Skip to main content

Molecular Identification of the Indolent Versus Lethal Tumor

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 1369 Accesses

Abstract

Widespread PSA testing leads to the diagnosis of clinically insignificant tumors (overdiagnosis) and potential overtreatment, causing severe morbidity and leading to unnecessary high healthcare costs. Prognostic biomarkers, to identify men with clinically significant prostate cancer, are urgently needed. This chapter will focus on serum PSA and promising novel prognostic biomarkers for prostate cancer, arranged by tissue markers, blood markers, and urine markers. In addition, the STAndards for Reporting of Diagnostic accuracy (STARD) statement and the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) guidelines, two initiatives that are important steps forward in improving the quality of tumor marker studies, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djavan B, Ravery V, Zlotta A, et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol. 2001;166(5): 1679–83.

    Article  PubMed  CAS  Google Scholar 

  2. Noguchi M, Stamey TA, McNeal JE, Yemoto CM. Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol. 2001;166(1):104–9 (discussion 109–110).

    Article  PubMed  CAS  Google Scholar 

  3. Richie JP, Catalona WJ, Ahmann FR, et al. Effect of patient age on early detection of prostate cancer with serum prostate-specific antigen and digital rectal examination. Urology. 1993;42(4):365–74.

    Article  PubMed  CAS  Google Scholar 

  4. Schroder FH, van der Maas P, Beemsterboer P, et al. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European randomized study of screening for prostate cancer. J Natl Cancer Inst. 1998;90(23): 1817–23.

    Article  PubMed  CAS  Google Scholar 

  5. Roddam AW, Duffy MJ, Hamdy FC, et al. Use of prostate-specific antigen (PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2–10 ng/ml: systematic review and meta-analysis. Eur Urol. 2005;48(3):386–99.

    Article  PubMed  CAS  Google Scholar 

  6. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69(3):89–95.

    Article  Google Scholar 

  7. Lundwall A, Clauss A, Olsson AY. Evolution of kallikrein-related peptidases in mammals and identification of a genetic locus encoding potential regulatory inhibitors. Biol Chem. 2006;387(3): 243–9.

    Article  PubMed  CAS  Google Scholar 

  8. Lilja H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest. 1985;76(5):1899–903.

    Article  PubMed  CAS  Google Scholar 

  9. Herrala AM, Porvari KS, Kyllonen AP, Vihko PT. Comparison of human prostate specific glandular kallikrein 2 and prostate specific antigen gene expression in prostate with gene amplification and overexpression of prostate specific glandular kallikrein 2 in tumor tissue. Cancer. 2001;92(12):2975–84.

    Article  PubMed  CAS  Google Scholar 

  10. Lintula S, Stenman J, Bjartell A, Nordling S, Stenman UH. Relative concentrations of hK2/PSA mRNA in benign and malignant prostatic tissue. Prostate. 2005;63(4):324–9.

    Article  PubMed  CAS  Google Scholar 

  11. Qiu SD, Young CY, Bilhartz DL, et al. In situ hybridization of prostate-specific antigen mRNA in human prostate. J Urol. 1990;144(6):1550–6.

    PubMed  CAS  Google Scholar 

  12. Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM. Molecular markers of prostate cancer. Urol Oncol. 2006;24(6):538–51.

    Article  PubMed  CAS  Google Scholar 

  13. Barry MJ. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med. 2001;344(18):1373–7.

    Article  PubMed  CAS  Google Scholar 

  14. Efstathiou JA, Chen MH, Catalona WJ, et al. Prostate-specific antigen-based serial screening may decrease prostate cancer-specific mortality. Urology. 2006;68(2):342–7.

    Article  PubMed  Google Scholar 

  15. Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level  <  or =4.0 ng per milliliter. N Engl J Med. 2004;350(22):2239–46.

    Article  PubMed  CAS  Google Scholar 

  17. Fowler Jr JE, Bigler SA, Kilambi NK, Land SA. Relationships between prostate-specific antigen and prostate volume in black and white men with benign prostate biopsies. Urology. 1999;53(6):1175–8.

    Article  PubMed  Google Scholar 

  18. Morgan TO, Jacobsen SJ, McCarthy WF, Jacobson DJ, McLeod DG, Moul JW. Age-specific reference ranges for prostate-specific antigen in black men. N Engl J Med. 1996;335(5):304–10.

    Article  PubMed  CAS  Google Scholar 

  19. D’Amico AV, Roehrborn CG. Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol. 2007; 8(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  20. Marks LS, Andriole GL, Fitzpatrick JM, Schulman CC, Roehrborn CG. The interpretation of serum prostate specific antigen in men receiving 5alpha-reductase inhibitors: a review and clinical recommendations. J Urol. 2006;176(3):868–74.

    Article  PubMed  CAS  Google Scholar 

  21. Lilja H, Ulmert D, Bjork T, et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol. 2007;25(4):431–6.

    Article  PubMed  CAS  Google Scholar 

  22. Loeb S, Roehl KA, Antenor JA, Catalona WJ, Suarez BK, Nadler RB. Baseline prostate-specific antigen compared with median prostate-specific antigen for age group as predictor of prostate cancer risk in men younger than 60 years old. Urology. 2006;67(2): 316–20.

    Article  PubMed  Google Scholar 

  23. Ulmert D, Cronin AM, Bjork T, et al. Prostate-specific antigen at or before age 50 as a predictor of advanced prostate cancer diagnosed up to 25 years later: a case–control study. BMC Med. 2008;6:6.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2006;98(8): 529–34.

    Article  PubMed  Google Scholar 

  25. van den Bergh RC, Roobol MJ, Wolters T, van Leeuwen PJ, Schroder FH. The Prostate Cancer Prevention Trial and European randomized study of screening for prostate cancer risk calculators indicating a positive prostate biopsy: a comparison. BJU Int. 2008;102(9):1068–73.

    Article  PubMed  Google Scholar 

  26. Schroder F, Kattan MW. The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review. Eur Urol. 2008;54(2):274–90.

    Article  PubMed  Google Scholar 

  27. Borer JG, Sherman J, Solomon MC, Plawker MW, Macchia RJ. Age specific prostate specific antigen reference ranges: population specific. J Urol. 1998; 159(2):444–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008;8(4):268–78.

    Article  PubMed  CAS  Google Scholar 

  29. Karazanashvili G, Abrahamsson PA. Prostate specific antigen and human glandular kallikrein 2 in early detection of prostate cancer. J Urol. 2003; 169(2):445–57.

    Article  PubMed  CAS  Google Scholar 

  30. Benson MC, Whang IS, Pantuck A, et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J Urol. 1992;147(3 Pt 2):815–6.

    PubMed  CAS  Google Scholar 

  31. Rommel FM, Agusta VE, Breslin JA, et al. The use of prostate specific antigen and prostate specific antigen density in the diagnosis of prostate cancer in a community based urology practice. J Urol. 1994;151(1):88–93.

    PubMed  CAS  Google Scholar 

  32. Ohori M, Dunn JK, Scardino PT. Is prostate-specific antigen density more useful than prostate-specific antigen levels in the diagnosis of prostate cancer? Urology. 1995;46(5):666–71.

    Article  PubMed  CAS  Google Scholar 

  33. Brawer MK, Aramburu EA, Chen GL, Preston SD, Ellis WJ. The inability of prostate specific antigen index to enhance the predictive the value of prostate specific antigen in the diagnosis of prostatic carcinoma. J Urol. 1993;150(2 Pt 1):369–73.

    PubMed  CAS  Google Scholar 

  34. Vickers AJ, Savage C, O’Brien MF, Lilja H. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol. 2009;27(3):398–403.

    Article  PubMed  Google Scholar 

  35. Catalona WJ, Partin AW, Slawin KM, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279(19):1542–7.

    Article  PubMed  CAS  Google Scholar 

  36. Woodrum DL, Brawer MK, Partin AW, Catalona WJ, Southwick PC. Interpretation of free prostate specific antigen clinical research studies for the detection of prostate cancer. J Urol. 1998;159(1):5–12.

    Article  PubMed  CAS  Google Scholar 

  37. Ulmert D, Becker C, Nilsson JA, et al. Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs plasma after long-term storage at −20 degrees C. Clin Chem. 2006;52(2):235–9.

    Article  PubMed  CAS  Google Scholar 

  38. Linton HJ, Marks LS, Millar LS, Knott CL, Rittenhouse HG, Mikolajczyk SD. Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease. Clin Chem. 2003; 49(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  39. Mikolajczyk SD, Grauer LS, Millar LS, et al. A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum. Urology. 1997;50(5):710–4.

    Article  PubMed  CAS  Google Scholar 

  40. Catalona WJ, Bartsch G, Rittenhouse HG, et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. J Urol. 2003;170(6 Pt 1):2181–5.

    Article  PubMed  CAS  Google Scholar 

  41. Mikolajczyk SD, Catalona WJ, Evans CL, et al. Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clin Chem. 2004;50(6):1017–25.

    Article  PubMed  CAS  Google Scholar 

  42. Mikolajczyk SD, Millar LS, Wang TJ, et al. A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer Res. 2000;60(3):756–9.

    PubMed  CAS  Google Scholar 

  43. Kumaresan K, Kakkar N, Verma A, Mandal AK, Singh SK, Joshi K. Diagnostic utility of alpha-methylacyl CoA racemase (P504S) and HMWCK in morphologically difficult prostate cancer. Diagn Pathol. 2010;5:83.

    Article  PubMed  CAS  Google Scholar 

  44. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105(7):2640–53.

    Article  PubMed  CAS  Google Scholar 

  45. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  PubMed  CAS  Google Scholar 

  46. Magi-Galluzzi C, Tsusuki T, Elson P, et al. TMPRSS2–ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 2011;71(5):489–97.

    Article  PubMed  CAS  Google Scholar 

  47. Attard G, Clark J, Ambroisine L, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer. 2008;99(2): 314–20.

    Article  PubMed  CAS  Google Scholar 

  48. Han B, Mehra R, Dhanasekaran SM, et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 2008;68(18):7629–37.

    Article  PubMed  CAS  Google Scholar 

  49. Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2: ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66(7):3396–400.

    Article  PubMed  CAS  Google Scholar 

  50. Park K, Tomlins SA, Mudaliar KM, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 2010;12(7):590–8.

    PubMed  CAS  Google Scholar 

  51. Minner S, Enodien M, Sirma H, et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of anti-hormonal therapy. Clin Cancer Res. 2011;17(18):5878–88.

    Article  PubMed  CAS  Google Scholar 

  52. Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31): 4596–9.

    Article  PubMed  CAS  Google Scholar 

  53. Nam RK, Sugar L, Yang W, et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer. 2007;97(12):1690–5.

    Article  PubMed  CAS  Google Scholar 

  54. Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66(17):8347–51.

    Article  PubMed  CAS  Google Scholar 

  55. FitzGerald LM, Agalliu I, Johnson K, et al. Association of TMPRSS2–ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer. 2008;8:230.

    Article  PubMed  CAS  Google Scholar 

  56. Gopalan A, Leversha MA, Satagopan JM, et al. TMPRSS2–ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69(4):1400–6.

    Article  PubMed  CAS  Google Scholar 

  57. Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res. 2008;14(11): 3395–400.

    Article  PubMed  Google Scholar 

  58. Winnes M, Lissbrant E, Damber JE, Stenman G. Molecular genetic analyses of the TMPRSS2–ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep. 2007;17(5):1033–6.

    PubMed  CAS  Google Scholar 

  59. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3): 311–22.

    Article  PubMed  CAS  Google Scholar 

  60. Cattoretti G, Becker MH, Key G, et al. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 1992;168(4):357–63.

    Article  PubMed  CAS  Google Scholar 

  61. Aaltomaa S, Lipponen P, Vesalainen S, Ala-Opas M, Eskelinen M, Syrjanen K. Value of Ki-67 immunolabelling as a prognostic factor in prostate cancer. Eur Urol. 1997;32(4):410–5.

    PubMed  CAS  Google Scholar 

  62. Borre M, Bentzen SM, Nerstrom B, Overgaard J. Tumor cell proliferation and survival in patients with prostate cancer followed expectantly. J Urol. 1998;159(5):1609–14.

    Article  PubMed  CAS  Google Scholar 

  63. Bettencourt MC, Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Moul JW. Ki-67 expression is a prognostic marker of prostate cancer recurrence after radical prostatectomy. J Urol. 1996;156(3):1064–8.

    Article  PubMed  CAS  Google Scholar 

  64. Bubendorf L, Sauter G, Moch H, et al. Ki67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol. Apr 1996;178(4):437–41.

    Article  PubMed  CAS  Google Scholar 

  65. Scalzo DA, Kallakury BV, Gaddipati RV, et al. Cell proliferation rate by MIB-1 immunohistochemistry predicts postradiation recurrence in prostatic adenocarcinomas. Am J Clin Pathol. Feb 1998;109(2):163–8.

    PubMed  CAS  Google Scholar 

  66. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308): 1943–7.

    Article  PubMed  CAS  Google Scholar 

  67. Uzoh CC, Perks CM, Bahl A, Holly JM, Sugiono M, Persad RA. PTEN-mediated pathways and their association with treatment-resistant prostate cancer. BJU Int. Aug 2009;104(4):556–61.

    Article  PubMed  CAS  Google Scholar 

  68. Shen MM, Abate-Shen C. Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res. 2007;67(14):6535–8.

    Article  PubMed  CAS  Google Scholar 

  69. Huang H, Cheville JC, Pan Y, Roche PC, Schmidt LJ, Tindall DJ. PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem. 2001;276(42):38830–6.

    Article  PubMed  CAS  Google Scholar 

  70. Priulla M, Calastretti A, Bruno P, et al. Preferential chemosensitization of PTEN-mutated prostate cells by silencing the Akt kinase. Prostate. 2007;67(7): 782–9.

    Article  PubMed  CAS  Google Scholar 

  71. Anai S, Goodison S, Shiverick K, Iczkowski K, Tanaka M, Rosser CJ. Combination of PTEN gene therapy and radiation inhibits the growth of human prostate cancer xenografts. Hum Gene Ther. Oct 2006;17(10):975–84.

    Article  PubMed  CAS  Google Scholar 

  72. Wu Z, McRoberts KS, Theodorescu D. The role of PTEN in prostate cancer cell tropism to the bone micro-environment. Carcinogenesis. Jul 2007;28(7): 1393–400.

    Article  PubMed  CAS  Google Scholar 

  73. Bedolla R, Prihoda TJ, Kreisberg JI, et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res. 2007;13(13):3860–7.

    Article  PubMed  CAS  Google Scholar 

  74. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. Apr 1988;102(4):639–55.

    PubMed  CAS  Google Scholar 

  75. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198(1):11–26.

    PubMed  CAS  Google Scholar 

  76. Umbas R, Isaacs WB, Bringuier PP, Xue Y, Debruyne FM, Schalken JA. Relation between aberrant alpha-catenin expression and loss of E-cadherin function in prostate cancer. Int J Cancer. 1997;74(4):374–7.

    Article  PubMed  CAS  Google Scholar 

  77. Umbas R, Schalken JA, Aalders TW, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 1992;52(18):5104–9.

    PubMed  CAS  Google Scholar 

  78. Chen H, Tu SW, Hsieh JT. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem. 2005;280(23):22437–44.

    Article  PubMed  CAS  Google Scholar 

  79. Koyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem. 2005;280(36):31470–7.

    Article  PubMed  CAS  Google Scholar 

  80. Breuer RH, Snijders PJ, Smit EF, et al. Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia. 2004;6(6):736–43.

    Article  PubMed  CAS  Google Scholar 

  81. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100(20):11606–11.

    Article  PubMed  CAS  Google Scholar 

  82. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907): 624–9.

    Article  PubMed  CAS  Google Scholar 

  83. Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27(58):7274–84.

    Article  PubMed  CAS  Google Scholar 

  84. di Sant’Agnese PA, de Mesy Jensen KL. Neuroendocrine differentiation in prostatic carcinoma. Hum Pathol. 1987;18(8):849–56.

    Article  PubMed  Google Scholar 

  85. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. Feb 2007;8(2):93–103.

    Article  PubMed  CAS  Google Scholar 

  86. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. Jul 2004;5(7):522–31.

    Article  PubMed  CAS  Google Scholar 

  87. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. Oct 2009; 10(10):704–14.

    Article  PubMed  CAS  Google Scholar 

  88. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  89. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  PubMed  CAS  Google Scholar 

  90. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–60.

    Article  PubMed  CAS  Google Scholar 

  91. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.

    Article  PubMed  CAS  Google Scholar 

  92. Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. Nov 2008;14(11):1271–7.

    Article  PubMed  CAS  Google Scholar 

  93. Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–24.

    Article  PubMed  CAS  Google Scholar 

  94. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 2008;68(15):1599–606.

    Article  PubMed  CAS  Google Scholar 

  95. Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer. RNA. Mar 2008;14(3):417–24.

    Article  PubMed  CAS  Google Scholar 

  96. Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69(18):7165–9.

    Article  PubMed  CAS  Google Scholar 

  97. Waltering KK, Porkka KP, Jalava SE, et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate. May 2011;71(6):604–14.

    Article  PubMed  CAS  Google Scholar 

  98. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.

    Article  PubMed  CAS  Google Scholar 

  99. Sylvestre Y, De Guire V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.

    Article  PubMed  CAS  Google Scholar 

  100. Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:617421.

    Article  PubMed  Google Scholar 

  101. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8): 781–91.

    Article  PubMed  CAS  Google Scholar 

  102. Cristofanilli M, Hayes DF, Budd GT, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005;23(7):1420–30.

    Article  PubMed  Google Scholar 

  103. Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21.

    Article  PubMed  Google Scholar 

  104. Cohen SJ, Punt CJ, Iannotti N, et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol. Jul 2009;20(7):1223–9.

    Article  PubMed  CAS  Google Scholar 

  105. de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.

    Article  PubMed  CAS  Google Scholar 

  106. Scher HI, Jia X, de Bono JS, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. Mar 2009;10(3): 233–9.

    Article  PubMed  CAS  Google Scholar 

  107. Danila DC, Heller G, Gignac GA, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13(23):7053–8.

    Article  PubMed  CAS  Google Scholar 

  108. Ang JE, Olmos D, de Bono JS. CYP17 blockade by abiraterone: further evidence for frequent continued hormone-dependence in castration-resistant prostate cancer. Br J Cancer. 2009;100(5):671–5.

    Article  PubMed  CAS  Google Scholar 

  109. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev. Apr 2001;22(2): 184–204.

    Article  PubMed  CAS  Google Scholar 

  110. Becker C, Piironen T, Pettersson K, Hugosson J, Lilja H. Clinical value of human glandular kallikrein 2 and free and total prostate-specific antigen in serum from a population of men with prostate-specific antigen levels 3.0 ng/mL or greater. Urology. May 2000;55(5):694–9.

    Article  PubMed  CAS  Google Scholar 

  111. Nam RK, Diamandis EP, Toi A, et al. Serum human glandular kallikrein-2 protease levels predict the presence of prostate cancer among men with elevated prostate-specific antigen. J Clin Oncol. Mar 2000;18(5):1036–42.

    PubMed  CAS  Google Scholar 

  112. Haese A, Graefen M, Steuber T, et al. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. Prostate. 2001;49(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  113. Recker F, Kwiatkowski MK, Piironen T, et al. The importance of human glandular kallikrein and its correlation with different prostate specific antigen serum forms in the detection of prostate carcinoma. Cancer. 1998;83(12):2540–7.

    Article  PubMed  CAS  Google Scholar 

  114. Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem Soc Trans. 2002;30(2):207–10.

    Article  PubMed  CAS  Google Scholar 

  115. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    PubMed  CAS  Google Scholar 

  116. Hessels D, Klein Gunnewiek JM, van Oort I, et al. IDD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15 (discussion 15–16).

    Article  PubMed  CAS  Google Scholar 

  117. Groskopf J, Aubin SM, Deras IL, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52(6):1089–95.

    Article  PubMed  CAS  Google Scholar 

  118. de la Taille A, Irani J, Graefen M, et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol. Jun 2011;185(6):2119–25.

    Article  PubMed  Google Scholar 

  119. Deras IL, Aubin SM, Blase A, et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–92.

    Article  PubMed  Google Scholar 

  120. Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54(5):1081–8.

    Article  PubMed  Google Scholar 

  121. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007;69(3):532–5.

    Article  PubMed  Google Scholar 

  122. Ankerst DP, Groskopf J, Day JR, et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J Urol. 2008;180(4):1303–8 (discussion 1308).

    Article  PubMed  Google Scholar 

  123. Chun FK, de la Taille A, van Poppel H, et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol. 2009;56(4):659–67.

    Article  PubMed  Google Scholar 

  124. Auprich M, Haese A, Walz J, et al. External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome. Eur Urol. 2010;58(5):727–32.

    Article  PubMed  Google Scholar 

  125. van Gils MP, Hessels D. Hulsbergen-van de Kaa CA, et al. Detailed analysis of histopathological parameters in radical prostatectomy specimens and PCA3 urine test results. Prostate. 2008;68(11):1215–22.

    Article  PubMed  Google Scholar 

  126. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179(5):1804–9 (discussion 1809–1810).

    Article  PubMed  Google Scholar 

  127. Auprich M, Chun FK, Ward JF, et al. Critical assessment of preoperative urinary prostate cancer antigen 3 on the accuracy of prostate cancer staging. Eur Urol. 2011;59(1):96–105.

    Article  PubMed  Google Scholar 

  128. Hessels D, van Gils MP, van Hooij O, et al. Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate. 2010;70(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  129. Ploussard G, Durand X, Xylinas E, et al. Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur Urol. 2011;59(3):422–9.

    Article  PubMed  Google Scholar 

  130. Whitman EJ, Groskopf J, Ali A, et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. Nov 2008; 180(5):1975–8 (discussion 1978–1979).

    Article  PubMed  Google Scholar 

  131. Tosoian JJ, Loeb S, Kettermann A, et al. Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. J Urol. 2010;183(2):534–8.

    Article  PubMed  CAS  Google Scholar 

  132. Laxman B, Tomlins SA, Mehra R, et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia. 2006;8(10):885–8.

    Article  PubMed  CAS  Google Scholar 

  133. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2–ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13(17):5103–8.

    Article  PubMed  CAS  Google Scholar 

  134. Tomlins SA, Aubin SM, Siddiqui J, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72.

    Google Scholar 

  135. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003;49(1):7–18.

    Article  PubMed  CAS  Google Scholar 

  136. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol. 2005;23(36):9067–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Schalken M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leyten, G.H.J.M., Schalken, J.A. (2013). Molecular Identification of the Indolent Versus Lethal Tumor. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics