  27. Opitz CA et al (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27(4):909–919

    Article  PubMed  CAS  Google Scholar 

  28. Meisel R et al (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25(4):648–654

    Article  PubMed  CAS  Google Scholar 

  29. DelaRosa O et al (2009) Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng A 15(10):2795–2806

    Article  CAS  Google Scholar 

  30. Ryan JM et al (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363

    Article  PubMed  CAS  Google Scholar 

  31. Zhao ZG et al (2008) Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patients with chronic myeloid leukemia. Immunol Invest 37(7):726–739

    Article  PubMed  CAS  Google Scholar 

  32. Najar M et al (2010) Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cell Immunol 264(2):171–179

    Article  PubMed  CAS  Google Scholar 

  33. Yanez R et al (2010) Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 316(19):3109–3123

    Article  PubMed  CAS  Google Scholar 

  34. Lanz TV et al (2010) Mouse mesenchymal stem cells suppress antigen-specific TH cell immunity independent of indoleamine 2,3-dioxygenase 1 (IDO1). Stem Cells Dev 19(5):657–668

    Article  PubMed  CAS  Google Scholar 

  35. Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    Article  PubMed  CAS  Google Scholar 

  36. Ren G et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27(8):1954–1962

    Article  PubMed  CAS  Google Scholar 

  37. Nasef A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84(2):231–237

    Article  PubMed  CAS  Google Scholar 

  38. Selmani Z et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4  +  CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212–222

    Article  PubMed  CAS  Google Scholar 

  39. Sioud M et al (2011) Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins. Int J Oncol 38(2):385–390

    Article  PubMed  CAS  Google Scholar 

  40. Sioud M et al (2010) Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 71(4):267–274

    Article  PubMed  CAS  Google Scholar 

  41. Gur-Wahnon D et al (2007) Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Exp Hematol 35(3):426–433

    Article  PubMed  CAS  Google Scholar 

  42. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  PubMed  CAS  Google Scholar 

  43. Yan Y et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961

    Article  PubMed  CAS  Google Scholar 

  44. Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: linking innate and adaptive immunity. Semin Immunol 19(6):353–361

    Article  PubMed  CAS  Google Scholar 

  45. Ghannam S et al (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185(1):302–312

    Article  PubMed  CAS  Google Scholar 

  46. Duffy MM et al (2011) Mesenchymal stem cell inhibition of T-helper 17 differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 41(10):2840–2851

    Google Scholar 

  47. Tatara R et al (2011) Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy 13(6):686–694

    Article  PubMed  CAS  Google Scholar 

  48. Park MJ et al (2011) Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 63(6):1668–1680

    Article  PubMed  CAS  Google Scholar 

  49. Rafei M et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002

    Article  PubMed  CAS  Google Scholar 

  50. Guo Z et al (2009) Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur J Immunol 39(10):2840–2849

    Article  PubMed  CAS  Google Scholar 

  51. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469

    Article  PubMed  CAS  Google Scholar 

  52. Vivier E et al (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  PubMed  CAS  Google Scholar 

  53. Spaggiari GM et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4):1484–1490

    Article  PubMed  CAS  Google Scholar 

  54. Spaggiari GM et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Article  PubMed  CAS  Google Scholar 

  55. Rasmusson I et al (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213

    Article  PubMed  Google Scholar 

  56. Sotiropoulou PA et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  57. Neumann H et al (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25(6):313–319

    Article  PubMed  CAS  Google Scholar 

  58. Friese MA, Fugger L (2009) Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol 66(2):132–141

    Article  PubMed  CAS  Google Scholar 

  59. Rasmusson I et al (2007) Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. J Leukoc Biol 82(4):887–893

    Article  PubMed  CAS  Google Scholar 

  60. Karlsson H et al (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541

    Article  PubMed  CAS  Google Scholar 

  61. Traggiai E et al (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26(2):562–569

    Article  PubMed  CAS  Google Scholar 

  62. Corcione A et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    Article  PubMed  CAS  Google Scholar 

  63. Tabera S et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93(9):1301–1309

    Article  PubMed  CAS  Google Scholar 

  64. Asari S et al (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37(5):604–615

    Article  PubMed  CAS  Google Scholar 

  65. Schena F et al (2010) Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62(9):2776–2786

    Article  PubMed  CAS  Google Scholar 

  66. Augello A et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490

    Article  PubMed  CAS  Google Scholar 

  67. Youd M et al (2010) Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin Exp Immunol 161(1):176–186

    PubMed  CAS  Google Scholar 

  68. Kigerl KA et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444

    Article  PubMed  CAS  Google Scholar 

  69. Kanno S et al (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104(8):934–938

    Article  PubMed  CAS  Google Scholar 

  70. van Reyk DM, Jessup W (1999) The macrophage in atherosclerosis: modulation of cell function by sterols. J Leukoc Biol 66(4):557–561

    PubMed  Google Scholar 

  71. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Article  PubMed  CAS  Google Scholar 

  72. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    Article  PubMed  CAS  Google Scholar 

  73. Cutler AJ et al (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185(11):6617–6623

    Article  PubMed  CAS  Google Scholar 

  74. Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    Article  PubMed  CAS  Google Scholar 

  75. Zhang QZ et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    Article  PubMed  CAS  Google Scholar 

  76. Barminko J et al (2011) Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol Bioeng 108(11):2747–2758

    Google Scholar 

  77. Nemeth K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    Article  PubMed  CAS  Google Scholar 

  78. Chen L et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Article  PubMed  CAS  Google Scholar 

  79. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439

    Article  PubMed  CAS  Google Scholar 

  80. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5(14):1317–1327

    Article  PubMed  CAS  Google Scholar 

  81. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182

    Article  PubMed  CAS  Google Scholar 

  82. Ortiz LA et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci 104(26):11002–11007

    Article  PubMed  CAS  Google Scholar 

  83. Xu J et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L131–L141

    Article  PubMed  CAS  Google Scholar 

  84. Volarevic V et al (2010) Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 43(4):255–263

    Article  PubMed  CAS  Google Scholar 

  85. Pulavendran S, Vignesh J, Rose C (2010) Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int Immunopharmacol 10(4):513–519

    Article  PubMed  CAS  Google Scholar 

  86. Ajuebor MN et al (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol 162(3):1685–1691

    PubMed  CAS  Google Scholar 

  87. Bonder CS et al (2005) P-selectin can support both Th1 and Th2 lymphocyte rolling in the intestinal microvasculature. Am J Pathol 167(6):1647–1660

    Article  PubMed  CAS  Google Scholar 

  88. Cassatella M (1998) The neutrophil: one of the cellular targets of interleukin-10. Int J Clin Lab Res 28(3):148–161

    Article  PubMed  CAS  Google Scholar 

  89. Raffaghello L et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162

    Article  PubMed  CAS  Google Scholar 

  90. Cassatella MA et al (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29(6):1001–1011

    Article  PubMed  CAS  Google Scholar 

  91. Ardavín C et al (2001) Origin and differentiation of dendritic cells. Trends Immunol 22(12):691–700

    Article  PubMed  Google Scholar 

  92. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952

    Article  PubMed  CAS  Google Scholar 

  93. Clark GJ et al (2000) The role of dendritic cells in the innate immune system. Microbes Infect 2(3):257–272

    Article  PubMed  CAS  Google Scholar 

  94. Djouad F et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25(8):2025–2032

    Article  PubMed  CAS  Google Scholar 

  95. Jiang X-X et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126

    Article  PubMed  CAS  Google Scholar 

  96. Nauta AJ et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    PubMed  CAS  Google Scholar 

  97. Ramasamy R et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83(1):71–76

    Article  PubMed  Google Scholar 

  98. Spaggiari GM et al (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113(26):6576–6583

    Article  PubMed  CAS  Google Scholar 

  99. Zhang W et al (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–271

    Article  PubMed  CAS  Google Scholar 

  100. Wehner R et al (2009) Mesenchymal stem cells efficiently inhibit the proinflammatory ­properties of 6-sulfo LacNAc dendritic cells. Haematologica 94(8):1151–1156

    Article  PubMed  CAS  Google Scholar 

  101. Park S-J et al (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 ­activation. J Immunol 173(6):3844–3854

    PubMed  CAS  Google Scholar 

  102. Zhang B et al (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113(1):46–57

    Article  PubMed  CAS  Google Scholar 

  103. Wang Q et al (2008) Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol 68(6):607–615

    Article  PubMed  CAS  Google Scholar 

  104. Viney JL (1999) Dendritic cell subsets: the ultimate T cell differentiation decision makers? Gut 45(5):640–641

    Article  PubMed  CAS  Google Scholar 

  105. Shi Y et al (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20(5):510–518

    Article  PubMed  CAS  Google Scholar 

  106. Krampera M (2011) Mesenchymal stromal cell “licensing”: a multistep process. Leukemia 25(9):1408–1414

    Google Scholar 

  107. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14

    Article  PubMed  CAS  Google Scholar 

  108. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5

    Article  PubMed  CAS  Google Scholar 

  109. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  PubMed  CAS  Google Scholar 

  110. Ostuni R, Zanoni I, Granucci F (2010) Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 67(24):4109–4134

    Article  PubMed  CAS  Google Scholar 

  111. DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by Toll-like receptors: implications on therapeutic potential. Mediat Inflamm 2010:865601. Epub 2010 Jun 14.

    Google Scholar 

  112. Liotta F et al (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling. Stem Cells 26(1):279–289

    Article  PubMed  CAS  Google Scholar 

  113. Pevsner-Fischer M et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432

    Article  PubMed  CAS  Google Scholar 

  114. Tomchuck SL et al (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26(1):99–107

    Article  PubMed  CAS  Google Scholar 

  115. Wang Y et al (2010) TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC–mediated cardioprotection. PLoS One 5(12):e14206

    Article  PubMed  CAS  Google Scholar 

  116. Waterman RS et al (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088

    Article  PubMed  CAS  Google Scholar 

  117. Haider HK, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288(6):H2557–H2567

    Article  PubMed  CAS  Google Scholar 

  118. Sadat S et al (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363(3):674–679

    Article  PubMed  CAS  Google Scholar 

  119. Sordi V et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2):419–427

    Article  PubMed  CAS  Google Scholar 

  120. Honczarenko M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041

    Article  PubMed  CAS  Google Scholar 

  121. Wynn RF et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645

    Article  PubMed  CAS  Google Scholar 

  122. Brooke G et al (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17(5):929–940

    Article  PubMed  CAS  Google Scholar 

  123. Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    Article  PubMed  CAS  Google Scholar 

  124. Yu J et al (2010) SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J Cardiovasc Pharmacol 55(5):496–505

    PubMed  CAS  Google Scholar 

  125. Son BR et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24(5):1254–1264

    Article  PubMed  CAS  Google Scholar 

  126. Wang L et al (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7(2):113–117

    Article  PubMed  CAS  Google Scholar 

  127. Fiedler J, Etzel N, Brenner RE (2004) To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem 93(5):990–998

    Article  PubMed  CAS  Google Scholar 

  128. Schichor C et al (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199(2):301–310

    Article  PubMed  CAS  Google Scholar 

  129. Seiffge D (1996) Protective effects of monoclonal antibody to VLA-4 on leukocyte adhesion and course of disease in adjuvant arthritis in rats. J Rheumatol 23(12):2086–2091

    PubMed  CAS  Google Scholar 

  130. Schwarz D et al (2005) Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature 436(7050):546–549

    Article  PubMed  CAS  Google Scholar 

  131. Ruster B et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108(12):3938–3944

    Article  PubMed  CAS  Google Scholar 

  132. Steingen C et al (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44(6):1072–1084

    Article  PubMed  CAS  Google Scholar 

  133. Ip JE et al (2007) Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18(8):2873–2882

    Article  PubMed  CAS  Google Scholar 

  134. Semon JA et al (2010) Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res 341(1):147–158

    Article  PubMed  CAS  Google Scholar 

  135. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216

    Article  PubMed  CAS  Google Scholar 

  136. Veevers-Lowe J et al (2011) Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. J Cell Sci 124(Pt 8):1288–1300

    Article  PubMed  CAS  Google Scholar 

  137. Cernuda-Morollon E, Gharbi S, Millan J (2010) Discriminating between the paracellular and transcellular routes of diapedesis. Methods Mol Biol 616:69–82

    Article  PubMed  CAS  Google Scholar 

  138. De Becker A et al (2007) Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92(4):440–449

    Article  PubMed  Google Scholar 

  139. Ho IA et al (2009) Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27(6):1366–1375

    Article  PubMed  CAS  Google Scholar 

  140. Lee MH, Kwon T-G, Park HS (2009) Comparative phenotypic analysis of mesenchymal stem cells derived from bone marrow, skin, adipose tissue and umbilical cord. Tissue Eng Regener Med 6(1–3):179–185

    Google Scholar 

  141. Li SH et al (2009) Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg 137(5):1225–1233 e1

    Article  PubMed  Google Scholar 

  142. Bakshi A et al (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 1(3):330–337

    Article  PubMed  Google Scholar 

  143. Cizkova D et al (2010) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28(9):1951–1961

    Google Scholar 

  144. Harting MT et al (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110(6):1189–1197

    Article  PubMed  CAS  Google Scholar 

  145. Ohtaki H et al (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105(38):14638–14643

    Article  PubMed  CAS  Google Scholar 

  146. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–793

    Article  PubMed  CAS  Google Scholar 

  147. Wan YY (2010) Multi-tasking of helper T cells. Immunology 130(2):166–171

    Article  PubMed  CAS  Google Scholar 

  148. Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19(3):281–286

    Article  PubMed  CAS  Google Scholar 

  149. Annunziato F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    Article  PubMed  CAS  Google Scholar 

  150. Bi Y, Liu G, Yang R (2007) Th17 cell induction and immune regulatory effects. J Cell Physiol 211(2):273–278

    Article  PubMed  CAS  Google Scholar 

  151. Kitchingman GR, Rooney C (1998) Cytotoxic T cells and immunotherapy. Pediatr Radiol 28(7):489–491

    Article  PubMed  CAS  Google Scholar 

  152. Campbell NA et al (2008) Biology, 8th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  153. Read S, Powrie F (2001) CD4+ regulatory T cells. Curr Opin Immunol 13(6):644–649

    Article  PubMed  CAS  Google Scholar 

  154. Takahashi T et al (1998) Immunologic self-tolerance maintained by CD25  +  CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Barminko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barminko, J., Gray, A., Maguire, T., Schloss, R., Yarmush, M.L. (2013). Mesenchymal Stromal Cell Mechanisms of Immunomodulation and Homing. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_2

Download citation

Publish with us

Policies and ethics