Skip to main content

The T-Cell Leukaemias

  • Chapter
  • First Online:
  • 1247 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

The mature T-cell leukaemias are a rare and heterogeneous group of disorders derived from the mature or post-thymic T-cell. They comprise T-cell prolymphocytic leukaemia, T-cell large granular lymphocytic leukaemia (T-LGL) and Adult T-cell lymphoma/leukaemia. The diagnosis of the T-cell leukaemias is based on a multiparameter approach which encompasses clinical presentation, peripheral blood count and morphology, immunohistochemistry, flow cytometry, cytogenetics and molecular genetics. Thus, the recent advances in modern immunophenotypic and molecular tools have been crucial in characterising these disorders and in distinguishing them from their B-cell counterparts. Prognosis and response to conventional chemotherapy are generally poor, with the exception of T-LGL which is a more indolent disorder than the others in its class. The rarity of these conditions, their refractoriness to standard therapies, underlying immune suppression, multi-factorial aetiologies and lack of single identifiable therapeutic targets in the majority of cases all contribute to a great management challenge. An important aspect therefore in advancing treatment of these and other T-cell disorders is adopting an international approach to diagnosis, documentation and trial design and entry in order to recruit sufficient patient and clinico-pathological data to inform robust choices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris N, Jaffe ES, Puleri SA. WHO classification of tumours of haemopoietic and lymphoid tissues. world health organisation classification of tumours. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Galton DA, Goldman JM, Wiltshaw E, Catovsky D, Henry K, Goldenberg GJ. Prolymphocytic leukaemia. Br J Haematol. 1974;27:7–23.

    Article  PubMed  CAS  Google Scholar 

  3. Catovsky D, Galetto J, Okas A, Galton DA, Wiltshaw E, Stathopoulos G. Prolymphocytic leukaemia of B and T cell type. Lancet. 1973;2(7823):232–4.

    Article  PubMed  CAS  Google Scholar 

  4. Lan K, Murakami M, Choudhuri T, Tsai DE, Schuster SJ, Wasik MA, et al. Detection of Epstein-Barr virus in T-cell prolymphocytic leukemia cells in vitro. J Clin Virol. 2008;43(3):260–5.

    Article  PubMed  CAS  Google Scholar 

  5. Bommhardt U, Beyer M, Hunig T, Reichardt HM. Molecular and cellular mechanisms of T cell development. Cell Mol Life Sci. 2004;61:263–80.

    Article  PubMed  CAS  Google Scholar 

  6. Brito-Babapulle V, Catovsky D. Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-prolymphocytic leukemia and T-cell leukemias in patients with ataxia telangiectasia. Cancer Genet Cytogenet. 1991;55:1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Genes Dev. 1996;10:2411–22.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor AM, Metcalfe JA, Thick M, Mak YF. Leukaemia and lymphoma in ataxia telangiectasia. Blood. 1986;87:423–38.

    Google Scholar 

  9. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3:1155–9.

    Article  PubMed  CAS  Google Scholar 

  10. Stoppa-Lyonnet D, Soulier J, Lauge A, Dastot H, Garand R, Sigaux F, et al. Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood. 1998;91:3920–6.

    PubMed  CAS  Google Scholar 

  11. Yuille MA, Coignet LJ. The ataxia telangiectasia gene in familial and sporadic cancer. Recent Results Cancer Res. 1998;154:156–73.

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi M, Yamamoto K, Miki T, Mizutani S, Miura O. T-cell prolymphocytic leukemia with del(11)t(1;11)(q21;q23) and ATM deficiency. Cancer Genet Cytogenet. 2003;146:22–6.

    Article  PubMed  CAS  Google Scholar 

  13. Matutes E, Brito-Babapulle V, Yullie MR, Catovsky D. Prolymphocytic leukemia of B- and T-cell types. In: Cheson BD, editor. Chronic lymphoid leukemias. New York: Marcel Dekker; 2001. p. 525–41.

    Google Scholar 

  14. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78:3269–74.

    PubMed  CAS  Google Scholar 

  15. Catovsky D, Galetto J, Okos A, Galton DA, Wiltshaw E, Stathopoulos G. Prolymphocytic leukaemia of B and T cell type. Lancet. 1973;2:232–4.

    Article  PubMed  CAS  Google Scholar 

  16. Garand R, Goasguen J, Brizard A, Buisine J, Charpentier A, Claisse JF. Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Groupe Francais d’Hematologie Cellulaire. Br J Haematol. 1998;103:488–94.

    Article  PubMed  CAS  Google Scholar 

  17. Matutes E, Talavera GJ, O’Brien M, Catovsky D. The morphological spectrum of T-prolymphcytic leukaemia. Br J Haematol. 1986;64:111–24.

    Article  PubMed  CAS  Google Scholar 

  18. Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Dyer MJ, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22:185–91.

    Article  PubMed  CAS  Google Scholar 

  19. Sugimoto T, Imoto S, Matsuo Y, et al. T-cell receptor gammadelta T-cell leukemia with the morphology of T-cell prolymphocytic leukemia and a postthymic immunophenotype. Ann Hematol. 2001;80:749–51.

    Article  PubMed  CAS  Google Scholar 

  20. Croce CM. Role of chromosome translocations in human neoplasia. Cell. 1987;49:155–6.

    Article  PubMed  CAS  Google Scholar 

  21. Croce CM, Isobe M, Palumbo A, Puck J, Ming J, Tweardy D, et al. Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms. Science. 1985;227:1044–7.

    Article  PubMed  CAS  Google Scholar 

  22. Soulier J, Pierron G, Vecchione D, Garand R, Brizard F, Sigaux F, et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2001;31:248–54.

    Article  PubMed  CAS  Google Scholar 

  23. Virgilio L, Narducci MG, Isobe M, Billips LG, Cooper MD, Croce CM. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci USA. 1994;91:12530–4.

    Article  PubMed  CAS  Google Scholar 

  24. Narducci MG, Stoppacciaro A, Imada K, Uchiyama T, Virgilio L, Lazzeri C, et al. TCL1 is overexpressed in patients affected by adult T-cell leukemias. Cancer Res. 1997;57:5452–6.

    PubMed  CAS  Google Scholar 

  25. Stern MH, Soulier J, Rosenzwajg M, Nakahara K, Canki-Klain N, Aurias A, et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene. 1993;8:2475–83.

    PubMed  CAS  Google Scholar 

  26. Madani A, Choukroun V, Soulier J, Cacheux V, Claisse JF, Valensi F, et al. Expression of p13MTCP1 is restricted to mature T-cell proliferations with t(X;14) translocations. Blood. 1996;87:1923–7.

    PubMed  CAS  Google Scholar 

  27. Hallas C, Pekarsky Y, Itoyama T, Varnum J, Bichi R, Rothstein JL, et al. Genomic analysis of human and mouse TCL1 loci reveals a complex of tightly clustered genes. Proc Natl Acad Sci USA. 1999;96:14418–23.

    Article  PubMed  CAS  Google Scholar 

  28. Pekarsky Y, Hallas C, Isobe M, Russo G, Cruce CM. Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci USA. 1999;96:2949–51.

    Article  PubMed  CAS  Google Scholar 

  29. Sugimoto J, Hatakeyama T, Narducci MG, Russo G, Isobe M. Identification of the TCL1/MTCP1-like 1 (TML1) gene from the region next to the TCL1 locus. Cancer Res. 1999;59:2313–7.

    PubMed  CAS  Google Scholar 

  30. Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, et al. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer. 2001;30:336–41.

    Article  PubMed  CAS  Google Scholar 

  31. Herling M, Khoury JD, Washington LT, Duvic M, Keating MJ, Jones D, et al. A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood. 2004;104:328–35.

    Article  PubMed  CAS  Google Scholar 

  32. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell. 2000;6:395–407.

    Article  PubMed  CAS  Google Scholar 

  33. Kojima K, Kobayashi H, Imoto S, Matsuo Y, Kobayashi H, Yano T, et al. 14q11 abnormality and trisomy 8q are not common in Japanese T-cell prolymphocytic leukemia. Int J Hematol. 1998;68:291–6.

    Article  PubMed  CAS  Google Scholar 

  34. Durig J, Bug S, Klein-Hitpass L, Boes T, Jons T, Martin-Subero JI, et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukaemia with inv (14)(q11q32). Leukaemia. 2007;21(10):2153–63.

    Article  CAS  Google Scholar 

  35. Herling M, Patek KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, et al. High TCL1 expression and intact T-cell receptor signalling define a hyperproliferative subset of T-cell prolymphocytic leukaemia. Blood. 2008;111:328–37.

    Article  PubMed  CAS  Google Scholar 

  36. Dearden CE, Matutes E, Cazin B, Tjønnfjord GE, Parreira A, Nomdedeu B, et al. High remission rate in T-cell prolymphocytic leukemia with Campath-1H. Blood. 2001;98:1721–6.

    Article  PubMed  CAS  Google Scholar 

  37. Delgado J, Bustos JG, Jimenez MC, Quevedo E, Hernandez-Navarro F. Are activation markers (CD25, CD38 and CD103) predictive of sensitivity to purine analogues in patients with T-cell prolymphocytic leukemia and other lymphoproliferative disorders? Leuk Lymphoma. 2002;43:2331–4.

    Article  PubMed  CAS  Google Scholar 

  38. Mercieca J, Matutes E, Dearden C, MacLennan K, Catovsky D. The role of pentostatin in the treatment of T-cell malignancies: analysis of response rate in 145 patients according to disease subtype. J Clin Oncol. 1994;12:2588–93.

    PubMed  CAS  Google Scholar 

  39. Palomera L, Domingo JM, Agullo JA, Soledad Romero M. Complete remission in T-cell prolymphocytic leukemia with 2-chlorodeoxyadenosine. J Clin Oncol. 1995;13:1284–5.

    PubMed  CAS  Google Scholar 

  40. Delannoy A. 2-chloro-2’-deoxyadenosine: clinical applications in hematology. Blood Rev. 1996;10:148–66.

    Article  PubMed  CAS  Google Scholar 

  41. Pawson R, Dyer MJ, Barge R, Matutes E, Thornton PD, Emmett E, et al. Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol. 1997;15:2667–72.

    PubMed  CAS  Google Scholar 

  42. Keating MJ, Cazin B, Coutre S, Birhiray R, Kovacsovics T, Langer W, et al. Campath-1H treatment of T-cell prolymphocytic leukaemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–13.

    Article  PubMed  CAS  Google Scholar 

  43. Dearden C, Matutes E, Cazin B, Tjønnfjord GE, Parreira A, Nomdedeu B, et al. Very high response rates in previously untreated T-cell Prolymphocytic leukaemia patients receiving alemtuzumab (Campath-1H) therapy. Blood. 2003;102, Abstract 2378.

    Google Scholar 

  44. Hopfinger G, Kandler G., Koller E, et al. (2007) T-PLL 1 protocol of the German CLL Study Group (GCLLSG)-A Prospective phase 2 trial of fludarabine phosphate, Mitoxantrone and cyclophosphamide (FCM) followed by alemtuzumab consolidation as first line treatment in T-PLL. Blood. 2007;110, abstract 2130.

    Google Scholar 

  45. Weidmann E, Hess G, Krause SW et al. Combination chemoimmunotherapy using alemtuzumab, fludarabine, cyclophosphomide and doxorubicin (FCD) is an effective first line regimen in peripheral T-cell lymphoma (PTCL). Blood. 2004;104, abstract 2460.

    Google Scholar 

  46. Krishnan B, Cazin B, Ireland R, et al. Improved survival for patients with T-cell prolymphocytic leuk receiving alemtuzumab therapy followed by stem cell transplantation. IWCLL. Leuk Lymphoma. 2007;48 Suppl 1:S180.

    Google Scholar 

  47. Garderet L, Bittencourt H, Kaliski A, Daniel M, Ribaud P, Socié G, et al. Treatment of T-prolymphocytic leukaemia with nommyeloablative allogeneic stem cell transplantation. Eur J Haematol. 2001;66:137–9.

    Article  PubMed  CAS  Google Scholar 

  48. De Lavallade H, Faucher C, Furst S, El-Cheikh J, Vey N, Coso D, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in a patient with T-cell prolymphocytic leukaemia: graft-versus-tumor effect and long-term remission. Bone Marrow Transplant. 2006;37:709–10.

    Article  PubMed  Google Scholar 

  49. Loughran Jr TP. Clonal diseases of large granular lymphocytes. Blood. 1993;82:1–14.

    PubMed  Google Scholar 

  50. Lamy T, Loughran TP. Large granular lymphocyte leukemia. Cancer Control. 1998;5:25–33.

    PubMed  Google Scholar 

  51. Sokol L, Loughran Jr TP. Large granular lymphocyte leukemia. Oncologist. 2006;11(3):263–73.

    Article  PubMed  CAS  Google Scholar 

  52. Zambello R, Trentin L, Facco M, Cerutti A, Sancetta R, Milani A, et al. Analysis of the T cell receptor in the lymphoproliferative disease of granular lymphocytes: superantigen activation of clonal CD3+ granular lymphocytes. Cancer Res. 1995;55:6140–5.

    PubMed  CAS  Google Scholar 

  53. Kanchan K, Loughran Jr TP. Antigen-driven clonal T cell expansion in disorders of hematopoiesis. Leuk Res. 2003;27:291–2.

    Article  PubMed  CAS  Google Scholar 

  54. O’Keefe CL, Plasilova M, Wlodarski M, Risitano AM, Rodriguez AR, Howe E, et al. Molecular analysis of TCR clonotypes in LGL: a clonal model for polyclonal responses. J Immunol. 2004;172:1960–9.

    PubMed  Google Scholar 

  55. Wlodarski MW, O’Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky 1, et al. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia. Blood. 2005;106:2769–80.

    Article  PubMed  CAS  Google Scholar 

  56. Loughran Jr TP, Coyle T, Sherman MP, Starkebaum G, Ehrlich GD, Ruscetti FW, et al. Detection of human T-cell leukemia/lymphoma virus, type II, in a patient with large granular lymphocyte leukemia. Blood. 1992;80:1116–9.

    PubMed  Google Scholar 

  57. Loughran Jr TP, Hadlock KG, Perzova R, Gentile TC, Yang Q, Foung SK, et al. Epitope mapping of HTLV envelope seroreactivity in LGL leukaemia. Br J Haematol. 1998;101:318–24.

    Article  PubMed  CAS  Google Scholar 

  58. Rodriguez-Caballero A, Garcia-Montero A, Barcena P, Almeida J, Ruiz-Cabello F, Tabernero MD, et al. Expanded cells in monoclonal TCRβ+/CD4+/NKa+/CD8−/+dim T-LGL lymphocytosis recognize hCMV antigens. Blood. 2009;112(12):4609–17.

    Article  CAS  Google Scholar 

  59. Narumi H, Kojima K, Matsuo Y, Shikata H, et al. T-cell large granular lymphocytic leukemia occurring after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 2004;33(1):99–101.

    Article  PubMed  CAS  Google Scholar 

  60. Au WY, Lam CC, Lie AK, Pang A, Kwong YL, et al. T-cell large granular lymphocyte leukemia of donor origin after allogeneic bone marrow transplantation. Am J Clin Pathol. 2003;120(4):626–30.

    Article  PubMed  Google Scholar 

  61. French LE, Alcindor T, Shapiro M, McGinnis KS, Margolis DJ, Porter D, et al. Identification of amplified clonal T cell populations in the blood of patients with chronic graft-versus-host disease: positive correlation with response to photopheresis. Bone Marrow Transplant. 2002;30(8):509–15.

    Article  PubMed  CAS  Google Scholar 

  62. Arons E, Sorbara L, Raffeld M, Stetler-Stevenson M, Steinberg SM, Liewehr DJ, et al. Characterization of T-cell repertoire in hairy cell leukemia patients before and after recombinant immunotoxin BL22 therapy. Cancer Immunol Immunother. 2006;55(9):1100–10.

    Article  PubMed  CAS  Google Scholar 

  63. Martinez A, Pittaluga S, Villamor N, Colomer D, Rozman M, Raffeld M, et al. Clonal T-cell populations and increased risk for cytotoxic T-cell lymphomas in B-CLL patients: clinicopathologic observations and molecular analysis. Am J Surg Pathol. 2004;28(7):849–58.

    Article  PubMed  Google Scholar 

  64. Viny AD, Lichtin A, Pohlman B, Loughran T, Maciejewski J. Chronic B-cell dyscrasias are an important clinical feature of T-LGL leukemia. Leuk Lymphoma. 2008;49(5):932–8.

    Article  PubMed  CAS  Google Scholar 

  65. Yang J, Epling-Burnette P, Painter J, Zou J, Bai F, Wei S, et al. Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood. 2008;111(3):1610–6.

    Article  PubMed  CAS  Google Scholar 

  66. Lamy T, Liu JH, Landowski TH, Dalton WS, Loughran Jr TP. Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3(+) large granular lymphocyte leukemia. Blood. 1998;92:4771–7.

    PubMed  CAS  Google Scholar 

  67. Schade AE, Wlodarski MW, Maciejewski JP. Pathophysiology defined by altered signal transduction pathways; the role of JAK-STAT and P13K signalling in large granular lymphocytes. Cell Cycle. 2006;5:2571–4.

    Article  PubMed  CAS  Google Scholar 

  68. Schade AE, Powers JJ, Wlodarski MW, Maciejewski JP. Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis. Blood. 2006;107:4834–40.

    Article  PubMed  CAS  Google Scholar 

  69. Epling-Burnette PK, Bai F, Wei S, Chaurasia P, Painter JS, Olashaw N, et al. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene. 2004;23:9220–9.

    PubMed  CAS  Google Scholar 

  70. Lamy T, Loughran Jr TP. Clinical features of large granular lymphocyte leukemia. Semin Hematol. 2003;40:185–95.

    Article  PubMed  Google Scholar 

  71. Liu JH, Wei S, Lamy T, Epling-Burnette PK, Starkebaum G, Djeu JY, et al. Chronic neutropenia mediated by fas ligand. Blood. 2000;95:3219–22.

    PubMed  CAS  Google Scholar 

  72. Rose MG, Berliner N. T-cell large granular lymphocyte leukemia and related disorders. Oncologist. 2004;9:247–58.

    Article  PubMed  Google Scholar 

  73. Miranda EG, Loughran Jr TP. Chronic T-cell and NK-cell leukemias. In: Cheson BD, editor. Chronic lymphoid leukemias. New York: Marcel Dekker; 2001. p. 543–65.

    Google Scholar 

  74. Lamy T, Loughran Jr TP. Current concepts: large granular lymphocyte leukaemia. Blood Rev. 1999;13:230–40.

    Article  PubMed  CAS  Google Scholar 

  75. Kwong Y, Wong K. Association of pure red cell aplasia with T large granular lymphocyte leukaemia. J Clin Pathol. 1998;51:672–5.

    Article  PubMed  CAS  Google Scholar 

  76. Sampalo Lainz A, Lopez-Gomez M, Jimenez-Alonso J. Proliferation of large granular lymphocytes in patients with systemic lupus erythematosus. Rev Clin Esp. 1995;195:373–9.

    PubMed  CAS  Google Scholar 

  77. Starkebaum G. Chronic neutropenia associated with autoimmune disease. Semin Hematol. 2002;39:121–7.

    Article  PubMed  Google Scholar 

  78. Burks EJ, Loughran Jr TP. Pathogenesis of neutropenia in large granular lymphocyte leukemia and Felty syndrome. Blood Rev. 2006;20(5):245–66.

    Article  PubMed  Google Scholar 

  79. McKenna R, Parkin J, Kersey J, Gajl-Peczalsca K, Peterson L, Brunnign R. Chronic lymphoproliferative disorder with unusual clinical, morphologic, ultrastructural and surface marker characteristics. Am J Med. 1977;62:588–96.

    Article  PubMed  CAS  Google Scholar 

  80. Argnasson B, Loughran T, Starkebaum G, Kadin M. The pathology of large granular lymphocyte lymphoma. Hum Pathol. 1989;20:643–51.

    Article  Google Scholar 

  81. Osuji N, Beiske K, Randen U, Matutes E, Tjonnfjord G, Catovsky D, et al. Characteristic appearances of the bone marrow in T-cell large granular lymphocyte leukaemia. Histopathology. 2007;50:547–54.

    Article  PubMed  CAS  Google Scholar 

  82. Dhodapkar M, Li CY, Lust J, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood. 1994;84(5):1620–7.

    PubMed  CAS  Google Scholar 

  83. Chan WC, Catovsky D, Foucar K, Montserrat E. T-cell large granular lymphocyte leukemia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World Health Organization classification of tumours: tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 197–8.

    Google Scholar 

  84. Semenzato G, Zambello R, Starkebaum G, Oshimi K, Loughran Jr TP. The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood. 1997;89:256–60.

    PubMed  CAS  Google Scholar 

  85. Lundell R, Hartung L, Hill S, Perkins SL, Bahler DW. T-cell large granular lymphocyte leukaemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules. Am J Clin Pathol. 2005;124(6):937–46.

    Article  PubMed  CAS  Google Scholar 

  86. Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol. 2003;120(6):1026–36.

    Article  PubMed  CAS  Google Scholar 

  87. Rambaldi A, Pelicci P, Allavena P, Knowles 2nd DM, Rossini S, Bassan R. T cell receptor beta gene rearrangements in lymphoproliferative disorders of large granular lymphocytes / natural killer cells. J Exp Med. 1985;162:2156–62.

    Article  PubMed  CAS  Google Scholar 

  88. Vie H, Chevalier S, Garand R, Moisan JP, Praloran V, Devilder MC. Clonal expansion of lymphocytes bearing the gamma delta T-cell receptor in a patient with large granular lymphocyte disorder. Blood. 1989;74:285–90.

    PubMed  CAS  Google Scholar 

  89. Loughran Jr TP, Kadin ME, Starkebaum G, Abkowitz JL, Clark EA, Disteche C. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann Intern Med. 1985;102:169–75.

    PubMed  Google Scholar 

  90. Oshimi K, Yamada O, Kaneko T, Nishinarita S, Iizuka Y, Urabe A. Laboratory findings and clinical courses of 33 patients with granular lymphocyte-proliferative disorders. Leukemia. 1993;7:782–8.

    PubMed  CAS  Google Scholar 

  91. Wong KF, Chan JC, Liu HS, Man C, Kwong YL. Chromosomal abnormalities in T-cell large granular lymphocyte leukaemia: report of two cases and review of the literature. Br J Haematol. 2002;116:598–600.

    Article  PubMed  CAS  Google Scholar 

  92. Liu JH, Wei S, Lamy T, Li Y, Epling-Burnette PK, Djeu JY, et al. Blockade of Fas-dependent apoptosis by soluble Fas in LGL leukemia. Blood. 2002;100(4):1449–53.

    PubMed  CAS  Google Scholar 

  93. Saitoh T, Karasawa M, Sakuraya M, Norio N, Junko T, Shirakawa K. Improvement of extrathymic T cell type of large granular lymphocyte (LGL) leukemia by cyclosporin A: the serum level of Fas ligand is a marker of LGL leukemia activity. Eur J Haematol. 2000;65:272–5.

    Article  PubMed  CAS  Google Scholar 

  94. Takeuchi M, Tamaoki A, Soda R, Takahashi K. Spontaneous remission of large granular lymphocyte T cell leukemia. Leukemia. 1999;13:313–4.

    Article  PubMed  CAS  Google Scholar 

  95. Matutes E, Wotherspoon A, Parker N, Osuji N. Transformation of T-cell large granular lymphocyte leukaemia into a high-grade large T-cell lymphoma. Br J Haematol. 2001;115(4):801–6.

    Article  PubMed  CAS  Google Scholar 

  96. Gentile TC, Uner AH, Hutchison RE, Wright J, Ben-Ezra J, Russell EC. CD3+, CD56+ aggressive variant of large granular lymphocyte leukemia. Blood. 1994;84:2315–21.

    PubMed  CAS  Google Scholar 

  97. Dang NH, Aytac U, Sato K, O’Brien S, Melenhorst J, Morimoto C. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol. 2003;121:857–65.

    Article  PubMed  Google Scholar 

  98. Osuji N, Matutes E, Tjonnfjord G, Grech H, Del Giudice I, Wotherspoon A. T-cell large granular lymphocyte leukemia: a report on the treatment of 29 patients and a review of the literature. Cancer. 2006;107:570–8.

    Article  PubMed  Google Scholar 

  99. Pandolfi F, Loughran Jr TP, Starkebaum G, Chisesi T, Barbui T, Chan WC, et al. Clinical course and prognosis of the lymphoproliferative disease of granular lymphocytes. A multicenter study. Cancer. 1990;65:341–8.

    Article  PubMed  CAS  Google Scholar 

  100. Sood R, Stewart CC, Aplan PD, Murai H, Ward P, Barcos M. Neutropenia associated with T-cell large granular lymphocyte leukemia: long-term response to cyclosporine therapy despite persistence of abnormal cells. Blood. 1998;91:3372–8.

    PubMed  CAS  Google Scholar 

  101. Battiwalla M, Melenhorst J, Saunthararajah Y, Nakamura R, Molldrem J, Young NS. HLA-DR4 predicts haematological response to cyclosporine in T-large granular lymphocyte lymphoproliferative disorders. Br J Haematol. 2003;123:449–53.

    Article  PubMed  CAS  Google Scholar 

  102. Loughran Jr TP, Kidd PG, Starkebaum G. Treatment of large granular lymphocyte leukemia with oral low-dose methotrexate. Blood. 1994;84:2164–70.

    PubMed  Google Scholar 

  103. Matrai Z, Lelkes G, Milosevits J, Páldiné HP, Pecze K. T-cell large granular lymphocytic leukemia associated with pure red cell aplasia, successfully treated with cyclophosphamide. Orv Hetil. 1997;138:2075–80.

    PubMed  CAS  Google Scholar 

  104. Aribi A, Huh Y, Keating M, O’brien S, Ferrajoli A, Faderl S. T-cell large granular lymphocytic (T-LGL) leukemia: experience in a single institution over 8 years. Leuk Res. 2007;31(7):939–45.

    Article  PubMed  CAS  Google Scholar 

  105. Witzig TE, Weitz JJ, Lundberg JH, Tefferi A. Treatment of refractory T-cell chronic lymphocytic leukemia with purine nucleoside analogues. Leuk Lymphoma. 1994;14:137–9.

    Article  PubMed  CAS  Google Scholar 

  106. Dincol G, Diz-Kuçukkaya R, Bicakci E. T-cell large granular lymphocytic leukaemia: successful response to 2-deoxycoformycin. Neth J Med. 2008;66(2):85–7.

    PubMed  CAS  Google Scholar 

  107. Rosenblum MD, LaBelle JL, Chang CC, Margolis DA, Schauer DW, Vesole DH. Efficacy of alemtuzumab treatment for refractory T-cell large granular lymphocytic leukemia. Blood. 2004;103:1969–71.

    Article  PubMed  CAS  Google Scholar 

  108. Ru X, Liebman HA. Successful treatment of refractory pure red cell aplasia associated with lymphoproliferative disorders with the anti-CD52 monoclonal antibody alemtuzumab (Campath-1H). Br J Haematol. 2003;123:278–81.

    Article  PubMed  Google Scholar 

  109. Osuji N, Del Giudice I, Matutes E, Morilla A, Owusu-Ankomah K, Morilla R. CD52 expression in T-cell large granular lymphocyte leukemia-Implications for treatment with alemtuzumab. Leuk Lymphoma. 2005;46:723–7.

    Article  PubMed  CAS  Google Scholar 

  110. Aprile JA, Russo M, Pepe MS, Loughran Jr TP. Activation signals leading to proliferation of normal and leukemic CD3+ large granular lymphocytes. Blood. 1991;78:1282–5.

    PubMed  CAS  Google Scholar 

  111. Morris JC, Janik JE, White JD, Fleisher TA, Brown M, Tsudo M. Preclinical and phase I clinical trial of blockade of IL-15 using Mikbeta1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci USA. 2006;103:401–6.

    Article  PubMed  CAS  Google Scholar 

  112. Loughran Jr TP, Starkebaum G, Clark E, Wallace P, Kadin ME. Evaluation of splenectomy in large granular lymphocyte leukaemia. Br J Haematol. 1987;67:135–40.

    Article  PubMed  Google Scholar 

  113. Gentile TC, Loughran Jr TP. Resolution of autoimmune hemolytic anemia following splenectomy in CD3+ large granular lymphocyte leukemia. Leuk Lymphoma. 1996;23:405–8.

    Article  PubMed  CAS  Google Scholar 

  114. Toze CL, Shepherd JD, Connors JM, Voss NJ, Gascoyne RD, Hogge DE. Allogeneic bone marrow transplantation for low-grade lymphoma and chronic lymphocytic leukemia. Bone Marrow Transplant. 2000;25:605–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Grey-Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grey-Davies, E., Dearden, C. (2013). The T-Cell Leukaemias. In: Foss, F. (eds) T-Cell Lymphomas. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-170-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-170-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-169-1

  • Online ISBN: 978-1-62703-170-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics