Skip to main content

Optimizing Ablative Therapy: Manipulating the Microenvironment

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Abstract

Efforts to optimize ablative therapies rely on an understanding of the combinatorial effects of the biophysical events related to the “energy” component of the therapy and the molecular mechanisms of response that, together, impact stress levels on cancer cells and therefore efficacy. Cryoablation is long recognized for its destructive action based on biophysical parameters associated with ice intrusion on cellular and tissue structure. More recent evidence has revealed a complex set of molecular responses that provides a path for optimization using cryosensitizing agents. In this chapter, we identify those elements key to effective cryoablation and likely future approaches designed to optimize cancer cell mortality while reducing damage to nontargeted, adjacent tissues.

An erratum to this chapter is available at http:/dx.doi.org/10.1007/978-1-62703-182-0_29

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-62703-182-0_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper IS. Cryobiology as viewed by the surgeon. Cryobiology. 1964;51:44–51.

    Article  PubMed  CAS  Google Scholar 

  2. Cooper IS. Cryogenic surgery for cancer. Fed Proc. 1965;24:S237–40.

    PubMed  CAS  Google Scholar 

  3. Kreyberg L. Tissue damage due to cold. Lancet. 1946;1:338–40.

    Article  PubMed  CAS  Google Scholar 

  4. Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol. 1984;247:C125–42.

    PubMed  CAS  Google Scholar 

  5. Muldrew K, McGann LE. The osmotic rupture hypothesis of intracellular freezing injury. Biophys J. 1994;66:532–41.

    Article  PubMed  CAS  Google Scholar 

  6. Mazur P. Physical-chemical factors underlying cell injury in cryosurgical freezing. In: Rand RP, Rinfret A, Von Leden H, editors. Cryosurgery. Springfield, IL: Charles C. Thomas; 1967. p. 32–51.

    Google Scholar 

  7. Toscano W, Cravalho E, Silvares O, Huggins C. The thermodynamics of intracellular ice nucleation in the freezing of erythrocytes. J Heat Transfer. 1975;97:326–32.

    Article  Google Scholar 

  8. Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology. 1990;27:85–97.

    Article  PubMed  CAS  Google Scholar 

  9. Bischof J, Christov K, Rubinsky B. A morphological study of cooling rate response in normal and neoplastic human liver tissue: cryosurgical implications. Cryobiology. 1993;30:482–92.

    Article  PubMed  CAS  Google Scholar 

  10. Hong JS, Rubinsky B. Patterns of ice formation in normal and malignant breast tissue. Cryobiology. 1994;31:109–20.

    Article  PubMed  CAS  Google Scholar 

  11. Berger WK, Uhrik B. Freeze-induced shrinkage of individual cells and cell-to-cell propagation of intracellular ice in cell chains from salivary glands. Experientia. 1996;52:843–50.

    Article  PubMed  CAS  Google Scholar 

  12. Quintanilla R, Krusen FH, Essex HE. Studies on frost-bite with special reference to treatment and the effect on minute blood vessels. Am J Physiol. 1947;149:149–61.

    PubMed  CAS  Google Scholar 

  13. Zacarian SA, Stone D, Clater M. Effects of cryogenic temperatures on microcirculation in the golden hamster cheek pouch. Cryobiology. 1970;7:27–39.

    Article  PubMed  CAS  Google Scholar 

  14. Adams-Ray J, Bellman S. Vascular reactions after experimental cold injury; a microangiographic study of rabbit ears. Angiology. 1956;7:339–67.

    Article  PubMed  CAS  Google Scholar 

  15. Bowers Jr WD, Hubbard RW, Daum RC, Ashbaugh P, Nilson E. Ultrastructural studies of muscle cells and vascular endothelium immediately after freeze-thaw injury. Cryobiology. 1973;10:9–21.

    Article  PubMed  Google Scholar 

  16. Giampapa VC, Oh C, Aufses Jr AH. The vascular effect of cold injury. Cryobiology. 1981;18:49–54.

    Article  PubMed  CAS  Google Scholar 

  17. Gill W, Da Costa J, Fraser J. The control and predictability of a cryolesion. Cryobiology. 1970;6:347–53.

    Article  PubMed  CAS  Google Scholar 

  18. LeFebvre JH, Folke LE. Effects of subzero temperatures on the microcirculation in the oral mucous membrane. Microvasc Res. 1975;10:360–72.

    Article  PubMed  CAS  Google Scholar 

  19. Lenz H. Cryosurgery of the cheek pouch of the golden Syrian hamster. Physical, vascular, macroscopic and histologic observations. Int Surg. 1972;57:223–8.

    PubMed  CAS  Google Scholar 

  20. Ninomiya T, Yosimura H, Mori M. Identification of vascular system in experimental carcinoma for cryosurgery–histochemical observations of lectin UEA-1 and alkaline phosphatase activity in vascular endothelium. Cryobiology. 1985;22:331–5.

    Article  PubMed  CAS  Google Scholar 

  21. Rabb JM, Renaud ML, Brandt PA, Witt CW. Effect of freezing and thawing on the microcirculation and capillary endothelium of the hamster cheek pouch. Cryobiology. 1974;11:508–18.

    Article  PubMed  CAS  Google Scholar 

  22. Rothenborg HW. Cutaneous circulation in rabbits and humans before, during, and after cryosurgical procedures measured by xenon-133 clearance. Cryobiology. 1970;6:507–11.

    Article  PubMed  CAS  Google Scholar 

  23. Whittaker DK. Vascular responses in the oral mucosa following cryosurgery. J Periodontal Res. 1977;12:55–63.

    Article  PubMed  CAS  Google Scholar 

  24. Mundth E. Studies on the pathogenesis of cold injury: microcirculatory changes in tissue injured by freezing. Proc Symp Artic Biol Med. 1964;4:51–72.

    Google Scholar 

  25. Whittaker DK. Electron microscopy of the ice crystals formed during cryosurgery: relationship to duration of freeze. Cryobiology. 1978;15:603–7.

    Article  PubMed  CAS  Google Scholar 

  26. Whittaker DK. Mechanisms of tissue destruction following cryosurgery. Ann R Coll Surg Engl. 1984;66:313–8.

    PubMed  CAS  Google Scholar 

  27. Bourne MH, Piepkorn MW, Clayton F, Leonard LG. Analysis of microvascular changes in frostbite injury. J Surg Res. 1986;40:26–35.

    Article  PubMed  CAS  Google Scholar 

  28. Gage AA, Ishikawa H, Winter PM. Experimental frostbite and hyperbaric oxygenation. Surgery. 1969;66:1044–50.

    PubMed  CAS  Google Scholar 

  29. Hoffman NE, Bischof JC. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part II – Injury response. Tissue ASME. 1981;123:310–6.

    Google Scholar 

  30. Le Pivert P. Basic considerations of the cryolesion. In: Ablin R, editor. Cryosurgery. New York: Dekkar; 1980. p. 15–68.

    Google Scholar 

  31. Bischof JC, Smith D, Pazhayannur PV, Manivel C, Hulbert J, Roberts KP. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level. Cryobiology. 1997;34:42–69.

    Article  PubMed  CAS  Google Scholar 

  32. Klossner DP, Baust JM, Van Buskirk RG, Gage AA, Baust JG. Cryoablative response of prostate cancer cells is influenced by androgen receptor expression. BJU Int. 2008;101:1310–6.

    Article  PubMed  CAS  Google Scholar 

  33. Gonder MJ, Soanes WA, Shulman S. Cryosurgical treatment of the prostate. Invest Urol. 1966;3:372–8.

    PubMed  CAS  Google Scholar 

  34. Soanes WA, Gonder MJ. Cryosurgery in benign and malignant diseases of the prostate. Int Surg. 1969;51:104–16.

    PubMed  CAS  Google Scholar 

  35. Dow JA. Effects of surgical capsular temperature on cryosurgery of the prostate. J Urol. 1968;100:66–71.

    PubMed  CAS  Google Scholar 

  36. Green NA. Cryosurgery of the prostate gland. Ann R Coll Surg Engl. 1977;59:288–97.

    PubMed  CAS  Google Scholar 

  37. Gage AA, Huben RP. Cryosurgical ablation of the prostate. Urol Oncol. 2000;5:11–9.

    Article  PubMed  CAS  Google Scholar 

  38. Lenz H, Goertz G, Preussler H. The minimal freezing temperature for a necrosis of the epidermis and the influence of cryoprotective agents (author’s transl). Arch Otorhinolaryngol. 1975;209:217–21.

    Article  PubMed  CAS  Google Scholar 

  39. Schmidlin FR, Rupp CC, Hoffmann NE, et al. Measurement and prediction of thermal behavior and acute assessment of injury in a pig model of renal cryosurgery. J Endourol. 2001;15:193–7.

    Article  PubMed  CAS  Google Scholar 

  40. Rupp CC, Hoffmann NE, Schmidlin FR, Swanlund DJ, Bischof JC, Coad JE. Cryosurgical changes in the porcine kidney: histologic analysis with thermal history correlation. Cryobiology. 2002;45:167–82.

    Article  PubMed  Google Scholar 

  41. Gage AA. Experimental cryogenic injury of the palate: observations pertinent to cryosurgical destruction of tumors. Cryobiology. 1978;15:415–25.

    Article  PubMed  CAS  Google Scholar 

  42. Gage AA. What temperature is lethal for cells? J Dermatol Surg Oncol. 1979;5:459–60, 464.

    Google Scholar 

  43. Staren ED, Sabel MS, Gianakakis LM, et al. Cryosurgery of breast cancer. Arch Surg. 1997;132:28–33; discussion 34.

    Google Scholar 

  44. Yamada S, Tsubouchi S. Rapid cell death and cell population recovery in mouse skin epidermis after freezing. Cryobiology. 1976;13:317–27.

    Article  PubMed  CAS  Google Scholar 

  45. El-Shakhs SA, Shimi SA, Cuschieri A. Effective hepatic cryoablation: does it enhance tumor dissemination? World J Surg. 1999;23:306–10.

    Article  PubMed  CAS  Google Scholar 

  46. Neel 3rd HB, Ketcham AS, Hammond WG. Requisites for successful cryogenic surgery of cancer. Arch Surg. 1971;102:45–8.

    Article  PubMed  Google Scholar 

  47. Heard BE. Nuclear crystals in slowly frozen tissues at very low temperatures; comparison of normal and ascites tumour cells. Br J Surg. 1955;42:659–63.

    Article  PubMed  CAS  Google Scholar 

  48. Zacarian SA. The observation of freeze-thaw cycles upon cancer-cell suspensions. J Dermatol Surg Oncol. 1977;3:173–4.

    PubMed  CAS  Google Scholar 

  49. Jacob G, Kurzer MN, Fuller BJ. An assessment of tumor cell viability after in vitro freezing. Cryobiology. 1985;22:417–26.

    Article  PubMed  CAS  Google Scholar 

  50. Tatsutani K, Rubinsky B, Onik G, Dahiya R. Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology. 1996;48:441–7.

    Article  PubMed  CAS  Google Scholar 

  51. Rubinsky B. The freezing process and mechanism of tissue damage. In: Onik G, Rubinsky B, Watson G, Ablin R, editors. Percutaneous prostate cryoablation. St. Louis: Quality Medical Publishing; 1995. p. 46–68.

    Google Scholar 

  52. Burge SM, Shepherd JP, Dawber RP. Effect of freezing the helix and the rim or edge of the human and pig ear. J Dermatol Surg Oncol. 1984;10:816–9.

    PubMed  CAS  Google Scholar 

  53. Gage AA, Guest K, Montes M, Caruana JA, Whalen Jr DA. Effect of varying freezing and thawing rates in experimental cryosurgery. Cryobiology. 1985;22:175–82.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60:40–9.

    Article  PubMed  Google Scholar 

  55. Neel 3rd HB, DeSanto LW. Cryosurgical control of cancer: effects of freeze rates, tumor temperatures, and ischemia. Ann Otol Rhinol Laryngol. 1973;82:716–23.

    PubMed  Google Scholar 

  56. Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1977;14:251–72.

    Article  PubMed  CAS  Google Scholar 

  57. Cahan WG. Cryosurgery of malignant and benign tumors. Fed Proc. 1965;24:S241–8.

    PubMed  CAS  Google Scholar 

  58. Gage AA, Koepf S, Wehrle D, Emmings F. Cryotherapy for cancer of the lip and oral cavity. Cancer. 1965;18:1646–51.

    Article  PubMed  CAS  Google Scholar 

  59. Gill W, Fraser J, Carter DC. Repeated freeze-thaw cycles in cryosurgery. Nature. 1968;219:410–3.

    Article  PubMed  CAS  Google Scholar 

  60. Whittaker DK. Repeat freeze cycles in cryosurgery of oral tissues. Br Dent J. 1975;139:459–65.

    Article  PubMed  CAS  Google Scholar 

  61. Gage AA, Augustynowicz S, Montes M, Caruana JA, Whalen Jr DA. Tissue impedance and temperature measurements in relation to necrosis in experimental cryosurgery. Cryobiology. 1985;22:282–8.

    Article  PubMed  CAS  Google Scholar 

  62. Dilley AV, Dy DY, Warlters A, et al. Laboratory and animal model evaluation of the Cryotech LCS 2000 in hepatic cryotherapy. Cryobiology. 1993;30:74–85.

    Article  PubMed  CAS  Google Scholar 

  63. Gage AA, Caruana Jr JA, Montes M. Critical temperature for skin necrosis in experimental cryosurgery. Cryobiology. 1982;19:273–82.

    Article  PubMed  CAS  Google Scholar 

  64. Mala T, Edwin B, Tillung T, Kristian Hol P, Soreide O, Gladhaug I. Percutaneous cryoablation of colorectal liver metastases: potentiated by two consecutive freeze-thaw cycles. Cryobiology. 2003;46:99–102.

    Article  PubMed  Google Scholar 

  65. Myers R, Hammond WG, Ketcham AS. Cryosurgery of experimental tumors. J Cryosurg. 1969;2:225–8.

    Google Scholar 

  66. Neel 3rd HB, Ketcham AS, Hammond WG. Cryonecrosis of normal and tumor-bearing rat liver potentiated by inflow occlusion. Cancer. 1971;28:1211–8.

    Article  PubMed  Google Scholar 

  67. Rand RW, Rand RP, Eggerding F, DenBesten L, King W. Cryolumpectomy for carcinoma of the breast. Surg Gynecol Obstet. 1987;165:392–6.

    PubMed  CAS  Google Scholar 

  68. Ravikumar TS, Steele Jr G, Kane R, King V. Experimental and clinical observations on hepatic cryosurgery for colorectal metastases. Cancer Res. 1991;51:6323–7.

    PubMed  CAS  Google Scholar 

  69. Woolley ML, Schulsinger DA, Durand DB, Zeltser IS, Waltzer WC. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation. J Endourol. 2002;16:519–22.

    Article  PubMed  Google Scholar 

  70. Saliken JC, Cohen J, Miller R, Rothert M. Laboratory evaluation of ice formation around a 3-mm Accuprobe. Cryobiology. 1995;32:285–95.

    Article  Google Scholar 

  71. Pogrel MA, Yen CK, Taylor R. A study of infrared thermographic assessment of liquid nitrogen cryotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:396–401.

    Article  PubMed  CAS  Google Scholar 

  72. Hollister WR, Mathew AJ, Baust JG, Van Buskirk RG. Effects of freezing on cell viability and mechanisms of cell death in a human prostate cell line. Mol Urol. 1998;2:13–8.

    Google Scholar 

  73. Hanai A, Yang WL, Ravikumar TS. Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome c release. Int J Cancer. 2001;93:526–33.

    Article  PubMed  CAS  Google Scholar 

  74. Yang WL, Addona T, Nair DG, Qi L, Ravikumar TS. Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction. Int J Cancer. 2003;103:360–9.

    Article  PubMed  CAS  Google Scholar 

  75. Steinbach JP, Weissenberger J, Aguzzi A. Distinct phases of cryogenic tissue damage in the cerebral cortex of wild-type and c-fos deficient mice. Neuropathol Appl Neurobiol. 1999;25:468–80.

    Article  PubMed  CAS  Google Scholar 

  76. Wang H, Tu HJ, Qin J, et al. Effect of cryotherapy and 5-fluorouracil on apoptosis of G422 glioma cells. Ai Zheng. 2004;23:412–5.

    PubMed  CAS  Google Scholar 

  77. Forest V, Peoch’m M, Campos L, Guyotat D, Vergnon JM. Effects of cryotherapy or chemotherapy on apoptosis in a non-small-cell lung cancer xenografted into SCID mice. Cryobiology. 2005;50:29–37.

    Article  PubMed  CAS  Google Scholar 

  78. Baust JG, Gage AA, Clarke D, Baust JM, Van Buskirk R. Cryosurgery–a putative approach to molecular-based optimization. Cryobiology. 2004;48:190–204.

    Article  PubMed  CAS  Google Scholar 

  79. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32:37–43.

    Article  PubMed  CAS  Google Scholar 

  80. Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 2010;22:263–8.

    Article  PubMed  CAS  Google Scholar 

  81. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2003;283:1–16.

    Article  PubMed  CAS  Google Scholar 

  82. Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis. 2007;12:857–68.

    Article  PubMed  CAS  Google Scholar 

  83. Clarke DM, Baust JM, Van Buskirk RG, Baust JG. Addition of anticancer agents enhances freezing-induced prostate cancer cell death: implications of mitochondrial involvement. Cryobiology. 2004;49:45–61.

    Article  PubMed  CAS  Google Scholar 

  84. Robilotto AT, Clarke D, Baust JM, Van Buskirk RG, Gage AA, Baust JG. Development of a tissue engineered human prostate tumor equivalent for use in the evaluation of cryoablative techniques. Technol Cancer Res Treat. 2007;6:81–9.

    PubMed  Google Scholar 

  85. Clarke DM, Robilotto AT, Van Buskirk RG, Baust JG, Gage AA, Baust JM. Targeted induction of apoptosis via TRAIL and cryoablation: a novel strategy for the treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2007;10:175–84.

    Article  PubMed  CAS  Google Scholar 

  86. Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J. Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-alpha enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology. 2010;61:280–8.

    Article  PubMed  CAS  Google Scholar 

  87. Ponder E. The coefficient of thermal conductivity of blood and of various tissues. J Gen Physiol. 1962;45:545–51.

    Article  PubMed  CAS  Google Scholar 

  88. Babaian RJ, Donnelly B, Bahn D, et al. Best practice statement on cryosurgery for the treatment of localized prostate cancer. J Urol. 2008;180:1993–2004.

    Article  PubMed  Google Scholar 

  89. Benson JW. Regional chemotherapy and local cryotherapy for cancer. Oncology. 1972;26:134–51.

    Article  PubMed  CAS  Google Scholar 

  90. Ikekawa S, Ishihara K, Tanaka S, Ikeda S. Basic studies of cryochemotherapy in a murine tumor system. Cryobiology. 1985;22:477–83.

    Article  PubMed  CAS  Google Scholar 

  91. Homasson JP, Pecking A, Roden S, Angebault M, Bonniot JP. Tumor fixation of bleomycin labeled with 57 cobalt before and after cryotherapy of bronchial carcinoma. Cryobiology. 1992;29:543–8.

    Article  PubMed  CAS  Google Scholar 

  92. Mir LM, Rubinsky B. Treatment of cancer with cryochemotherapy. Br J Cancer. 2002;86:1658–60.

    Article  PubMed  CAS  Google Scholar 

  93. Saika T, Satoh T, Kusaka N, et al. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther. 2004;11:317–24.

    Article  PubMed  CAS  Google Scholar 

  94. Le Pivert P, Haddad RS, Aller A, et al. Ultrasound guided combined cryoablation and microencapsulated 5-Fluorouracil inhibits growth of human prostate tumors in xenogenic mouse model assessed by luminescence imaging. Technol Cancer Res Treat. 2004;3:135–42.

    PubMed  Google Scholar 

  95. Burton SA, Paljug WR, Kalnicki S, Werts ED. Hypothermia-enhanced human tumor cell radiosensitivity. Cryobiology. 1997;35:70–8.

    Article  PubMed  CAS  Google Scholar 

  96. Znati C, Werts E, Kociban D, Kalnicki S. Variables influencing response of human prostate carcinoma cells to combined radiation and cryotherapy in vitro. Cryobiology. 1998;37:376–452.

    Article  Google Scholar 

  97. Koushafar H, Rubinsky B. Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. Urology. 1997;49:421–5.

    Article  PubMed  CAS  Google Scholar 

  98. Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology. 1999;38:169–75.

    Article  PubMed  CAS  Google Scholar 

  99. Muldrew K, Rewcastle J, Donnelly BJ, et al. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology. 2001;42:182–9.

    Article  PubMed  CAS  Google Scholar 

  100. Clarke DM, Hollister WR, Baust JG, Van Buskirk RG. Cryosurgical modeling: sequence of freezing and cytotoxic agent application affects cell death. Mol Urol. 1999;3:25–31.

    PubMed  CAS  Google Scholar 

  101. Watanabe N, Niitsu Y, Umeno H, et al. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res. 1988;48:2179–83.

    PubMed  CAS  Google Scholar 

  102. Chao BH, He X, Bischof JC. Pre-treatment inflammation induced by TNF-alpha augments cryosurgical injury on human prostate cancer. Cryobiology. 2004;49:10–27.

    Article  PubMed  CAS  Google Scholar 

  103. Hegeman RB, Liu G, Wilding G, McNeel DG. Newer therapies in advanced prostate cancer. Clin Prostate Cancer. 2004;3:150–6.

    Article  PubMed  CAS  Google Scholar 

  104. Clarke DM, Baust JM, Van Buskirk RG, Baust JG. Chemo-cryo combination therapy: an adjunctive model for the treatment of prostate cancer. Cryobiology. 2001;42:274–85.

    Article  PubMed  CAS  Google Scholar 

  105. Santucci KL, Snyder KK, Baust JM, et al. Use of 1,25alpha dihydroxyvitamin D3 as a cryosensitizing agent in a murine prostate cancer model. Prostate Cancer Prostatic Dis. 2011;14:97–104.

    Article  PubMed  CAS  Google Scholar 

  106. Baust JM, Klossner DP, Robilotto A, et al. Vitamin D(3) cryosensitization increases prostate cancer susceptibility to cryoablation via mitochondrial-mediated apoptosis and necrosis. BJU Int. 2012;109(6):949–58.

    Article  PubMed  CAS  Google Scholar 

  107. Shulman S, Yantorno C, Bronson P. Cryo-immunology: a method of immunization to autologous tissue. Proc Soc Exp Biol Med. 1967;124:658–61.

    PubMed  CAS  Google Scholar 

  108. Blackwood CE, Cooper IS. Response of experimental tumor systems to cryosurgery. Cryobiology. 1972;9:508–15.

    Article  PubMed  CAS  Google Scholar 

  109. Joosten JJ, Muijen GN, Wobbes T, Ruers TJ. In vivo destruction of tumor tissue by cryoablation can induce inhibition of secondary tumor growth: an experimental study. Cryobiology. 2001;42:49–58.

    Article  PubMed  CAS  Google Scholar 

  110. Joosten JJ, van Muijen GN, Wobbes T, Ruers TJ. Cryosurgery of tumor tissue causes endotoxin tolerance through an inflammatory response. Anticancer Res. 2003;23:427–32.

    PubMed  CAS  Google Scholar 

  111. Hoffmann NE, Coad JE, Huot CS, Swanlund DJ, Bischof JC. Investigation of the mechanism and the effect of cryoimmunology in the Copenhagen rat. Cryobiology. 2001;42:59–68.

    Article  PubMed  CAS  Google Scholar 

  112. Shibata T, Suzuki K, Yamashita T, et al. Immunological analysis of enhanced spontaneous metastasis in WKA rats following cryosurgery. Anticancer Res. 1998;18:2483–6.

    PubMed  CAS  Google Scholar 

  113. Slovin SF, Kelly WK, Scher HI. Immunological approaches for the treatment of prostate cancer. Semin Urol Oncol. 1998;16:53–9.

    PubMed  CAS  Google Scholar 

  114. Bremers AJ, Kuppen PJ, Parmiani G. Tumour immunotherapy: the adjuvant treatment of the 21st century? Eur J Surg Oncol. 2000;26:418–24.

    Article  PubMed  CAS  Google Scholar 

  115. Urano M, Tanaka C, Sugiyama Y, Miya K, Saji S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharide on multiple liver metastases in a murine model. Cryobiology. 2003;46:238–45.

    Article  PubMed  CAS  Google Scholar 

  116. Steinman RM. Some interfaces of dendritic cell biology. APMIS. 2003;111:675–97.

    Article  PubMed  CAS  Google Scholar 

  117. Small EJ, Sacks N, Nemunaitis J, et al. Granulocyte macrophage colony-stimulating factor–secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res. 2007;13:3883–91.

    Article  PubMed  CAS  Google Scholar 

  118. Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol. 2006;24:419–24.

    Article  PubMed  CAS  Google Scholar 

  119. Nanus DM, Milowsky MI, Kostakoglu L, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol. 2003;170:S84–8; discussion S88–9.

    Google Scholar 

  120. Yamashita T, Hayakawa K, Hosokawa M, et al. Enhanced tumor metastases in rats following cryosurgery of primary tumor. Jpn J Cancer Res. 1982;73:222–8.

    CAS  Google Scholar 

  121. Seifert JK, France MP, Zhao J, et al. Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg. 2002;26:1333–41.

    Article  PubMed  Google Scholar 

  122. Fushimi N, Jinno H, Washida H, Ueda K, Otaguro K. Humoral immunity following double-freezing of the prostate in patients with prostatic cancer. Cryobiology. 1982;19:242–6.

    Article  PubMed  CAS  Google Scholar 

  123. Chapman WC, Debelak JP, Blackwell TS, et al. Hepatic cryoablation-induced acute lung injury: pulmonary hemodynamic and permeability effects in a sheep model. Arch Surg. 2000;135:667–72; discussion 672–3.

    Google Scholar 

  124. Wudel Jr LJ, Allos TM, Washington MK, Sheller JR, Chapman WC. Multi-organ inflammation after hepatic cryoablation in BALB/c mice. J Surg Res. 2003;112:131–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Baust B.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baust, J.M., Santucci, K., Gage, A.A., Robilotto, A. (2013). Optimizing Ablative Therapy: Manipulating the Microenvironment. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics