Skip to main content

Monoclonal Antibodies (mAb) in the Therapy of T-Cell Lymphomas

  • Chapter
  • First Online:
T-Cell Lymphomas

Part of the book series: Contemporary Hematology ((CH))

  • 1258 Accesses

Abstract

T-cell lymphomas (TCLs) represent a heterogeneous group of lymphoid neoplasms. With the exception of ALK+ anaplastic large cell lymphoma (ALCL), early stage mycosis fungoides (MF) and T-large granular lymphocytic (LGL) leukemia, TCL respond poorly to conventional chemotherapy and have a poor prognosis. Malignant T-cells express a number of potential targets for immunotherapy, which are described in detail in this chapter. Monoclonal antibodies (mAbs) against a number of T-cell antigens have shown significant clinical activity in a variety of TCL and represent an important addition to the therapeutic toolbox, with durable remissions occurring in a subset of patients. The main toxicity of anti-T-cell mAbs is immune suppression, due to the fact that subsets of normal T-cells are also depleted during therapy. The degree and duration of T-cell lymphopenia and immune suppression produced by anti-T-cell mAbs is variable, but to date none has been shown to be completely free of these side effects. Since mAbs as single agents are not curative in TCL, they should be integrated in combination with other biological or chemotherapeutic agents, either simultaneously or sequentially. Maintenance therapy or retreatment based on the monitoring of minimal residual disease should also be considered although antigen mutation or modulation may limit repeated administration activity. Studies involving mAbs covalently bound to radioisotope or toxins to enhance their ability to destroy tumor cells show that immunoconjugates are more effective than “naked” mAbs. This multimodality strategy, together with a personalized, stage-specific approach represents the future in the management of TCL patients. Based on the spectrum of investigational mAbs now available and the activity shown, there is no doubt that mAbs therapy of TCL will continue to be an area of active interest expanding clinical trials. Long-term safety and recovery of cell-mediated immunity should be a key clinical endpoint in the ultimate risk-benefit assessment of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pressman D, Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer. 1953;6(3):619–23.

    Article  PubMed  CAS  Google Scholar 

  2. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  PubMed  Google Scholar 

  3. Mascelli MA, Zhou H, Sweet R, et al. Molecular, biologic, and pharmacokinetic properties of monoclonal antibodies: impact of these parameters on early clinical development. J Clin Pharmacol. 2007;47(5):553–65.

    Article  PubMed  CAS  Google Scholar 

  4. Dillman RO. Monoclonal antibody therapy. In: Oldham RK, Dillman RO, editors. Principles of cancer biotherapy. 5th ed. New York: Springer; 2009. p. 303–407.

    Chapter  Google Scholar 

  5. Meuer SC, Acuto O, Hercend T, et al. The human T-cell receptor. Annu Rev Immunol. 1984;2:23–50.

    Article  PubMed  CAS  Google Scholar 

  6. Kamoun M, Martin PJ, Hansen JA, et al. Identification of a human T lymphocyte surface protein associated with the E-rosette receptor. J Exp Med. 1981;153(1):207–12.

    Article  PubMed  CAS  Google Scholar 

  7. Bernard A, Gelin C, Raynal B, et al. Phenomenon of human T cells rosetting with sheep erythrocytes analyzed with monoclonal antibodies. “Modulation” of a partially hidden epitope determining the conditions of interaction between T cells and erythrocytes. J Exp Med. 1982;155(5):1317–33.

    Article  PubMed  CAS  Google Scholar 

  8. Alberola-Ila J, Places L, de la Calle O, et al. Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T lymphocytes. J Immunol. 1991;146(4):1085–92.

    PubMed  CAS  Google Scholar 

  9. Crawford K, Stark A, Kitchens B, et al. CD2 engagement induces dendritic cell activation: implications for immune surveillance and T-cell activation. Blood. 2003;102(5):1745–52.

    Article  PubMed  CAS  Google Scholar 

  10. Ohno H, Ushiyama C, Taniguchi M, et al. CD2 can mediate TCR/CD3-independent T cell activation. J Immunol. 1991;146(11):3742–6.

    PubMed  CAS  Google Scholar 

  11. Moingeon P, Chang HC, Wallner BP. et al CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 1989;339(6222):312–4.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson A, Seed B. Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2). Nature. 1987;329(6142):842–6.

    Article  PubMed  CAS  Google Scholar 

  13. Dustin ML, Sanders ME, Shaw S, et al. Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med. 1987;165(3):677–92.

    Article  PubMed  CAS  Google Scholar 

  14. Hahn WC, Menu E, Bothwell AL, et al. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science. 1992;256(5065):1805–7.

    Article  PubMed  CAS  Google Scholar 

  15. Selvaraj P, Plunkett ML, Dustin M, et al. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature. 1987;326(6111):400–3.

    Article  PubMed  CAS  Google Scholar 

  16. Arulanandam AR, Kister A, McGregor MJ, et al. Interaction between human CD2 and CD58 involves the major beta sheet surface of each of their respective adhesion domains. J Exp Med. 1994;180(5):1861–71.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu DM, Dustin ML, Cairo CW, et al. Mechanisms of cellular avidity regulation in CD2-CD58-mediated T cell adhesion. ACS Chem Biol. 2006;1(10):649–58.

    Article  PubMed  CAS  Google Scholar 

  18. Badour K, Zhang J, Shi F, et al. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity. 2003;18(1):141–54.

    Article  PubMed  CAS  Google Scholar 

  19. Carmo AM, Mason DW, Beyers AD. Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn. Eur J Immunol. 1993;23(9):2196–201.

    Article  PubMed  CAS  Google Scholar 

  20. Bell GM, Fargnoli J, Bolen JB, et al. The SH3 domain of p56lck binds to proline-rich sequences in the cytoplasmic domain of CD2. J Exp Med. 1996;183(1):169–78.

    Article  PubMed  CAS  Google Scholar 

  21. Pantaleo G, Olive D, Poggi A, et al. Transmembrane signalling via the T11-dependent pathway of human T cell activation. Evidence for the involvement of 1,2-diacylglycerol and inositol phosphates. Eur J Immunol. 1987;17(1):55–60.

    Article  PubMed  CAS  Google Scholar 

  22. Hubert P, Debré P, Boumsell L, et al. Tyrosine phosphorylation and association with phospholipase C gamma-1 of the GAP-associated 62-kD protein after CD2 stimulation of Jurkat T cell. J Exp Med. 1993;178(5):1587–96.

    Article  PubMed  CAS  Google Scholar 

  23. Meuer SC, Hussey RE, Fabbi M, et al. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984;36(4):897–906.

    Article  PubMed  CAS  Google Scholar 

  24. Dumont C, Déas O, Mollereau B, et al. Potent apoptotic signaling and subsequent unresponsiveness induced by a single CD2 mAb (BTI-322) in activated human peripheral T cells. J Immunol. 1998;160(8):3797–804.

    PubMed  CAS  Google Scholar 

  25. Schad V, Greenstein JL, Giovino-Barry V, et al. An anti-CD2 monoclonal antibody that elicits alloantigen-specific hyporesponsiveness. Transplant Proc. 1996;28(4):2051–3.

    PubMed  CAS  Google Scholar 

  26. Przepiorka D, Phillips GL, Ratanatharathorn V, et al. A phase II study of BTI-322, a monoclonal anti-CD2 antibody, for treatment of steroid-resistant acute graft-versus-host disease. Blood. 1998;92(11):4066–71.

    PubMed  CAS  Google Scholar 

  27. Zhang Z, Zhang M, Ravetch JV, et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood. 2003;102(1):284–8.

    Article  PubMed  CAS  Google Scholar 

  28. Sorbera LA, Leeson PA, Revel L, et al. Siplizumab. Drugs Fut. 2002;27(6):558.

    Article  CAS  Google Scholar 

  29. Casale DA, Bartlett NL, Hurd DD, et al. A phase I open label dose escalation study to evaluate MEDI-507 in patients with CD2-positive T-cell lymphoma/leukemia [ASH annual meeting abstracts]. Blood. 2006;108:2727.

    Google Scholar 

  30. O’Mahony D, Morris JC, Stetler-Stevenson M, et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15(7):2514–22.

    Article  PubMed  CAS  Google Scholar 

  31. Manolios N, Letourneur F, Bonifacino JS, et al. Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. EMBO J. 1991;10(7):1643–51.

    PubMed  CAS  Google Scholar 

  32. Chetty R, Gatter K. CD3: structure, function, and role of immunostaining in clinical practice. J Pathol. 1994;173(4):303–7.

    Article  PubMed  CAS  Google Scholar 

  33. San José E, Sahuquillo AG, Bragado R, et al. Assembly of the TCR/CD3 complex: CD3 epsilon/delta and CD3 epsilon/gamma dimers associate indistinctly with both TCR alpha and TCR beta chains. Evidence for a double TCR heterodimer model. Eur J Immunol. 1998;28(1):12–21.

    Article  PubMed  Google Scholar 

  34. Jaffers GJ, Fuller TC, Cosimi AB, et al. Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation. 1986;41(5):572–8.

    Article  PubMed  CAS  Google Scholar 

  35. Legendre C, Kreis H, Bach JF, et al. Prediction of successful allograft rejection retreatment with OKT3. Transplantation. 1992;53(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  36. Sgro C. Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology. 1995;105(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  37. Abramowicz D, Schandene L, Goldman M, et al. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989;47(4):606–8.

    Article  PubMed  CAS  Google Scholar 

  38. Alegre ML, Vandenabeele P, Depierreux M, et al. Cytokine release syndrome induced by the 145-2C11 anti-CD3 monoclonal antibody in mice: prevention by high doses of methylprednisolone. J Immunol. 1991;146(4):1184–91.

    PubMed  CAS  Google Scholar 

  39. Carpenter PA, Appelbaum FR, Corey L, et al. A humanized non-FcR-binding anti-CD3 antibody, visilizumab, for treatment of steroid-refractory acute graft-versus-host disease. Blood. 2002;99(8):2712–9.

    Article  PubMed  CAS  Google Scholar 

  40. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346(6283):425–34.

    Article  PubMed  CAS  Google Scholar 

  41. Leahy DJ. A structural view of CD4 and CD8. FASEB J. 1995;9(1):17–25.

    PubMed  CAS  Google Scholar 

  42. Veillette A, Bookman MA, Horak EM, et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988;55(2):301–8.

    Article  PubMed  CAS  Google Scholar 

  43. Kim YH, Duvic M, Obitz E, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109(11):4655–62.

    Article  PubMed  CAS  Google Scholar 

  44. Herzog C, Walker C, Müller W, et al. Anti-CD4 antibody treatment of patients with rheumatoid arthritis: I. Effect on clinical course and circulating T cells. J Autoimmun. 1989;2(5):627–42.

    Article  PubMed  CAS  Google Scholar 

  45. Choy EH, Connolly DJ, Rapson N, et al. Pharmacokinetic, pharmacodynamic and clinical effects of a humanized IgG1 anti-CD4 monoclonal antibody in the peripheral blood and synovial fluid of rheumatoid arthritis patients. Rheumatology (Oxford). 2000;39(10):1139–46.

    Article  CAS  Google Scholar 

  46. Skov L, Kragballe K, Zachariae C, et al. HuMax-CD4: a fully human monoclonal anti-CD4 antibody for the treatment of psoriasis vulgaris. Arch Dermatol. 2003;139(11):1433–9.

    Article  PubMed  CAS  Google Scholar 

  47. Knox SJ, Levy R, Hodgkinson S, et al. Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood. 1991;77(1):20–30.

    PubMed  CAS  Google Scholar 

  48. Knox S, Hoppe RT, Maloney D, et al. Treatment of cutaneous T-cell lymphoma with chimeric anti-CD4 monoclonal antibody. Blood. 1996;87(3):893–9.

    PubMed  CAS  Google Scholar 

  49. Rider DA, Havenith CE, de Ridder R, et al. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res. 2007;67(20):9945–53.

    Article  PubMed  CAS  Google Scholar 

  50. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 2006;24:657–79.

    Article  PubMed  CAS  Google Scholar 

  51. Leonard WJ, Depper JM, Uchiyama T, et al. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature. 1982;300(5889):267–9.

    Article  PubMed  CAS  Google Scholar 

  52. Leonard WJ, Depper JM, Crabtree GR, et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984;311(5987):626–31.

    Article  PubMed  CAS  Google Scholar 

  53. Sharon M, Klausner RD, Cullen BR, et al. Novel interleukin-2 receptor subunit detected by cross-linking under high-affinity conditions. Science. 1986;234(4778):859–63.

    Article  PubMed  CAS  Google Scholar 

  54. Leonard WJ, Depper JM, Kanehisa M, et al. Structure of the human interleukin-2 receptor gene. Science. 1985;230(4726):633–9.

    Article  PubMed  CAS  Google Scholar 

  55. Waldmann TA. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science. 1986;232(4751):727–32.

    Article  PubMed  CAS  Google Scholar 

  56. Sugamura K, Asao H, Kondo M, et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol. 1996;14:179–205.

    Article  PubMed  CAS  Google Scholar 

  57. Uchiyama T, Nelson DL, Fleisher TA, et al. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. II. Expression of Tac antigen on activated cytotoxic killer T cells, suppressor cells, and on one of two types of helper T cells. J Immunol. 1981;126(4):1398–403.

    PubMed  CAS  Google Scholar 

  58. Jones D, Ibrahim S, Patel K, et al. Degree of CD25 expression in T-cell lymphoma is dependent on tissue site: implications for targeted therapy. Clin Cancer Res. 2004;10(16):5587–94.

    Article  PubMed  CAS  Google Scholar 

  59. Talpur R, Jones DM, Alencar AJ, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(3):575–83.

    Article  PubMed  CAS  Google Scholar 

  60. Janik JE, Morris JC, Pittaluga S, et al. Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma. Blood. 2004;104(10):3355–7.

    Article  PubMed  CAS  Google Scholar 

  61. Waldmann TA. The multi-subunit interleukin-2 receptor. Annu Rev Biochem. 1989;58:875–911.

    Article  PubMed  CAS  Google Scholar 

  62. Waldmann TA. The IL-2/IL-2 receptor system: a target for rational immune intervention. Immunol Today. 1993;14(6):264–70.

    Article  PubMed  CAS  Google Scholar 

  63. Foss FM, Waldmann TA. Interleukin-2 receptor-directed therapies for cutaneous lymphomas. Hematol Oncol Clin North Am. 2003;17(6):1449–58.

    Article  PubMed  Google Scholar 

  64. Kirkman RL, Shapiro ME, Carpenter CB, et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplant Proc. 1991;23(1 Pt 2):1066–7.

    PubMed  CAS  Google Scholar 

  65. Nussenblatt RB, Fortin E, Schiffman R, et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc Natl Acad Sci U S A. 1999;96(13):7462–6.

    Article  PubMed  CAS  Google Scholar 

  66. Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A. 2004;101(23):8705–8.

    Article  PubMed  CAS  Google Scholar 

  67. Lehky TJ, Levin MC, Kubota R, et al. Reduction in HTLV-I proviral load and spontaneous lymphoproliferation in HTLV-I-associated myelopathy/tropical spastic paraparesis patients treated with humanized anti-Tac. Ann Neurol. 1998;44(6):942–7.

    Article  PubMed  CAS  Google Scholar 

  68. Wiseman LR, Faulds D. Daclizumab: a review of its use in the prevention of acute rejection in renal transplant recipients. Drugs. 1999;58(6):1029–42.

    Article  PubMed  CAS  Google Scholar 

  69. Queen C, Schneider WP, Selick HE, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A. 1989;86(24):10029–33.

    Article  PubMed  CAS  Google Scholar 

  70. Junghans RP, Waldmann TA, Landolfi NF, et al. Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders. Cancer Res. 1990;50(5):1495–502.

    PubMed  CAS  Google Scholar 

  71. Rubin LA, Kurman CC, Biddison WE, et al. A monoclonal antibody 7G7/B6, binds to an epitope on the human interleukin-2 (IL-2) receptor that is distinct from that recognized by IL-2 or anti-Tac. Hybridoma. 1985;4(2):91–102.

    Article  PubMed  CAS  Google Scholar 

  72. Phillips KE, Herring B, Wilson LA, et al. IL-2Ralpha-directed monoclonal antibodies provide effective therapy in a murine model of adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction. Cancer Res. 2000;60(24):6977–84.

    PubMed  CAS  Google Scholar 

  73. Zhang M, Zhang Z, Goldman CK, et al. Combination therapy for adult T-cell leukemia-xenografted mice: flavopiridol and anti-CD25 monoclonal antibody. Blood. 2005;105(3):1231–6.

    Article  PubMed  CAS  Google Scholar 

  74. Waldmann TA, White JD, Goldman CK, et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood. 1993;82(6):1701–12.

    PubMed  CAS  Google Scholar 

  75. Waldmann TA, White JD, Carrasquillo JA, et al. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood. 1995;86(11):4063–75.

    PubMed  CAS  Google Scholar 

  76. Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18(8):1622–36.

    PubMed  CAS  Google Scholar 

  77. Anderson DM, Kumaki S, Ahdieh M, et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem. 1995;270(50):29862–9.

    Article  PubMed  CAS  Google Scholar 

  78. Shanmugham LN, Petrarca C, Frydas S, et al. IL-15 an immunoregulatory and anti-cancer cytokine. Recent advances. J Exp Clin Cancer Res. 2006;25(4):529–36.

    PubMed  CAS  Google Scholar 

  79. Döbbeling U, Dummer R, Laine E, et al. Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood. 1998;92(1):252–8.

    PubMed  Google Scholar 

  80. Cario G, Izraeli S, Teichert A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol. 2007;25(30):4813–20.

    Article  PubMed  CAS  Google Scholar 

  81. Morris JC, Janik JE, White JD, et al. Preclinical and phase I clinical trial of blockade of IL-15 using Mikbeta1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci U S A. 2006;103(2):401–6.

    Article  PubMed  CAS  Google Scholar 

  82. Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev. 1998;161:55–70.

    Article  PubMed  CAS  Google Scholar 

  83. von Bonin A, Hühn J, Fleischer B. Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev. 1998;161:43–53.

    Article  Google Scholar 

  84. Ishii T, Ohnuma K, Murakami A, et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci U S A. 2001;98(21):12138–43.

    Article  PubMed  CAS  Google Scholar 

  85. Oravecz T, Pall M, Roderiquez G, et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med. 1997;186(11):1865–72.

    Article  PubMed  CAS  Google Scholar 

  86. Proost P, Menten P, Struyf S, et al. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood. 2000;96(5):1674–80.

    PubMed  CAS  Google Scholar 

  87. Kameoka J, Tanaka T, Nojima Y, et al. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993;261(5120):466–9.

    Article  PubMed  CAS  Google Scholar 

  88. Jones D, Dang NH, Duvic M, et al. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001;115(6):885–92.

    Article  PubMed  CAS  Google Scholar 

  89. Dang NH, Aytac U, Sato K, et al. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol. 2003;121(6):857–65.

    Article  PubMed  Google Scholar 

  90. Ruiz P, Mailhot S, Delgado P, et al. CD26 expression and dipeptidyl peptidase IV activity in an aggressive hepatosplenic T-cell lymphoma. Cytometry. 1998;34(1):30–5.

    Article  PubMed  CAS  Google Scholar 

  91. Ho L, Aytac U, Stephens LC, et al. In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res. 2001;7(7):2031–40.

    PubMed  CAS  Google Scholar 

  92. Carbone A, Gloghini A, Zagonel V, et al. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood. 1995;86(12):4617–26.

    PubMed  CAS  Google Scholar 

  93. Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.

    PubMed  CAS  Google Scholar 

  94. Gruss HJ, Duyster J, Herrmann F. Structural and biological features of the TNF receptor and TNF ligand superfamilies: interactive signals in the pathobiology of Hodgkin’s disease. Ann Oncol. 1996;7 Suppl 4:19–26.

    Article  PubMed  Google Scholar 

  95. Chiarle R, Podda A, Prolla G, et al. CD30 in normal and neoplastic cells. Clin Immunol. 1999;90(2):157–64.

    Article  PubMed  CAS  Google Scholar 

  96. Gilfillan MC, Noel PJ, Podack ER, et al. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J Immunol. 1998;160(5):2180–7.

    PubMed  CAS  Google Scholar 

  97. Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982;299(5878):65–7.

    Article  PubMed  CAS  Google Scholar 

  98. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.

    PubMed  CAS  Google Scholar 

  99. Beljaards RC, Meijer CJ, Scheffer E, et al. Prognostic significance of CD30 (Ki-1/Ber-H2) expression in primary cutaneous large-cell lymphomas of T-cell origin. A clinicopathologic and immunohistochemical study in 20 patients. Am J Pathol. 1989;135(6):1169–78.

    PubMed  CAS  Google Scholar 

  100. Zinzani PL, Pileri S, Bendandi M, et al. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. J Clin Oncol. 1998;16(4):1532–7.

    PubMed  CAS  Google Scholar 

  101. Hecht TT, Longo DL, Cossman J, et al. Production and characterization of a monoclonal antibody that binds Reed-Sternberg cells. J Immunol. 1985;134(6):4231–6.

    PubMed  CAS  Google Scholar 

  102. Norton AJ, Isaacson PG. Detailed phenotypic analysis of B-cell lymphoma using a panel of antibodies reactive in routinely fixed wax-embedded tissue. Am J Pathol. 1987;128(2):225–40.

    PubMed  CAS  Google Scholar 

  103. Bowen MA, Olsen KJ, Cheng L, et al. Functional effects of CD30 on a large granular lymphoma cell line, YT. Inhibition of cytotoxicity, regulation of CD28 and IL-2R, and induction of homotypic aggregation. J Immunol. 1993;151(11):5896–906.

    PubMed  CAS  Google Scholar 

  104. Gruss HJ, Boiani N, Williams DE, et al. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood. 1994;83(8):2045–56.

    PubMed  CAS  Google Scholar 

  105. Borchmann P, Treml JF, Hansen H, et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood. 2003;102(10):3737–42.

    Article  PubMed  CAS  Google Scholar 

  106. Wahl AF, Klussman K, Thompson JD, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res. 2002;62(13):3736–42.

    PubMed  CAS  Google Scholar 

  107. Hu XF, Xing PX. MDX-060. Medarex. Curr Opin Investig Drugs. 2005;6(12):1266–71.

    PubMed  CAS  Google Scholar 

  108. Mir SS, Richter BW, Duckett CS. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood. 2000;96(13):4307–12.

    PubMed  CAS  Google Scholar 

  109. Duckett CS, Gedrich RW, Gilfillan MC, et al. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol. 1997;17(3):1535–42.

    PubMed  CAS  Google Scholar 

  110. Hirsch B, Hummel M, Bentink S, et al. CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol. 2008;172(2):510–20.

    Article  PubMed  CAS  Google Scholar 

  111. Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood. 1996;87(10):4340–7.

    PubMed  CAS  Google Scholar 

  112. Tian ZG, Longo DL, Funakoshi S, et al. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res. 1995;55(22):5335–41.

    PubMed  CAS  Google Scholar 

  113. Pfeifer W, Levi E, Petrogiannis-Haliotis T, et al. A murine xenograft model for human CD30+ anaplastic large cell lymphoma. Successful growth inhibition with an anti-CD30 antibody (HeFi-1). Am J Pathol. 1999;155(4):1353–9.

    Article  PubMed  CAS  Google Scholar 

  114. Pasqualucci L, Wasik M, Teicher BA, et al. Antitumor activity of anti-CD30 immunotoxin (Ber-H2/saporin) in vitro and in severe combined immunodeficiency disease mice xenografted with human CD30+ anaplastic large-cell lymphoma. Blood. 1995;85(8):2139–46.

    PubMed  CAS  Google Scholar 

  115. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9.

    Article  PubMed  CAS  Google Scholar 

  116. Bartlett NL, Younes A, Carabasi MH, et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood. 2008;111(4):1848–54.

    Article  PubMed  CAS  Google Scholar 

  117. Forero-Torres A, Leonard JP, Younes A, et al. A phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  118. Duvic M, Reddy SA, Pinter-Brown L, et al. A phase II study of SGN-30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res. 2009;15(19):6217–24.

    Article  PubMed  CAS  Google Scholar 

  119. Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev Drug Discov. 2012;11(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  120. Foyil KV, Bartlett NL. Brentuximab vedotin for the treatment of CD30+ lymphomas. Immunotherapy. 2011;3(4):475–85.

    Article  PubMed  CAS  Google Scholar 

  121. Fanale MA, Forero-Torres A, Rosenblatt JD, et al. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res. 2012;18(1):248–55.

    Article  PubMed  CAS  Google Scholar 

  122. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  PubMed  CAS  Google Scholar 

  123. Wagner-Johnston ND, Bartlett NL, Cashen A, et al. Progressive multifocal leukoencephalopathy (PML) in a patient with Hodgkin’s lymphoma treated with brentuximab vedotin. Leuk Lymphoma. 2012 [Epub ahead of print].

    Google Scholar 

  124. Hale G, Xia MQ, Tighe HP, et al. The CAMPATH-1 antigen (CDw52). Tissue Antigens. 1990;35(3):118–27.

    Article  PubMed  CAS  Google Scholar 

  125. Xia MQ, Hale G, Lifely MR, et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J. 1993;293(Pt 3):633–40.

    PubMed  CAS  Google Scholar 

  126. Watanabe T, Masuyama J, Sohma Y, et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006;120(3):247–59.

    Article  PubMed  CAS  Google Scholar 

  127. Elsner J, Hochstetter R, Spiekermann K, et al. Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood. 1996;88(12):4684–93.

    PubMed  CAS  Google Scholar 

  128. Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  129. Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001;3(3):137–43.

    Article  PubMed  CAS  Google Scholar 

  130. Buggins AG, Mufti GJ, Salisbury J, et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100(5):1715–20.

    PubMed  CAS  Google Scholar 

  131. Hale G, Rye PD, Warford A, et al. The glycosylphosphatidylinositol-anchored lymphocyte antigen CDw52 is associated with the epididymal maturation of human spermatozoa. J Reprod Immunol. 1993;23(2):189–205.

    Article  PubMed  CAS  Google Scholar 

  132. Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood. 1993;82(3):807–12.

    PubMed  CAS  Google Scholar 

  133. Olweus J, Lund-Johansen F, Terstappen LW. Expression of cell surface markers during differentiation of CD34+, CD38-/lo fetal and adult bone marrow cells. Immunomethods. 1994;5(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  134. Rodig SJ, Abramson JS, Pinkus GS, et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res. 2006;12(23):7174–9.

    Article  PubMed  CAS  Google Scholar 

  135. Piccaluga PP, Agostinelli C, Righi S, et al. Expression of CD52 in peripheral T-cell lymphoma. Haematologica. 2007;92(4):566–7.

    Article  PubMed  Google Scholar 

  136. Lapalombella R, Zhao X, Triantafillou G, et al. A novel Raji-Burkitt’s lymphoma model for preclinical and mechanistic evaluation of CD52-targeted immunotherapeutic agents. Clin Cancer Res. 2008;14(2):569–78.

    Article  PubMed  CAS  Google Scholar 

  137. Salisbury JR, Rapson NT, Codd JD, et al. Immunohistochemical analysis of CDw52 antigen expression in non-Hodgkin’s lymphomas. J Clin Pathol. 1994;47(4):313–7.

    Article  PubMed  CAS  Google Scholar 

  138. Jiang L, Yuan CM, Hubacheck J, et al. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy. Br J Haematol. 2009;145(2):173–9.

    Article  PubMed  CAS  Google Scholar 

  139. Dearden CE, Matutes E. Alemtuzumab in T-cell lymphoproliferative disorders. Best Pract Res Clin Haematol. 2006;19(4):795–810.

    Article  PubMed  CAS  Google Scholar 

  140. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99(10):3554–61.

    Article  PubMed  CAS  Google Scholar 

  141. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25(35):5616–23.

    Article  PubMed  CAS  Google Scholar 

  142. Xia MQ, Hale G, Waldmann H. Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Mol Immunol. 1993;30(12):1089–96.

    Article  PubMed  CAS  Google Scholar 

  143. Zhang Z, Zhang M, Goldman CK, et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res. 2003;63(19):6453–7.

    PubMed  CAS  Google Scholar 

  144. Golay J, Manganini M, Rambaldi A, et al. Effect of alemtuzumab on neoplastic B cells. Haematologica. 2004;89(12):1476–83.

    PubMed  CAS  Google Scholar 

  145. Zent CS, Chen JB, Kurten RC, et al. Alemtuzumab (CAMPATH 1H) does not kill chronic lymphocytic leukemia cells in serum free medium. Leuk Res. 2004;28(5):495–507.

    Article  PubMed  CAS  Google Scholar 

  146. Nuckel H, Frey UH, Roth A, et al. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. Eur J Pharmacol. 2005;514(2–3):217–24.

    Article  PubMed  CAS  Google Scholar 

  147. Lowenstein H, Shah A, Chant A, et al. Different mechanisms of Campath-1H-mediated depletion for CD4 and CD8 T cells in peripheral blood. Transpl Int. 2006;19(11):927–36.

    Article  PubMed  CAS  Google Scholar 

  148. Hale G, Rebello P, Brettman LR, et al. Blood concentrations of alemtuzumab and antiglobulin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood. 2004;104(4):948–55.

    Article  PubMed  CAS  Google Scholar 

  149. Wing MG, Moreau T, Greenwood J, et al. Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest. 1996;98(12):2819–26.

    Article  PubMed  CAS  Google Scholar 

  150. Dearden CE, Matutes E, Cazin B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98(6):1721–6.

    Article  PubMed  CAS  Google Scholar 

  151. Lundin J, Osterborg A, Brittinger G, et al. CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H treatment in low-grade non-Hodgkin’s lymphoma. J Clin Oncol. 1998;16(10):3257–63.

    PubMed  CAS  Google Scholar 

  152. Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003;101(11):4267–72.

    Article  PubMed  CAS  Google Scholar 

  153. Kennedy GA, Seymour JF, Wolf M, et al. Treatment of patients with advanced mycosis fungoides and Sézary syndrome with alemtuzumab. Eur J Haematol. 2003;71(4):250–6.

    Article  PubMed  CAS  Google Scholar 

  154. Zinzani PL, Alinari L, Tani M, et al. Preliminary observations of a phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica. 2005;90(5):702–3.

    PubMed  CAS  Google Scholar 

  155. Bernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sézary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92(6):784–94.

    Article  PubMed  CAS  Google Scholar 

  156. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103(8):2920–4.

    Article  PubMed  CAS  Google Scholar 

  157. Absi A, Hsi E, Kalaycio M. Prolymphocytic leukemia. Curr Treat Options Oncol. 2005;6(3):197–208.

    Article  PubMed  Google Scholar 

  158. Keating MJ, Cazin B, Coutré S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20(1):205–13.

    Article  PubMed  CAS  Google Scholar 

  159. Lenihan DJ, Alencar AJ, Yang D, et al. Cardiac toxicity of alemtuzumab in patients with mycosis fungoides/Sézary syndrome. Blood. 2004;104(3):655–8.

    Article  PubMed  CAS  Google Scholar 

  160. Lundin J, Kennedy B, Dearden C, et al. No cardiac toxicity associated with alemtuzumab therapy for mycosis fungoides/Sézary syndrome. Blood. 2005;105(10):4148–9.

    Article  PubMed  CAS  Google Scholar 

  161. Gibbs SD, Herbert KE, McCormack C, et al. Alemtuzumab: effective monotherapy for simultaneous B-cell chronic lymphocytic leukaemia and Sézary syndrome. Eur J Haematol. 2004;73(6):447–9.

    Article  PubMed  Google Scholar 

  162. Gautschi O, Blumenthal N, Streit M, et al. Successful treatment of chemotherapy-refractory Sézary syndrome with alemtuzumab (Campath-1H). Eur J Haematol. 2004;72(1):61–3.

    Article  PubMed  CAS  Google Scholar 

  163. Capalbo S, Delia M, Dargenio M, et al. Mycosis fungoides/Sézary syndrome: a report of three cases treated with Campath-1H as salvage treatment. Med Oncol. 2003;20(4):389–96.

    Article  PubMed  Google Scholar 

  164. Kim JG, Sohn SK, Chae YS, et al. Alemtuzumab plus CHOP as front-line chemotherapy for patients with peripheral T-cell lymphomas: a phase II study. Cancer Chemother Pharmacol. 2007;60(1):129–34.

    Article  PubMed  CAS  Google Scholar 

  165. Gallamini A, Zaja F, Patti C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110(7):2316–23.

    Article  PubMed  CAS  Google Scholar 

  166. Intragumtornchai T, Bunworasate U, Nakorn TN, et al. Alemtuzumab in combination with CHOP and ESHAP as first-line treatment in peripheral T-cell lymphoma [ASH annual meeting abstracts]. Blood. 2006;108:4740.

    Google Scholar 

  167. Weidmann E, Hess G, Chow KU, et al. A phase II study of alemtuzumab, fludarabine, cyclophosphamide, and doxorubicin (Campath-FCD) in peripheral T-cell lymphomas. Leuk Lymphoma. 2010;51(3):447–55.

    Article  PubMed  CAS  Google Scholar 

  168. Osterborg A, Karlsson C, Lundin J, et al. Strategies in the management of alemtuzumab-related side effects. Semin Oncol. 2006;33(2 Suppl 5):S29–35.

    Article  PubMed  CAS  Google Scholar 

  169. Weisel KC, Weidmann E, Anagnostopoulos I, et al. Epstein-Barr virus-associated B-cell lymphoma secondary to FCD-C therapy in patients with peripheral T-cell lymphoma. Int J Hematol. 2008;88(4):434–40.

    Article  PubMed  CAS  Google Scholar 

  170. Kluin-Nelemans HC, Coenen JL, Boers JE, et al. EBV-positive immunodeficiency lymphoma after alemtuzumab-CHOP therapy for peripheral T-cell lymphoma. Blood. 2008;112(4):1039–41.

    Article  PubMed  CAS  Google Scholar 

  171. Majeau GR, Meier W, Jimmo B, et al. Mechanism of lymphocyte function-associated molecule 3-Ig fusion proteins inhibition of T cell responses. Structure/function analysis in vitro and in human CD2 transgenic mice. J Immunol. 1994;152(6):2753–67.

    PubMed  CAS  Google Scholar 

  172. Branco L, Barren P, Mao SY, et al. Selective deletion of antigen-specific, activated T cells by a humanized MAB to CD2 (MEDI-507) is mediated by NK cells. Transplantation. 1999;68(10):1588–96.

    Article  PubMed  CAS  Google Scholar 

  173. Kung P, Goldstein G, Reinherz EL, et al. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979;206(4416):347–9.

    Article  PubMed  CAS  Google Scholar 

  174. Ravel S, Colombatti M, Casellas P. Internalization and intracellular fate of anti-CD5 monoclonal antibody and anti-CD5 ricin A-chain immunotoxin in human leukemic T cells. Blood. 1992;79(6):1511–7.

    PubMed  CAS  Google Scholar 

  175. Foss FM. DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma. 2000;1(2):110–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lapo Alinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alinari, L., Porcu, P., Coiffier, B. (2013). Monoclonal Antibodies (mAb) in the Therapy of T-Cell Lymphomas. In: Foss, F. (eds) T-Cell Lymphomas. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-170-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-170-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-169-1

  • Online ISBN: 978-1-62703-170-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics