Skip to main content

Nanomedicines for Diagnosis and Treatment of Prostate Cancer

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Recent advances in nanotechnology applications have led to the development of highly selective and efficient cancer therapeutics that utilize controlled-release technologies and targeted drug delivery approaches, to yield nanomedicines that are capable of minimizing the adverse affects of currently administered chemotherapies. Indeed nanotechnology applications have the potential to have a widespread impact in the field of urology, with particular benefits for the treatment and monitoring of prostate cancer (PCa). Nanotechnology research in the field of urology has led to the development of nanomedicines that can detect, bind to, ablate, and destroy cancer cells. In this chapter, we will discuss recent developments in nanomedicines for PCa therapy and diagnosis, which include combination therapies, nanotheranostics, and nanomedicines used in focal and ablative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44:1123–44.

    Article  PubMed  CAS  Google Scholar 

  2. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–30.

    Article  PubMed  CAS  Google Scholar 

  3. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.

    Article  PubMed  CAS  Google Scholar 

  4. Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–33.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.

    Article  PubMed  CAS  Google Scholar 

  6. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  7. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  PubMed  CAS  Google Scholar 

  8. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–75.

    Article  PubMed  CAS  Google Scholar 

  9. Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5–10.

    PubMed  CAS  Google Scholar 

  10. Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2007;2(5):669–80.

    Article  CAS  Google Scholar 

  11. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26(1):74–85.

    Article  PubMed  CAS  Google Scholar 

  12. Salvador-Morales C, Gao W, Ghatalia P, et al. Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther. 2009;9(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  13. Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv. 2006;3(3):311–24.

    Article  PubMed  CAS  Google Scholar 

  14. Cervin C, Tinzl M, Johnsson M, Abrahamsson PA, Tiberg F, Dizeyi N. Properties and effects of a novel liquid crystal nanoparticle formulation of docetaxel in a prostate cancer mouse model. Eur J Pharm Sci. 2010;41(2):369–75.

    Article  PubMed  CAS  Google Scholar 

  15. Ray A, Larson N, Pike DB, et al. Comparison of active and passive targeting of docetaxel for prostate cancer therapy by HPMA copolymer-RGDfK conjugates. Mol Pharm. 2011;8(4):1090–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang R, Xiong C, Huang M, et al. Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials. 2011;32(25):5872–9.

    Article  PubMed  CAS  Google Scholar 

  17. Marra M, Salzano G, Leonetti C, et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv. 2012;30(1):302–9.

    Article  PubMed  CAS  Google Scholar 

  18. Katsogiannou M, Peng L, Catapano CV, Rocchi P. Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets. 2011;11(8):954–65.

    Article  PubMed  CAS  Google Scholar 

  19. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008;26(8):442–9.

    Article  PubMed  CAS  Google Scholar 

  20. Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA. 2006;103(16):6315–20.

    Article  PubMed  CAS  Google Scholar 

  21. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64(21):7668–72.

    Article  PubMed  CAS  Google Scholar 

  22. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):528–39.

    Article  PubMed  CAS  Google Scholar 

  23. Farokhzad OC, Cheng JJ, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. P NATL ACAD SCI USA. 2006;103(16):6315–20.

    Article  CAS  Google Scholar 

  24. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105(45):17356–61.

    Article  PubMed  CAS  Google Scholar 

  25. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA. 2011;108(5):1850–5.

    Article  PubMed  CAS  Google Scholar 

  26. Hearty S, Leonard P, O’Kennedy R. Nanomedicine: barcodes check out prostate cancer. Nat Nanotechnol. 2010;5(1):9–10.

    Article  PubMed  CAS  Google Scholar 

  27. Thaxton CS, Elghanian R, Thomas AD, et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci USA. 2009;106(44):18437–42.

    Article  PubMed  CAS  Google Scholar 

  28. Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA. 2008;105(7):2586–91.

    Article  PubMed  CAS  Google Scholar 

  29. Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA. 2010;107(42):17939–44.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem. 2007;2(9):1268–71.

    Article  PubMed  CAS  Google Scholar 

  31. Wang AZ, Yuet K, Zhang LF, et al. ChemoRad nanoparticles: A novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine. 2010;5(3):361–8.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang LF, Chan JM, Gu FX, et al. Self-assembled lipid–polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2008;2(8):1696–702.

    Article  PubMed  CAS  Google Scholar 

  33. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic Nanomedicine. Acc Chem Res. 2011;44(10):1029–38.

    Article  PubMed  CAS  Google Scholar 

  34. Huang HC, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine (Lond). 2011;6(3):459–73.

    Article  CAS  Google Scholar 

  35. Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32(7):1890–905.

    Article  PubMed  CAS  Google Scholar 

  36. Cho HS, Dong Z, Pauletti GM, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano. 2010;4(9):5398–404.

    Article  PubMed  CAS  Google Scholar 

  37. Kelkar SS, Reineke TM. Theranostics: combining Imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.

    Article  PubMed  CAS  Google Scholar 

  38. Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.

    Article  PubMed  CAS  Google Scholar 

  39. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7(15):2241–9.

    Article  PubMed  CAS  Google Scholar 

  40. Abdalla MO, Karna P, Sajja HK, et al. Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release. 2011;149(3):314–22.

    Article  PubMed  CAS  Google Scholar 

  41. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  PubMed  CAS  Google Scholar 

  42. Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8(9):2906–12.

    Article  PubMed  CAS  Google Scholar 

  43. Valencia PM, Basto PA, Zhang LF, et al. Single-step assembly of homogenous lipid – polymeric and lipid – quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4(3):1671–9.

    Article  PubMed  CAS  Google Scholar 

  44. Farokhzad OC, Khademhosseini A, Yon SY, et al. Microfluidic system for studying nanoparticles and microparticles the interaction of with cells. Anal Chem. 2005;77(17):5453–9.

    Article  PubMed  CAS  Google Scholar 

  45. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.

    Article  PubMed  CAS  Google Scholar 

  46. Farokhzad OC, Khademhosseini A, Jon S, et al. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem. 2005;77(17):5453–9.

    Article  PubMed  CAS  Google Scholar 

  47. Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater. 2011;23(12):H79–83.

    Article  PubMed  CAS  Google Scholar 

  48. Bostwick DG, Waters DJ, Farley ER, et al. Group consensus reports from the Consensus Conference on Focal Treatment of Prostatic Carcinoma, Celebration, Florida, February 24, 2006. Urology. 2007;70(6 Suppl):42–4.

    Article  PubMed  Google Scholar 

  49. Hou AH, Sullivan KF, Crawford ED. Targeted focal therapy for prostate cancer: a review. Curr Opin Urol. 2009;19(3):283–9.

    Article  PubMed  Google Scholar 

  50. Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH. Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol. 2011;8(1):48–55.

    Article  PubMed  Google Scholar 

  51. Hilgard P, Muller S, Hamami M, et al. Selective internal radiotherapy (radioembolization) and radiation therapy for HCC–current status and perspectives. Z Gastroenterol. 2009;47(1):37–54.

    Article  PubMed  CAS  Google Scholar 

  52. Kannan R, Zambre A, Chanda N, et al. Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz JA, Price RE, Gill-Sharp KL, et al. Selective nanoparticle-directed ablation of the canine prostate. Lasers Surg Med. 2011;43(3):213–20.

    Article  PubMed  Google Scholar 

  54. Bensalah K, Tuncel A, Hanson W, Stern J, Han B, Cadeddu J. Monitoring of thermal dose during ablation therapy using quantum dot-mediated fluores­cence thermometry. J Endourol. 2010;24(12):1903–8.

    Article  PubMed  Google Scholar 

  55. Fisher JW, Sarkar S, Buchanan CF, et al. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010;70(23):9855–64.

    Article  PubMed  CAS  Google Scholar 

  56. Ghosh S, Dutta S, Gomes E, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano. 2009;3(9):2667–73.

    Article  PubMed  CAS  Google Scholar 

  57. da Silva AR, Inada NM, Rettori D, Baratti MO, Vercesi AE, Jorge RA. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells. J Photochem Photobiol B. 2009;94(2):101–12.

    Article  PubMed  Google Scholar 

  58. Eggener S, Salomon G, Scardino PT, De la Rosette J, Polascik TJ, Brewster S. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol. 2010;58(1):57–64.

    Article  PubMed  Google Scholar 

  59. http://clinicaltrials.gov/ct2/show/NCT01300533?term=BIND-014&rank=1 . Accessed 11 Nov 2011.

  60. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009;6(3):659–68.

    Article  PubMed  CAS  Google Scholar 

  61. http://clinicaltrials.gov/ct2/show/NCT00333502?term=CRLX101&rank=2. Accessed 11 Nov 2011.

  62. Peng W, Anderson DG, Bao Y, Padera Jr RF, Langer R, Sawicki JA. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate. 2007;67(8):855–62.

    Article  PubMed  CAS  Google Scholar 

  63. http://clinicaltrials.gov/ct2/show/NCT00456989?term=Doxil+AND+prostate&rank=3. Accessed 11 Nov 2011.

  64. http://www.magforce.de/en/studien/uebersicht.html. Accessed 11 Nov 2011.

  65. Chien AJ, Illi JA, Ko AH, et al. A phase I study of a 2-day lapatinib chemosensitization pulse preceding nanoparticle albumin-bound Paclitaxel for advanced solid malignancies. Clin Cancer Res. 2009;15(17):5569–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grants CA151884, EB003647, and N01 HV-08236, and the David Koch—Prostate Cancer Foundation Award in Nanotherapeutics. Dr. Farokhzad declares financial interests in BIND Biosciences and Selecta Biosciences. The rest of the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Cameron Farokhzad M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kamaly, N., Swami, A., Wagner, R., Farokhzad, O.C. (2013). Nanomedicines for Diagnosis and Treatment of Prostate Cancer. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics