Skip to main content

MRI-Guided Laser Ablation for Localized Prostate Cancer

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Abstract

Throughout medical history, new innovations and novel thinking have generated paradigm shifts that significantly changed patient treatment. Organ-preserving therapies are widely accepted in many facets of medicine and more recently in oncology. For example, partial nephrectomy is now accepted as a preferred alternative over radical nephrectomy for small (up to 4 cm or T1) tumors. Focal therapy is an organ-preserving strategy applying energy (cryotherapy, laser ablation, high-intensity focused ultrasound) to destroy tumors but leaving the majority of the organ and its surrounds unscathed and functional.

As more concerns are raised with the common whole-gland treatment due to the perceived indolent nature of prostate cancer (PCa) and the morbidity that accompanies all the current offered treatment options, more patients and physicians are searching for a treatment alternative. Perhaps PCa may be the next disease to benefit from a treatment paradigm shift.

This chapter focuses on the use of laser as the energy source for focal ablation of PCa, especially under magnetic resonance imaging (MRI) guidance and highlights the perceived advantageous of focal laser ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71.

    Article  PubMed  Google Scholar 

  2. Whitmore Jr WF. Localised prostatic cancer: management and detection issues. Lancet. 1994;343:1263.

    Article  PubMed  Google Scholar 

  3. Welch HG, Albertsen PC. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst. 2009;101:1325.

    Article  PubMed  Google Scholar 

  4. Shao YH, Demissie K, Shih W, et al. Contemporary risk profile of prostate cancer in the United States. J Natl Cancer Inst. 2009;101:1280.

    Article  PubMed  Google Scholar 

  5. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350:2239.

    Article  PubMed  CAS  Google Scholar 

  6. Cooperberg MR, Broering JM, Kantoff PW, et al. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol. 2007;178:S14.

    Article  PubMed  Google Scholar 

  7. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215.

    Article  PubMed  CAS  Google Scholar 

  8. Bill-Axelson A, Holmberg L, Filen F, et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst. 2008;100:1144.

    Article  PubMed  Google Scholar 

  9. Johansson JE, Andren O, Andersson SO, et al. Natural history of early, localized prostate cancer. JAMA. 2004;291:2713.

    Article  PubMed  CAS  Google Scholar 

  10. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320.

    Article  PubMed  Google Scholar 

  11. Wei JT, Dunn RL, Sandler HM, et al. Comprehensive comparison of health-related quality of life after contemporary therapies for localized prostate cancer. J Clin Oncol. 2002;20:557.

    Article  PubMed  Google Scholar 

  12. Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med. 2008;358:1250.

    Article  PubMed  CAS  Google Scholar 

  13. Choo R, Klotz L, Danjoux C, et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J Urol. 2007;167:1664.

    Article  Google Scholar 

  14. Barocas DA, Cowan JE, Smith Jr JA, et al. What percentage of patients with newly diagnosed carcinoma of the prostate are candidates for surveillance? An analysis of the CaPSURE database. J Urol. 2008;180:1330.

    Article  PubMed  Google Scholar 

  15. van den Bergh RC, Roemeling S, Roobol MJ, et al. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol. 2009;55:1–8.

    Article  PubMed  Google Scholar 

  16. Onik G, Narayan P, Vaughan D, et al. Focal “nerve-sparing” cryosurgery for treatment of primary prostate cancer: a new approach to preserving potency. Urology. 2002;60:109.

    Article  PubMed  Google Scholar 

  17. Onik G. Rationale for a “male lumpectomy,” a prostate cancer targeted approach using cryoablation: results in 21 patients with at least 2 years of follow-up. Cardiovasc Intervent Radiol. 2008;31:98.

    Article  PubMed  Google Scholar 

  18. Ellis DS, Manny Jr TB, Rewcastle JC. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology. 2007;70:9.

    Article  PubMed  Google Scholar 

  19. Muto S, Yoshii T, Saito K, et al. Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn J Clin Oncol. 2008;38:192.

    Article  PubMed  Google Scholar 

  20. Lindner U, Haider MA, Weersink RA, et al. Image guided photo-thermal focal therapy for localized prostate cancer—Phase Ι trial. J Urol. 2009;182:1371–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ahmed HU, Akin O, Coleman JA, et al. Transatlantic Consensus Group on active surveillance and focal therapy for prostate cancer. BJU Int. 2011;109:1464.

    Google Scholar 

  22. Steyn JH, Smith FW. Nuclear magnetic resonance imaging of the prostate. Br J Urol. 1982;54:726.

    Article  PubMed  CAS  Google Scholar 

  23. McGuff PE, Bushnell D, Soroff HS, et al. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation). Surg Forum. 1963;14:143.

    PubMed  CAS  Google Scholar 

  24. McGuff PE, Deterling Jr RA, Gottlieb LS, et al. Laser surgery of malignant tumors. Dis Chest. 1965;48:130.

    Article  PubMed  CAS  Google Scholar 

  25. McGuff PE, Deterling Jr RA, Gottlieb LS, et al. The laser treatment of experimental malignant tumours. Can Med Assoc J. 1964;91:1089.

    PubMed  CAS  Google Scholar 

  26. Helsper JT, Sharp GS, Williams HF, et al. The biological effect of laser energy on human melanoma. Cancer. 1964;17:1299.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson FM, Olson R, Rounds DE. Effects of high-power green laser radiation on cells in tissue culture. Nature. 1965;205:721.

    Article  PubMed  CAS  Google Scholar 

  28. Saks NM, Zuzolo RC, Kopac MJ. Microsurgery of living cells by ruby laser irradiation. Ann NY Acad Sci. 1965;122:695.

    Article  PubMed  CAS  Google Scholar 

  29. Bown SG. Phototherapy in tumors. World J Surg. 1983;7:700.

    Article  PubMed  CAS  Google Scholar 

  30. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787.

    Article  PubMed  CAS  Google Scholar 

  31. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 2009;25:3.

    Article  PubMed  CAS  Google Scholar 

  32. Rothauge CF. Urethroscopic recanalization of urethral stenosis using argon laser. Urology. 1980;16:158.

    Article  PubMed  CAS  Google Scholar 

  33. Staehler G, Hofstetter A, Gorisch W, et al. Endoscopy in experimental urology using an argon-laser beam. Endoscopy. 1976;8:1.

    Article  PubMed  CAS  Google Scholar 

  34. Nolsoe CP, Torp-Pedersen S, Holm HH, et al. Ultrasonically guided interstitial Nd-YAG laser diffuser tip hyperthermia: an in vitro study. Scand J Urol Nephrol Suppl. 1991;137:119.

    PubMed  CAS  Google Scholar 

  35. Panjehpour M, Overholt BF, Milligan AJ, et al. Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe. Lasers Surg Med. 1990;10:16.

    Article  PubMed  CAS  Google Scholar 

  36. Dowlatshahi K, Bangert JD, Haklin MF, et al. Protection of fiber function by para-axial fluid flow in interstitial laser therapy of malignant tumors. Lasers Surg Med. 1990;10:322.

    Article  PubMed  CAS  Google Scholar 

  37. McNichols RJ, Gowda A, Kangasniemi M, et al. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med. 2004;34:48.

    Article  PubMed  Google Scholar 

  38. Vogl TJ, Straub R, Zangos S, et al. MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data. Int J Hyperthermia. 2004;20:713.

    Article  PubMed  Google Scholar 

  39. Jolesz FA, Bleier AR, Jakab P, et al. MR imaging of laser-tissue interactions. Radiology. 1988;168:249.

    PubMed  CAS  Google Scholar 

  40. Castro DJ, Saxton RE, Soudant J, et al. Minimally invasive palliative tumor therapy guided by imaging techniques: the UCLA experience. J Clin Laser Med Surg. 1994;12:65.

    PubMed  CAS  Google Scholar 

  41. Vogl TJ, Straub R, Eichler K, et al. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy–local tumor control rate and survival data. Radiology. 2004;230:450.

    Article  PubMed  Google Scholar 

  42. Gough-Palmer AL, Gedroyc WM. Laser ablation of hepatocellular carcinoma–a review. World J Gastroenterol. 2008;14:7170.

    Article  PubMed  Google Scholar 

  43. Pacella CM, Francica G, Di Lascio FM, et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J Clin Oncol. 2009;27:2615.

    Article  PubMed  Google Scholar 

  44. Ferrari FS, Stella A, Pasquinucci P, et al. Treatment of small hepatocellular carcinoma: a comparison of techniques and long-term results. Eur J Gastroenterol Hepatol. 2006;18:659.

    Article  PubMed  Google Scholar 

  45. Lindner U, Lawrentschuk N, Weersink RA, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol. 2010;57:1111–4.

    Article  PubMed  Google Scholar 

  46. Lindner U, Weersink RA, Haider MA, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182:1371.

    Article  PubMed  CAS  Google Scholar 

  47. Beisland HO, Sander S. First clinical experiences on neodymium-YAG laser irradiation of localized prostatic cancer. Scand J Urol Nephrol. 1986;20:113.

    Article  PubMed  CAS  Google Scholar 

  48. Muschter R, Hofstetter A. Interstitial laser therapy outcomes in benign prostatic hyperplasia. J Endourol. 1995;9:129.

    Article  PubMed  CAS  Google Scholar 

  49. Mueller-Lisse UG, Heuck AF, Thoma M, et al. Predictability of the size of laser-induced lesions in T1-Weighted MR images obtained during interstitial laser-induced thermotherapy of benign prostatic hyperplasia. J Magn Reson Imaging. 1998;8:31.

    Article  PubMed  CAS  Google Scholar 

  50. Kitajima K, Kaji Y, Fukabori Y, et al. Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging. 2010;31:625.

    Article  PubMed  Google Scholar 

  51. Turkbey B, Pinto PA, Mani H, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology. 2011;255:89.

    Article  Google Scholar 

  52. Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am J Roentgenol. 2007;189:323.

    Article  Google Scholar 

  53. Cool D, Sherebrin S, Izawa J, et al. Design and evaluation of a 3D transrectal ultrasound prostate biopsy system. Med Phys. 2008;35:4695.

    Article  PubMed  Google Scholar 

  54. Colin P, Nevoux P, Marqa M, et al. Focal laser interstitial thermotherapy (LITT) at 980 nm for prostate cancer: treatment feasibility in Dunning R3327-AT2 rat prostate tumour. BJU Int. 2011;109:452.

    Article  PubMed  Google Scholar 

  55. Chen JC, Moriarty JA, Derbyshire JA, et al. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology. 2010;214:290.

    Google Scholar 

  56. Chopra R, Tang K, Burtnyk M, et al. Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback. Phys Med Biol. 2009;54:2615.

    Article  PubMed  Google Scholar 

  57. Wust P, Cho CH, Hildebrandt B, et al. Thermal monitoring: invasive, minimal-invasive and non-invasive approaches. Int J Hyperthermia. 2006;22:255.

    Article  PubMed  Google Scholar 

  58. Stafford RJ, Shetty A, Elliott AM, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184:1514.

    Article  PubMed  Google Scholar 

  59. Fuentes D, Oden JT, Diller KR, et al. Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng. 2009;37:763.

    Article  PubMed  CAS  Google Scholar 

  60. Peters RD, Chan E, Trachtenberg J, et al. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med. 2000;44:873.

    Article  PubMed  CAS  Google Scholar 

  61. Woodrum DA, Gorny KR, Mynderse LA, et al. Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology. 2010;75:1514e1.

    Google Scholar 

  62. Raz O, Haider MA, Davidson SR, et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol. 2010;58:173.

    Article  PubMed  Google Scholar 

  63. Lindner U, Davidson SR, Haider MA, et al. MR-guided laser focal therapy for low-intermediate risk localized prostate cancer. Eur Urol. 2012;Suppl 11:e15.

    Google Scholar 

  64. Lindner U, Louis AS, Colquhoun AJ, et al. First robotic magnetic resonance-guided laser focal therapy for prostate cancer: a case report and review of the literature. Int Oncol Soc J. 2011;1:69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Trachtenberg M.D., F.R.C.S.(C), F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lindner, U., Trachtenberg, J. (2013). MRI-Guided Laser Ablation for Localized Prostate Cancer. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics